首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Anecdotal reports suggest that the second trimester is the safest time to conduct a laparoscopic procedure on a pregnant patient, but this supposition has not been tested empirically. METHODS: Previously instrumented preterm sheep (total n = 8) at gestational day 90 (term, 145 days) were anesthetized and then insufflated with carbon dioxide for 60 min at a pressure of 15 mmHg. Cardiovascular parameters were continuously recorded while blood gas status was determined before and at 15-min intervals during and up to 2 h after insufflation. RESULTS: Insufflation produced minimal maternal blood gas or cardiovascular changes except for a significant reduction in uterine blood flow. The decrease in perfusion increased fetal arterial blood partial pressure of carbon dioxide and decreased fetal pH, oxygen saturation, and oxygen content; there was also progressive fetal hypotension and bradycardia. After manually deflating the ewe, uterine blood flow returned to normal, and the fetal partial pressure of carbon dioxide and pH changes resolved within 1 h. However, fetal oxygen saturation and content remained depressed, and fetal cardiovascular status continued to decline during the 2-h postinsufflation monitoring period. CONCLUSION: Previous studies with near-term sheep determined that carbon dioxide pneumoperitoneum produces respiratory acidosis but does not decrease fetal oxygenation. In contrast, the current findings indicate that in the preterm fetus, insufflation-induced hypercapnia and acidosis are accompanied by prolonged fetal hypoxia and cardiovascular depression. This result suggests that additional work should be conducted to confirm the presumed safety of conducting minimally invasive procedures during the second trimester.  相似文献   

2.
Background: Laparoscopic surgical procedures are being performed in pregnant women with increasing frequency. Maternal-fetal physiologic changes occurring during intraabdominal carbon dioxide insufflation are poorly understood, and maternal-fetal safety is of concern during carbon dioxide pneumoperitoneum. A previous pilot study using end-tidal carbon dioxide-guided ventilation resulted in maternal and fetal acidosis and tachycardia during carbon dioxide pneumoperitoneum. Using serial arterial PCO2 to guide ventilation, this study was designed to evaluate maternal-fetal cardiopulmonary status, uterine blood flow, and the intraamniotic pressure effects of intraabdominal carbon dioxide insufflation in singleton pregnant ewes between 120 and 135 days of gestation.

Methods: In a prospective randomized cross-over study, nine ewes were to receive either abdominal insufflation with carbon dioxide to an intraabdominal pressure of 15 mmHg (n = 9; insufflation group) or receive no insufflation (n = 9; control group). Anesthesia was induced with thiopental and maintained with end-tidal halothane (1 to 1.5 minimum alveolar concentration/100% oxygen). Mechanical ventilation was guided by serial maternal arterial blood gas analysis to maintain PaCO2 between 35 and 40 mmHg. Data from insufflated animals were collected during insufflation (60 min) and after desufflation (30 min). Control group data were collected and matched to similar time intervals for 90 min. Ewes were allowed to recover, and after a rest period (48 h) they were entered in the cross-over study.

Results: During insufflation there was a significant increase (P <0.05) in maternal PaCO2 to end-tidal carbon dioxide gradient and minute ventilation, with concomitant decreases in maternal end-tidal carbon dioxide and PaO2. Intraamniotic pressure increased significantly during insufflation. No significant changes were observed in maternal hemodynamic variables, fetal variables, or in uterine blood flow during the study. There were no fetal deaths or preterm labor in any of the animals during the experiment.  相似文献   


3.
Blutgasanalyse     
Blood gas analysis provides valuable information about both the extracellular acid-base status and gas exchange. A blood gas analyzer measures pH, partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2), O2 saturation, and hemoglobin concentration. A number of calculated parameters can be derived from these direct measurements such as bicarbonate concentration, base excess, oxygen content, etc. This contribution introduces the basic technical aspects of a blood gas analyzer and then describes some of the parameters that facilitate evaluation of the acid-base status and the oxygenation status of the blood. Finally, proper sampling and handling of blood gas samples is addressed.  相似文献   

4.
Boemke W  Krebs MO  Rossaint R 《Der Anaesthesist》2004,53(5):471-92; quiz 493-4
Blood gas analysis provides valuable information about both the extracellular acid-base status and gas exchange. A blood gas analyzer measures pH, partial pressure of oxygen(pO(2)), partial pressure of carbon dioxide (pCO(2)), O(2) saturation, and hemoglobin concentration. A number of calculated parameters can be derived from these direct measurements such as bicarbonate concentration, base excess, oxygen content, etc. This contribution introduces the basic technical aspects of a blood gas analyzer and then describes some of the parameters that facilitate evaluation of the acid-base status and the oxygenation status of the blood. Finally, proper sampling and handling of blood gas samples is addressed.  相似文献   

5.
Background: Near-infrared spectroscopy has been used to monitor cerebral oxygen saturation during cerebral circulatory arrest and carotid clamping. However, its utility has not been demonstrated in more complex situations, such as in patients with head injuries. The authors tested this method during conditions that may alter the arteriovenous partition of cerebral blood in different ways.

Methods: The authors compared changes in measured cerebral oxygen saturation and other hemodynamic parameters, including jugular venous oxygen saturation, in nine patients with severe closed head injury during manipulation of arterial carbon dioxide partial pressure and after mean arterial pressure was altered by vasopressors.

Results: The Bland and Altman representation of cerebral oxygen saturation versus jugular oxygen saturation showed a uniform scatter. Values for changing arterial carbon dioxide partial pressure were: bias = 1.1%, 2 SD = +/-21%, absolute value; and those for alterations in mean arterial pressure: bias = 3.7%, 2 SD = +/-24%, absolute value. However, a Bland and Altman plot of changes in cerebral oxygen saturation versuschanges in jugular oxygen saturation had a negative slope (alteration in arterial carbon dioxide partial pressure: bias = 2.4%, 2 SD = +/-17%, absolute value; alteration in mean arterial pressure: bias = -4.9%, 2 SD = +/-31%, absolute value). Regression analysis showed that changes in cerebral oxygen saturation were positively correlated with changes in jugular venous oxygen saturation during the carbon dioxide challenge, whereas correlation was negative during the arterial pressure challenge.  相似文献   


6.
BACKGROUND: The aim of this study was to investigate the effects of extraperitoneal laparoscopy and carbon dioxide insufflation on hemodynamic parameters, arterial blood gases and complications in urethrocystopexy operations. METHODS: Twenty-five female patients who underwent extraperitoneal laparoscopic mesh urethrocystopexy operation for the correction of urinary incontinence were allocated to the study. Hemodynamic parameters were noted and blood gas analyzes were performed before the induction of anesthesia, 10 min after induction, 5 and 10 min after the beginning of carbon dioxide insufflation, at the end of carbon dioxide insufflation and 30 min after exsufflation. RESULTS: There was no significant change in mean arterial pressure, peripheral oxygen saturation, arterial carbon dioxide pressure, and arterial oxygen saturation compared to preinsufflation and preinduction values. End-tidal carbon dioxide pressure did not increase above 45 mm/Hg during carbon dioxide insufflation. Arterial oxygen saturation and partial oxygen pressure did not decrease. Subcutaneous emphysema, pneumothorax, pneumomediastinum and pleural effusion were not noted in any patient. CONCLUSION: We conclude that, extraperitoneal laparoscopic urethrocystopexy is not associated with hemodynamic and respiratory impairment.  相似文献   

7.
Background: The potential adverse effects of ketamine in neurosurgical anesthesia have been well established and involve increased intracranial pressure (ICP) and cerebral blood flow. However, reexamination of ketamine is warranted because data regarding the effects of ketamine on cerebral hemodynamics are conflicting.

Methods: Eight patients with traumatic brain injury were studied. In all patients, ICP monitoring was instituted before the study. Control of ICP (less than 25 mmHg), hemodynamic values, and blood gas tension (partial pressure of carbon dioxide in arterial blood between 35-38 mmHg) was obtained with propofol infusion (3 mg [center dot] kg sup -1 [center dot] h sup -1) and mechanical ventilation. The effects of three doses of ketamine, 1.5, 3, and 5 mg/ kg, respectively, on ICP, cerebral perfusion pressure, jugular vein bulb oxygen saturation, middle cerebral artery blood flow velocity, and electric activity of the brain (EEG) were measured. The three doses were administered intravenously at 6-h intervals over 30 s through a central venous line. Systemic and cerebral hemodynamics and end-tidal carbon dioxide were continuously monitored and recorded at 1-min intervals throughout the 30-min study periods.

Results: Ketamine, in all three doses studied (1.5, 3, and 5 mg/kg) was associated with a significant decrease in ICP (mean +/- SD: 2 +/- 0.5 mmHg [P < 0.05], 4 +/- 1 mmHg [P < 0.05], and 5 +/- 2 mmHg [P < 0.05]) among the study patients regardless of the ketamine dose used. There were no significant differences in cerebral perfusion pressure, jugular vein bulb oxygen saturation, and middle cerebral artery blood flow velocity. Ketamine induced a low-amplitude fast-activity electroencephalogram, with marked depression, such as burst suppression.  相似文献   


8.
Background: Isovolemic anemia results in improved gas exchange in rabbits with normal lungs but in relatively poorer gas exchange in rabbits with whole-lung atelectasis. In the current study, the authors characterized the effects of hemodilution on gas exchange in a distinct model of diffuse lung injury: venous gas embolization.

Methods: Twelve anesthetized rabbits were mechanically ventilated at a fixed rate and volume. Gas embolization was induced by continuous infusion of nitrogen via an internal jugular venous catheter. Serial hemodilution was performed in six rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; six rabbits were followed as controls over time. Measurements included hemodynamic parameters and blood gases, ventilation-perfusion ( A/ ) distribution (multiple inert gas elimination technique), pulmonary blood flow distribution (fluorescent microspheres), and expired nitric oxide (NO; chemoluminescence).

Results: Venous gas embolization resulted in a decrease in partial pressure of arterial oxygen (PaO2) and an increase in partial pressure of arterial carbon dioxide (PaCO2), with markedly abnormal overall A/ distribution and a predominance of high A/ areas. Pulmonary blood flow distribution was markedly left-skewed, with low-flow areas predominating. Hematocrit decreased from 30 +/- 1% to 11 +/- 1% (mean +/- SE) with hemodilution. The alveolar-arterial PO2 (A-aPO2) difference decreased from 375 +/- 61 mmHg at 30% hematocrit to 218 +/- 12.8 mmHg at 15% hematocrit, but increased again (301 +/- 33 mmHg) at 11% hematocrit. In contrast, the A-aPO2 difference increased over time in the control group (P< 0.05 between groups over time). Changes in PaO2 in both groups could be explained in large part by variations in intrapulmonary shunt and mixed venous oxygen saturation (SvO2); however, the improvement in gas exchange with hemodilution was not fully explained by significant changes in A/ or pulmonary blood flow distributions, as quantitated by the coefficient of variation (CV), fractal dimension, and spatial correlation of blood flow. Expired NO increased with with gas embolization but did not change significantly with time or hemodilution.  相似文献   


9.
目的 为了改进胎羊体外循环技术 ,探讨膜式氧合器在胎羊体外循环中的应用。 方法 将健康怀孕山羊8只 ,采用 Dideco 90 1膜式氧合器和滚轴泵建立胎羊体外循环 ,常温 (37℃ )转流 6 0分钟 ,氧合器内充低氧混合气体 (8%O2 和 92 % N2 ) ,监测胎羊的血压、心率、血气、血清乳酸和胎盘血管阻力。 结果 胎羊体外循环中动脉氧分压 (PO2 )和二氧化碳分压 (PCO2 )维持在宫内生理水平 ,胎羊心搏有力 ,血压正常。但胎羊 p H值缓慢下降 (P<0 .0 5 ) ,血清乳酸值明显增高 (P<0 .0 1) ,胎盘血管阻力显著上升 (P<0 .0 1)。停体外循环后胎羊出现低氧、高碳酸血症和酸中毒。 结论 胎羊体外循环影响胎盘功能 ,膜式氧合器可以代替胎盘气体交换功能 ,体外循环中胎羊生理低水平 PO2 是否适合其需要值得探讨。  相似文献   

10.
BACKGROUND AND OBJECTIVE: Imbalance between cerebral oxygen supply and demand is thought to play an important role in the development of cerebral injury during cardiac surgery with cardiopulmonary bypass. METHODS: We studied jugular bulb oxygen saturation, jugular bulb oxygen tension, arterial-jugular bulb oxygen content difference and oxygen extraction ratio in 20 patients undergoing warm coronary artery bypass surgery (34-37 degrees C) with pH-stat blood gas management. RESULTS: Only two patients showed desaturation (jugular bulb oxygen saturation < 50%) at 5 min on bypass, and none from 20 min onwards. Multiple regression models were performed after using bypass temperature, mean arterial pressure, cerebral perfusion pressure, haemoglobin concentration and arterial carbon dioxide tension as independent variables, and arterial-jugular bulb oxygen content difference, jugular bulb oxygen saturation, oxygen extraction ratio and jugular bulb oxygen tension as individual dependent variables. CONCLUSIONS: We found that jugular bulb oxygen saturation, jugular bulb oxygen tension and oxygen extraction ratio are mainly dependent on arterial carbon dioxide tension, and arterial-jugular bulb oxygen content difference is dependent on arterial carbon dioxide tension and the bypass temperature. Our results suggest jugular bulb oxygenation is mainly dependent on arterial carbon dioxide tension during warm cardiopulmonary bypass.  相似文献   

11.
Background: The effects of hyperthermia on the human brain are incompletely understood. This study assessed the effects of whole body hyperthermia on cerebral oxygen extraction and autoregulation in humans.

Methods: Nineteen patients with chronic hepatitis C virus infection, not responding to interferon treatment, were subjected to experimental therapy with extracorporeal whole body hyperthermia at 41.8[degrees]C for 120 min under propofol anesthesia (23 sessions total). During treatment series A (13 sessions), end-tidal carbon dioxide was allowed to increase during heating. During series B (10 sessions), end-tidal carbon dioxide was maintained approximately constant. Cerebral oxygen extraction (arterial to jugular venous difference of oxygen content) and middle cerebral artery blood flow velocity were continuously measured. Cerebral pressure-flow autoregulation was assessed by static tests using phenylephrine infusion and by assessing the transient hyperemic response to carotid compression and release.

Results: For treatment series A, cerebral oxygen extraction decreased 2.2-fold and cerebral blood flow velocity increased 2.0-fold during heating. For series B, oxygen extraction decreased 1.6-fold and flow velocity increased 1.5-fold. Jugular venous oxygen saturation and lactate measurements did not indicate cerebral ischemia at any temperature. Static autoregulation test results indicated loss of cerebrovascular reactivity during hyperthermia for both series A and series B. The transient hyperemic response ratio did not decrease until the temperature reached approximately 40[degrees]C. Per degree Celsius temperature increase, the transient hyperemic response ratio decreased 0.07 (95% confidence interval, 0.05-0.09; P = 0.000). This association remained after adjustment for variations in arterial partial pressure of carbon dioxide, mean arterial pressure, and propofol blood concentration.  相似文献   


12.
Veno‐venous extracorporeal lung assist (ECLA) can provide sufficient gas exchange even in most severe cases of acute respiratory distress syndrome. Commercially available systems are manually controlled, although an automatically controlled ECLA could allow individualized and continuous adaption to clinical requirements. Therefore, we developed a demonstrator with an integrated control algorithm to keep continuously measured peripheral oxygen saturation and partial pressure of carbon dioxide constant by automatically adjusting extracorporeal blood and gas flow. The “SmartECLA” system was tested in six animal experiments with increasing pulmonary hypoventilation and hypoxic inspiratory gas mixture to simulate progressive acute respiratory failure. During a cumulative evaluation time of 32 h for all experiments, automatic ECLA control resulted in a peripheral oxygen saturation ≥90% for 98% of the time with the lowest value of 82% for 15 s. Partial pressure of venous carbon dioxide was between 40 and 49 mm Hg for 97% of the time with no value <35 mm Hg or >49 mm Hg. With decreasing inspiratory oxygen concentration, extracorporeal oxygen uptake increased from 68 ± 25 to 154 ± 34 mL/min (P < 0.05), and reducing respiratory rate resulted in increasing extracorporeal carbon dioxide elimination from 71 ± 37 to 92 ± 37 mL/min (P < 0.05). The “SmartECLA” demonstrator allowed reliable automatic control of the extracorporeal circuit. Proof of concept could be demonstrated for this novel automatically controlled veno‐venous ECLA circuit.  相似文献   

13.
Near-infrared spectrometric determination of blood pH   总被引:2,自引:0,他引:2  
BACKGROUND: Reflectance near-infrared spectroscopy (600-2200 nm) can noninvasively probe deep into tissues. Blood is the predominant absorber of near-infrared light in biological tissues. We investigated the feasibility of using reflectance near-infrared spectroscopy to measure blood pH in vitro. METHODS: Reflectance near-infrared spectra (600-2200 nm) were obtained with a fiberoptic probe immersed in diluted human packed red blood cells maintained at 37 degrees C. Changes in pH (6.800-7.600) were induced by: (1) varying the partial pressure of carbon dioxide by the bubbling of mixtures of humidified carbon dioxide and nitrogen gas through the blood; and (2) adding 1 N HCl/NaOH. Humidified oxygen gas was bubbled through the blood to generate variations in oxygen saturation. After each titration of pH, the spectrum was recorded and blood was sampled for the measurement of: pH, pCO(2), and pO(2) using blood gas analysis; and hemoglobin concentration and oxygen saturation using co-oximetry. Samples from three separate pH titrations were combined (120 total samples) and analyzed using partial least-squares analysis to generate a mathematical model relating spectral changes to pH (calibration set). This model was then used to predict the pH of a set of 36 pH titrations (prediction set). RESULTS: Quantitative and qualitiative analyses of the spectra in the calibration set found that spectral changes in the wavelength range, 650-1050 nm, were directly related to changes in pH. First-derivative-treated spectra from the calibration set, analyzed using partial least-squares analysis, generated a mathematical model with a cross-validated r(2) of 0.939 and a standard error of calibration of 0.046 pH unit. When this model was applied to the prediction set, with an offset correction, the r(2) was 0.936 with a standard error of prediction of 0.050 pH unit. CONCLUSION: Blood pH can be predicted in vitro with clinical significance using reflectance near-infrared spectroscopy (650-1050 nm) within a standard error of 0.050 pH unit.  相似文献   

14.
Renal cortical tissue gas tensions, systemic oxygen supply and some features of energy metabolism and central hemodynamics were recorded in splenectomized dogs during graded hemorrhage and subsequent reinfusion of shed blood. Renal cortical partial pressure of oxygen and carbon dioxide responded rapidly to changes in blood volume and cardiac output. Lowest cortical partial pressure of oxygen values and highest cortical partial pressure of carbon dioxide levels were achieved at a maximal 50 percent blood loss. The decrease in arterial pressure, blood hemoglobin and hematocrit as well as the increase in blood lactate concentration lagged behind blood loss. Renal cortical partial pressure of oxygen, arterial pressure and cardiac output responded rapidly to reinfusions of withdrawn blood, while the cortical partial pressure of carbon dioxide, heart rate, arterial pH and blood lactate concentration returned to initial levels more slowly. Arterial blood gases remained normal throughout the observation period and did not provide an adequate index of tissue oxygenation. In contrast, the partial pressure of oxygen of the renal cortex proved an excellent and sensitive indicator of renal perfusion during hemorrhagic shock and its management.  相似文献   

15.
Background: The current study investigates the effects of morphine and fentanyl upon intracranial pressure and cerebral blood flow estimated by cerebral arteriovenous oxygen content difference and transcranial Doppler sonography in 30 consecutive patients with severe head injury in whom cerebrovascular autoregulation previously had been assessed.

Methods: Patients received morphine (0.2 mg/kg) and fentanyl (2 [mu]g/kg) intravenously over 1 min but 24 h apart in a randomized fashion. Before study, carbon dioxide reactivity and autoregulation were assessed. Intracranial pressure, mean arterial blood pressure, and cerebral perfusion pressure were repeatedly monitored for 1 h after the administration of both opioids. Cerebral blood flow was estimated from the reciprocal of arteriovenous oxygen content difference and middle cerebral artery mean flow velocity using transcranial Doppler sonography.

Results: Although carbon dioxide reactivity was preserved in all patients, 18 patients (56.7%) showed impaired or abolished autoregulation to hypertensive challenge, and only 12 (43.3%) had preserved autoregulation. Both morphine and fentanyl caused significant increases in intracranial pressure and decreases in mean arterial blood pressure and cerebral perfusion pressure, but estimated cerebral blood flow remain unchanged. In patients with preserved autoregulation, opioid-induced intracranial pressure increases were not different than in those with impaired autoregulation.  相似文献   


16.
Oxygen parameters of arterial and mixed venous blood, - new and old   总被引:1,自引:0,他引:1  
A complete pH and blood gas analysis of arterial and mixed venous blood may comprise more than forty different quantities. We have selected sixteen, including patient temperature. The arterial oxygen tension group includes the oxygen tension, fraction of oxygen in inspired air, and fraction of mixed venous blood in the arterial (total physiological veno-arterial shunting). The haemoglobin oxygen capacity group includes effective haemoglobin concentration and fractions of carboxy- and methaemoglobin. The haemoglobin oxygen affinity group includes half-saturation tension and estimated 2,3-diphosphoglycerate concentration of erythrocytes. In a neonatal care unit fraction of fetal haemoglobin need to be included. The arterial oxygen extractivity is measured as the oxygen extraction tension, which indicates the degree of compensation among the oxygen tension, capacity, and affinity. The mixed venous group includes mixed venous oxygen tension, and, when measured, cardiac output, and oxygen consumption rate. The acid-base status includes blood pH, arterial carbon dioxide tension, and extracellular base excess. Other quantities such as haemoglobin oxygen saturation, respiratory index, total oxygen concentration (oxygen content), oxygen extraction fraction, oxygen delivery, and several others, seem to be redundant.  相似文献   

17.
Background: Enhancement of hypoxic pulmonary vasoconstriction (HPV) in nonventilated lung areas by almitrine increases the respiratory response to inhaled nitric oxide (NO) in patients with acute respiratory distress syndrome (ARDS). Therefore the authors hypothesized that inhibition of HPV in nonventilated lung areas decreases the respiratory effects of NO.

Methods: Eleven patients with severe ARDS treated by venovenous extracorporeal lung assist were studied. Patients' lungs were ventilated at a fraction of inspired oxygen (FIO2) of 1.0. By varying extracorporeal blood flow, mixed venous oxygen tension (PO2; partial oxygen pressure in mixed venous blood [Pv with barO2]) was adjusted randomly to four levels (means, 47, 54, 64 and 84 mmHg). Extracorporeal gas flow was adjusted to prevent changes in mixed venous carbon dioxide tension [Pv with barCO2]). Hemodynamic and gas exchange variables were measured at each level before, during, and after 15 ppm NO.

Results: Increasing Pv with barO2 from 47 to 84 mmHg resulted in a progressive decrease in lung perfusion pressure (PAP-PAWP; P < 0.05) and pulmonary vascular resistance index (PVRI; P < 0.05) and in an increase in intrapulmonary shunt (Q with dotS /Q with dotT; P < 0.05). Pv with barCO2 and cardiac index did not change. Whereas the NO-induced reduction in PAP-PAWP was smaller at high Pv with barO2, NO-induced decrease in Q with dotS /Q with dotT was independent of baseline Pv with barO2. In response to NO, arterial PO2 increased more and arterial oxygen saturation increased less at high compared with low Pv with barO2.  相似文献   


18.
Near-infrared spectroscopy has been used to monitor cerebral oxygen saturation during cerebral circulatory arrest and carotid clamping. However, its utility has not been demonstrated in more complex situations, such as in patients with head injuries. The authors tested this method during conditions that may alter the arteriovenous partition of cerebral blood in different ways. METHODS: The authors compared changes in measured cerebral oxygen saturation and other hemodynamic parameters, including jugular venous oxygen saturation, in nine patients with severe closed head injury during manipulation of arterial carbon dioxide partial pressure and after mean arterial pressure was altered by vasopressors. RESULTS: The Bland and Altman representation of cerebral oxygen saturation versus jugular oxygen saturation showed a uniform scatter. Values for changing arterial carbon dioxide partial pressure were: bias = 1.1%, 2 SD = +/-21%, absolute value; and those for alterations in mean arterial pressure: bias = 3.7%, 2 SD = +/-24%, absolute value. However, a Bland and Altman plot of changes in cerebral oxygen saturation versus changes in jugular oxygen saturation had a negative slope (alteration in arterial carbon dioxide partial pressure: bias = 2.4%, 2 SD = +/-17%, absolute value; alteration in mean arterial pressure: bias = -4.9%, 2 SD = +/-31%, absolute value). Regression analysis showed that changes in cerebral oxygen saturation were positively correlated with changes in jugular venous oxygen saturation during the carbon dioxide challenge, whereas correlation was negative during the arterial pressure challenge. CONCLUSIONS: Cerebral oxygen saturation assessed by near-infrared spectroscopy does not adequately reflect changes in jugular venous oxygen saturation in patients with severe head injury. Changes in arteriovenous partitioning, infrared-spectroscopy contamination by extracerebral signal, algorithm errors, and dissimilar tissue sampling may explain these findings.  相似文献   

19.
BACKGROUND: The effects of hyperthermia on the human brain are incompletely understood. This study assessed the effects of whole body hyperthermia on cerebral oxygen extraction and autoregulation in humans. METHODS: Nineteen patients with chronic hepatitis C virus infection, not responding to interferon treatment, were subjected to experimental therapy with extracorporeal whole body hyperthermia at 41.8 degrees C for 120 min under propofol anesthesia (23 sessions total). During treatment series A (13 sessions), end-tidal carbon dioxide was allowed to increase during heating. During series B (10 sessions), end-tidal carbon dioxide was maintained approximately constant. Cerebral oxygen extraction (arterial to jugular venous difference of oxygen content) and middle cerebral artery blood flow velocity were continuously measured. Cerebral pressure-flow autoregulation was assessed by static tests using phenylephrine infusion and by assessing the transient hyperemic response to carotid compression and release. RESULTS: For treatment series A, cerebral oxygen extraction decreased 2.2-fold and cerebral blood flow velocity increased 2.0-fold during heating. For series B, oxygen extraction decreased 1.6-fold and flow velocity increased 1.5-fold. Jugular venous oxygen saturation and lactate measurements did not indicate cerebral ischemia at any temperature. Static autoregulation test results indicated loss of cerebrovascular reactivity during hyperthermia for both series A and series B. The transient hyperemic response ratio did not decrease until the temperature reached approximately 40 degrees C. Per degree Celsius temperature increase, the transient hyperemic response ratio decreased 0.07 (95% confidence interval, 0.05-0.09; P = 0.000). This association remained after adjustment for variations in arterial partial pressure of carbon dioxide, mean arterial pressure, and propofol blood concentration. CONCLUSION: Profound hyperthermia during propofol anesthesia is associated with decreased cerebral oxygen extraction, increased cerebral blood flow velocity, and impaired pressure-flow autoregulation, indicating transient partial vasoparalysis.  相似文献   

20.
A complete pH and blood gas analysis of arterial and mixed venous blood may comprise more than forty different quantities. We have selected sixteen, including patient temperature. The arterial oxygen tension group includes the oxygen tension, fraction of oxygen in inspired air, and fraction of mixed venous blood in the arterial (total physiological veno-arterial shunting). The haemoglobin oxygen capacity group includes effective haemoglobin concentration and fractions of carboxy- and methaemoglobin. The haemoglobin oxygen affinity group includes half-saturation tension and estimated 2, 3-diphosphoglycerate concentration of erythrocytes. In a neonatal care unit fraction of fetal haemoglobin needs to be included. The arterial oxygen extractivity is measured as the oxygen extraction tension, which indicates the degree of compensation among the oxygen tension, capacity, and affinity. The mixed venous group includes mixed venous oxygen tension, and, when measured, cardiac output, and oxygen consumption rate. The acid-base status includes blood pH, arterial carbon dioxide tension, and extracellular base excess. Other quantities such as haemoglobin oxygen saturation, respiratory index, total oxygen concentration (oxygen content), oxygen extraction fraction, oxygen delivery, and several others, provide no essential additional clinical information and are therefore redundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号