首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibition of tissue non-specific alkaline phosphatase (TNALP) decreases intracellular lipid accumulation in human preadipocytes and the murine preadipocyte cell line, 3T3-L1. Therefore, the current study was performed to determine if TNALP is required for intracellular lipid deposition in the human hepatocyte cell line, HepG2. Intracellular lipid accumulation, TNALP activity and peroxisome proliferator activated receptor (PPAR) γ gene expression were measured in HepG2 and 3T3-L1 cells in the presence and absence of the TNALP inhibitors levamisole and histidine. Sub-cellular TNALP activity was localized using cytochemical analysis. Both PPARγ gene expression and TNALP activity increased during intracellular lipid accumulation in HepG2 and 3T3-L1 cells. Inhibition of TNALP blocked intracellular lipid accumulation but did not alter expression of the PPARγ gene. In HepG2 cells, TNALP co-localized with adipophilin on the lipid droplet membrane. These data suggest a role for TNALP in lipid droplet formation, possibly downstream from PPARγ, within HepG2 and 3T3-L1 cells.  相似文献   

2.
3.
The salivary glands (SGs) of virus‐immune mice contain substantial numbers of tissue‐resident memory CD8+ T cells (TRM cells) that can provide immunity to local infections. Integrins regulate entry of activated T cells into nonlymphoid tissues but the molecules that mediate migration of virus‐specific CD8+ T cells to the SGs have not yet been defined. Here, we found that polyinosinic‐polycytidylic acid (poly(I:C)) strongly promoted the accumulation of P14 TCR‐transgenic CD8+ TRM cells in SGs in an α4β1 integrin‐dependent manner. After infection with lymphocytic choriomeningitis virus, accumulation of P14 TRM cells in SGs and intestine but not in kidney was also α4 integrin dependent. Blockade of α4β7 by monoclonal antibodies (mAbs) inhibited lymphocytic choriomeningitis virus‐induced accumulation of P14 TRM cells in the intestine but not in SGs. In conclusion, our data reveal that α4β1 integrin mediates CD8+ TRM accumulation in SGs and that poly(I:C) can be used to direct activated CD8+ T cells to this organ.  相似文献   

4.
3,3′‐Dichlorobenzidine (DCB) (CAS 91–94‐1), a synthetic, chlorinated, primary aromatic amine, is typically used as an intermediate in the manufacturing of pigments for printing inks, textiles, paints, and plastics. In this study, we found that DCB could significantly inhibit the cell viability of HepG2 cells in a concentration‐dependent manner. Flow cytometry revealed that DCB induced G2/M‐phase arrest and apoptosis in HepG2 cells. DCB treatment dramatically induced the dissipation of mitochondrial membrane potential (Δψm) and enhanced the enzymatic activities of caspase‐9 and caspase‐3 whilst hardly affecting caspase‐8 activity. Furthermore, Western blotting indicated that DCB‐induced apoptosis was accompanied by the down‐regulation of Bcl‐2/Bax ratio. These results suggested that DCB led to cytotoxicity involving activation of mitochondrial‐dependent apoptosis through Bax/Bcl‐2 pathways in HepG2 cells. Furthermore, HepG2 cells treated with DCB showed significant DNA damage as supported by the concentration‐dependent increase in olive tail moments as determined by the comet assay and by concentration‐ and time‐dependent increase in histone H2AX phosphorylation (γ‐H2AX). Two‐dimensional‐difference gel electrophoresis (2D‐DIGE), combined with mass spectrometry (MS), was used to unveil the differences in protein expression between cells exposed to 25 µM or 100 µM of DCB for 24 hr and the control cells. Twenty‐seven differentially expressed proteins involved in DNA repair, unfolded protein response, metabolism, cell signaling, and apoptosis were identified. Among these, 14‐3‐3 theta, CGI‐46, and heat‐shock 70 protein 4 were confirmed using Western blot assay. Taken together, these data suggest that DCB is capable of inducing DNA damage and some cellular stress responses in HepG2 cells, thus eventually leading to cell death by apoptosis. Environ. Mol. Mutagen. 55:407–420, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
目的:探讨蛋白酪氨酸磷酸酶SHP-2对去血清培养诱导人胚肾293T细胞凋亡的作用。方法:将pIRES-GFP空载体、pIRES-GFP-SHP-2(WT)野生型及pIRES-GFP-SHP-2C459S突变体通过脂质体法转染293T细胞,MTT测定去血清培养对293T细胞增殖的抑制情况,去血清培养293T细胞3 d后,电镜观察超微结构、流式细胞仪检测细胞凋亡率、免疫组织化学方法测定caspase-3表达。结果:去血清培养293T细胞3 d,转染pIRES-GFP-SHP-2(WT)野生型组的293T细胞凋亡率明显低于对照组和pIRES-GFP-SHP-2C459S突变体组;而2转染组超微结构均发生早期凋亡,但并无明显差异;caspase-3免疫组化结果显示SHP-2(WT)野生型组的caspase-3表达率明显低于SHP-2C459S突变体组。结论:SHP-2可能参与到去血清培养诱导细胞凋亡的信号转导通路中并通过caspase-3依赖途径,对细胞的生存起到正向调节作用。  相似文献   

6.
After the development of highly active anti‐retroviral therapy, it became clear that the majority of emergent HIV‐1 is macrophage‐tropic and infects CD4+, CCR5‐expressing cells (R5‐tropic). There are three distinct cell populations, R5‐tropic, HIV‐1‐susceptible CD4+ cells: (i) natural killer T (NKT) cells, (ii) dendritic cells and macrophages, and (iii) tissue‐associated T cells residing primarily at mucosal surfaces. We have confirmed that CD4+ NKT cells derived from peripheral blood mononuclear cells (PBMCs) predominantly express CCR5 rather than CXCR4, whereas the reverse is true for CD4+ T cells derived from circulating PBMCs, and that R5‐tropic HIV‐1 expands efficiently in the CD4+ NKT cells. Moreover, when PBMCs depleted of CD8α+ cells were stimulated in the presence of α‐galactosylceramide (α‐GalCer) and R5‐tropic HIV‐1 [NL(AD8)], the production of HIV‐1 virions was not suppressed, whereas, similar to the untreated PBMCs, depletion of CD8β+ cells from PBMCs significantly inhibited virion production. These findings suggest that CD8αα+ but not CD8αβ+ cells may have the ability to inhibit R5‐tropic HIV‐1 replication in CD4+ NKT cells. Here, we show that co‐culturing R5‐tropic HIV‐1‐infected CD4+ NKT cells with CD8αα+ γδ T cells, in particular Vγ1Vδ1 cells, but not with CD8αα+ NKT cells or CD8αα+ dendritic cells, inhibits HIV‐1 replication mainly by secreting chemokines, such as macrophage inflammatory proteins 1α and 1β and RANTES. Collectively, these results indicate the importance of CD8αα+ γδ T cells in the control of R5‐tropic HIV‐1 replication and persistence in CD4+ NKT cells.  相似文献   

7.
Carbon monoxide (CO) treatment improves pathogenic outcome of autoimmune diseases by promoting tolerance. However, the mechanism behind this protective tolerance is not yet defined. Here, we show in a transgenic mouse model for autoimmune diabetes that ex vivo gaseous CO (gCO)‐treated DCs loaded with pancreatic β‐cell peptides protect mice from disease. This protection is peptide‐restricted, independent of IL‐10 secretion by DCs and of CD4+ T cells. Although no differences were observed in autoreactive CD8+ T‐cell function from gCO‐treated versus untreated DC‐immunized groups, gCO‐treated DCs strongly inhibited accumulation of autoreactive CD8+ T cells in the pancreas. Interestingly, induction of β1‐integrin was curtailed when CD8+ T cells were primed with gCO‐treated DCs, and the capacity of these CD8+ T cells to lyse isolated islet was dramatically impaired. Thus, immunotherapy using CO‐treated DCs appears to be an original strategy to control autoimmune disease.  相似文献   

8.
Sphingosine-1-phosphate (S1P) is a lipid second messenger that signals via five G protein-coupled receptors (S1P1–5). S1P receptor (S1PR) signalling is associated with a wide variety of physiological processes including lymphocyte biology, their recirculation and determination of T-cell phenotypes. The effect of FTY720 (Fingolimod, Gilenya™) to regulate lymphocyte egress and to ameliorate paralysis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis led to the use of FTY720 as a first-line oral agent for treatment of relapsing–remitting multiple sclerosis. However, a significant body of research suggests that S1P signalling may participate in diverse immune regulatory functions other than lymphocyte trafficking. This review article discusses the current knowledge of S1P signalling in the fate and function of T regulatory, T helper type 17 and memory T cells in health and disease.  相似文献   

9.
Chromogranin A (ChgA) is an antigenic target of pathogenic CD4+ T cells in a non‐obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Vasostatin‐1 is a naturally processed fragment of ChgA. We have now identified a novel H2‐Kd‐restricted epitope of vasostatin‐1, ChgA 36‐44, which elicits CD8+ T cell responses in NOD mice. By using ChgA 36‐44/Kd tetramers we have determined the frequency of vasostatin‐1‐specific CD8+ T cells in pancreatic islets and draining lymph nodes of NOD mice. We also demonstrate that vasostatin‐1‐specific CD4+ and CD8+ T cells constitute a significant fraction of islet‐infiltrating T cells in diabetic NOD mice. Adoptive transfer of T cells from ChgA 36‐44 peptide‐primed NOD mice into NOD/severe combined immunodeficiency (SCID) mice led to T1D development. These findings indicate that vasostatin‐1‐specific CD8+ T cells contribute to the pathogenesis of type 1 diabetes in NOD mice.  相似文献   

10.
Programmed cell death‐1 (PD‐1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD‐1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3+) regulatory T cells (Tregs). PD‐1‐deficient T cell‐specific T‐bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T‐bet over‐expression, increased interferon (IFN)‐γ production by CD4+ T cells and significantly low FoxP3+ Treg cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3+ Treg count. The study identified a unique, previously undescribed role for PD‐1 in Th1 and Treg differentiation, with potential implication in the development of Th1 cell‐targeted therapy.  相似文献   

11.
12.
Systemic autoimmune diseases, such as systemic lupus erythematosus (SLE), are often characterized by a failure of self‐tolerance and result in an uncontrolled activation of B cells and effector T cells. Interleukin (IL)‐2 critically maintains homeostasis of regulatory T cells (Treg) and effector T cells in the periphery. Previously, we identified the cAMP‐responsive element modulator α (CREMα) as a major factor responsible for decreased IL‐2 production in T cells from SLE patients. Additionally, using a transgenic mouse that specifically over‐expresses CREMα in T cells (CD2CREMαtg), we provided in‐vivo evidence that CREMα indeed suppresses IL‐2 production. To analyse the effects of CREMα in an autoimmune prone mouse model we introduced a Fas mutation in the CD2CREMαtg mice (FVB/Fas–/–CD2CREMαtg). Overexpression of CREMα strongly accelerated the lymphadenopathy and splenomegaly in the FVB/Fas–/– mice. This was accompanied by a massive expansion of double‐negative (DN) T cells, enhanced numbers of interferon (IFN)‐γ‐producing T cells and reduced percentages of Tregs. Treatment of FVB/Fas–/–CD2CREMαtg mice with IL‐2 restored the percentage of Tregs and reversed increased IFN‐γ production, but did not affect the number of DNTs. Our data indicate that CREMα contributes to the failure of tolerance in SLE by favouring effector T cells and decreasing regulatory T cells, partially mediated by repression of IL‐2 in vivo .  相似文献   

13.
14.
15.
Induction of a long‐term immunological memory, which can expand and defend the host upon pathogen encounter, is the “holy grail” of vaccinology. Here, using a sensitive cultured IFN‐γ ELISPOT assay, we show that 50% (15 out of 30) of healthy, HIV‐1/2‐uninfected volunteers who received pTHr.HIVA DNA prime‐modified vaccinia virus Ankara. HIVA boost vaccine regimen 1 to 3 1/2 years ago had detectable HIV‐1‐specific T‐cell responses. These T cells, predominantly of the CD4+ subtype, could proliferate and produce multiple cytokines in response to in vitro peptide stimulation. Peptide mapping studies showed that the vaccine‐induced CD4+ T cells were mostly directed toward epitopes targeted in HIV‐1‐infected individuals. In addition, we used the same assay to re‐evaluate 51 volunteers from past vaccine trial IAVI‐006 and corrected the previously reported 10% of vaccine responders to 50%. Thus, we confirmed that cultured assays are a valuable tool for studying T‐cell memory. These results are discussed in the context of the current state‐of‐affairs of the HIV‐1 vaccine field.  相似文献   

16.
17.
18.
Whether interleukin (IL)‐17 promotes a diabetogenic response remains unclear. Here we examined the effects of neutralization of IL‐17 on the progress of adoptively transferred diabetes. IL‐17‐producing cells in non‐obese diabetic (NOD) mice were identified and their role in the pathogenesis of diabetes examined using transfer and co‐transfer assays. Unexpectedly, we found that in vivo neutralization of IL‐17 did not protect NOD–severe combined immunodeficiency (SCID) mice against diabetes transferred by diabetic splenocytes. In NOD mice, γδ+ T cells were dominated by IL‐17‐producing cells and were found to be the major source of IL‐17. Interestingly, these IL‐17‐producing γδ T cells did not exacerbate diabetes in an adoptive transfer model, but had a regulatory effect, protecting NOD mice from diabetes by up‐regulating transforming growth factor (TGF)‐β production. Our data suggest that the presence of IL‐17 did not increase the chance of the development of diabetes; γδ T cells protected NOD mice from diabetes in a TGF‐β‐dependent manner, irrespective of their role as major IL‐17 producers.  相似文献   

19.
20.
Designing CD8+ T‐cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE‐1γ as CD8+ T cell‐based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE‐1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD‐1. CMV vector expressing RAE‐1γ potentiated expansion of KLRG1+ CD8+ T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long‐term maintenance of epitope‐specific CD8+ T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8+ T‐cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8+ T‐cell sensitive tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号