首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. To evoke crossmodal interactions of varying strength, we used auditory and visual stimuli of different intensities, presented either in spatial alignment or to opposite hemifields. Spatially aligned audiovisual stimuli evoked the shortest SRTs. In the case of low-intensity stimuli, the response to the auditory component of the aligned audiovisual target increased the activity preceding the response to the visual component, accelerating the onset of the visual response and facilitating the generation of shorter-latency saccades. In the case of high-intensity stimuli, the auditory and visual responses occurred much closer together in time and so there was little opportunity for the auditory stimulus to influence previsual activity. Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC.  相似文献   

2.
Saccadic eye movements to visual, auditory, and bimodal targets were measured in four adult cats. Bimodal targets were visual and auditory stimuli presented simultaneously at the same location. Three behavioral tasks were used: a fixation task and two saccadic tracking tasks (gap and overlap task). In the fixation task, a sensory stimulus was presented at a randomly selected location, and the saccade to fixate that stimulus was measured. In the gap and overlap tasks, a second target (hereafter called the saccade target) was presented after the cat had fixated the first target. In the gap task, the fixation target was switched off before the saccade target was turned on; in the overlap task, the saccade target was presented before the fixation target was switched off. All tasks required the cats to redirect their gaze toward the target (within a specified degree of accuracy) within 500 ms of target onset, and in all tasks target positions were varied randomly over five possible locations along the horizontal meridian within the cat's oculomotor range. In the gap task, a significantly greater proportion of saccadic reaction times (SRTs) were less than 125 ms, and mean SRTs were significantly shorter than in the fixation task. With visual targets, saccade latencies were significantly shorter in the gap task than in the overlap task, while, with bimodal targets, saccade latencies were similar in the gap and overlap tasks. On the fixation task, SRTs to auditory targets were longer than those to either visual or bimodal targets, but on the gap task, SRTs to auditory targets were shorter than those to visual or bimodal targets. Thus, SRTs reflected an interaction between target modality and task. Because target locations were unpredictable, these results demonstrate that cats, as well as primates, can produce very short latency goal-directed saccades.  相似文献   

3.
This study addresses the integration of auditory and visual stimuli subserving the generation of saccades in a complex scene. Previous studies have shown that saccadic reaction times (SRTs) to combined auditory-visual stimuli are reduced when compared with SRTs to either stimulus alone. However, these results have been typically obtained with high-intensity stimuli distributed over a limited number of positions in the horizontal plane. It is less clear how auditory-visual interactions influence saccades under more complex but arguably more natural conditions, when low-intensity stimuli are embedded in complex backgrounds and distributed throughout two-dimensional (2-D) space. To study this problem, human subjects made saccades to visual-only (V-saccades), auditory-only (A-saccades), or spatially coincident auditory-visual (AV-saccades) targets. In each trial, the low-intensity target was embedded within a complex auditory-visual background, and subjects were allowed over 3 s to search for and foveate the target at 1 of 24 possible locations within the 2-D oculomotor range. We varied systematically the onset times of the targets and the intensity of the auditory target relative to background [i.e., the signal-to-noise (S/N) ratio] to examine their effects on both SRT and saccadic accuracy. Subjects were often able to localize the target within one or two saccades, but in about 15% of the trials they generated scanning patterns that consisted of many saccades. The present study reports only the SRT and accuracy of the first saccade in each trial. In all subjects, A-saccades had shorter SRTs than V-saccades, but were more inaccurate than V-saccades when generated to auditory targets presented at low S/N ratios. AV-saccades were at least as accurate as V-saccades but were generated at SRTs typical of A-saccades. The properties of AV-saccades depended systematically on both stimulus timing and S/N ratio of the auditory target. Compared with unimodal A- and V-saccades, the improvements in SRT and accuracy of AV-saccades were greatest when the visual target was synchronous with or leading the auditory target, and when the S/N ratio of the auditory target was lowest. Further, the improvements in saccade accuracy were greater in elevation than in azimuth. A control experiment demonstrated that a portion of the improvements in SRT could be attributable to a warning-cue mechanism, but that the improvements in saccade accuracy depended on the spatial register of the stimuli. These results agree well with earlier electrophysiological results obtained from the midbrain superior colliculus (SC) of anesthetized preparations, and we argue that they demonstrate multisensory integration of auditory and visual signals in a complex, quasi-natural environment. A conceptual model incorporating the SC is presented to explain the observed data.  相似文献   

4.
The present study examines whether the distinction between voluntary (endogenous) and reflexive (stimulus-elicited) saccades made in the visual modality can be applied to the somatosensory modality. The behavioural characteristics of putative reflexive pro-saccades and voluntary anti-saccades made to visual and somatosensory stimuli were examined. Both visual and somatosensory pro-saccades had much shorter latency than voluntary anti-saccades made in the direction opposite to a peripheral stimulus. Furthermore, erroneous pro-saccades were made towards both visual and somatosensory stimuli on approximately 11-13% of anti-saccade trials. The observed difference in pro- and anti-saccade latency and the presence of pro-saccade errors in the anti-saccade task indicates that a somatosensory stimulus can elicit a form of reflexive saccade comparable to pro-saccades made in the visual modality. It is proposed that a peripheral somatosensory stimulus can elicit a form of reflexive saccade and that somatosensory saccades do not depend exclusively on higher level endogenous control processes for their generation. However, a comparison of the underlying latency distributions and of peak-velocity profiles of saccades made to visual and somatosensory stimuli showed that this distinction may be less clearly defined for the somatosensory modality and that modality-specific differences (such as differences in neural conduction rates) in the underlying oculomotor structures involved in saccade target selection also need to be considered. It is further suggested that a broader conceptualisation of saccades and saccade programming beyond the simple voluntary and reflexive dichotomy, that takes into account the control processes involved in saccade generation for both modalities, may be required.  相似文献   

5.
Horizontal saccadic reaction times (SRTs) have been extensively studied over the past 3 decades, concentrating on such topics as the gap effect, express saccades, training effects, and the role of fixation and attention. This study investigates some of these topics with regard to vertical saccades. The reaction times of vertical saccades of 13 subjects were measured using the gap and the overlap paradigms in the prosaccade task (saccade to the stimulus) and the antisaccade task (saccade in the direction opposite to the stimulus). In the gap paradigm, the initial fixation point (FP) was extinguished 200 ms before stimulus onset, while, in the overlap paradigm, the FP remained on during stimulus presentation. With the prosaccade overlap task, it was found that most subjects (10/13) — whether they were previously trained making horizontal saccades or naive — had significantly faster upward saccades compared with their downward saccades. One subject was faster in the downward direction and two were symmetrical. The introduction of the gap reduced the reaction times of the prosaccades, and express saccades were obtained in some naive and most trained subjects. This gap effect was larger for saccades made to the downward target. The strength of the updown asymmetry was more pronounced in the overlap as compared to the gap paradigm. With the antisaccade task, up-down asymmetries were much reduced. Express antisaccades were absent even with the gap paradigm, but reaction times were reduced as compared to the antisaccade overlap paradigm. There was a slight tendency for a larger gap effect of downward saccades. All subjects produced a certain number of erratic prosaccades in the antitaks, more with the gap than with the overlap paradigm. There was a significantly larger gap effect for the erratic prosaccades made to the downward, as compared to the upward, target, due to increased downward SRTs in the overlap paradigm. Three subjects trained in both the horizontal and the vertical direction showed faster SRTs and more express saccades in the horizontal directions as compared to the vertical. It is concluded that different parts of the visual field are differently organized with both directional and nondirectional components in saccade preparation.  相似文献   

6.
Performance in a reaction time task can be strongly influenced by the physical properties of the stimuli used (e.g., position and intensity). The reduction in reaction time observed with higher-intensity visual stimuli has been suggested to arise from reduced processing time along the visual pathway. If this hypothesis is correct, activity should be registered in neurons sooner for higher-intensity stimuli. We evaluated this hypothesis by measuring the onset of neural activity in the intermediate layers of the superior colliculus while monkeys generated saccades to high or low-intensity visual stimuli. When stimulus intensity was high, the response onset latency was significantly reduced compared to low-intensity stimuli. As a result, the minimum time for visually triggered saccades was reduced, accounting for the shorter saccadic reaction times (SRTs) observed following high-intensity stimuli. Our results establish a link between changes in neural activity related to stimulus intensity and changes to SRTs, which supports the hypothesis that shorter SRTs with higher-intensity stimuli are due to reduced processing time.  相似文献   

7.
We examined the sensory and motor influences of stimulus eccentricity and direction on saccadic reaction times (SRTs), direction-of-movement errors, and saccade amplitude for stimulus-driven (prosaccade) and volitional (antisaccade) oculomotor responses in humans. Stimuli were presented at five eccentricities, ranging from 0.5° to 8°, and in eight radial directions around a central fixation point. At 0.5° eccentricity, participants showed delayed SRT and increased direction-of-movement errors consistent with misidentification of the target and fixation points. For the remaining eccentricities, horizontal saccades had shorter mean SRT than vertical saccades. Stimuli in the upper visual field trigger overt shifts in gaze more easily and faster than in the lower visual field: prosaccades to the upper hemifield had shorter SRT than to the lower hemifield, and more anti-saccade direction-of-movement errors were made into the upper hemifield. With the exception of the 0.5° stimuli, SRT was independent of eccentricity. Saccade amplitude was dependent on target eccentricity for prosaccades, but not for antisaccades within the range we tested. Performance matched behavioral measures described previously for monkeys performing the same tasks, confirming that the monkey is a good model for the human oculomotor function. We conclude that an upper hemifield bias lead to a decrease in SRT and an increase in direction errors.  相似文献   

8.
 Recent neurophysiological studies of the saccadic ocular motor system have lent support to the hypothesis that this system uses a motor error signal in retinotopic coordinates to direct saccades to both visual and auditory targets. With visual targets, the coordinates of the sensory and motor error signals will be identical unless the eyes move between the time of target presentation and the time of saccade onset. However, targets from other modalities must undergo different sensory-motor transformations to access the same motor error map. Because auditory targets are initially localized in head-centered coordinates, analyzing the metrics of saccades from different starting positions allows a determination of whether the coordinates of the motor signals are those of the sensory system. We studied six human subjects who made saccades to visual or auditory targets from a central fixation point or from one at 10° to the right or left of the midline of the head. Although the latencies of saccades to visual targets increased as stimulus eccentricity increased, the latencies of saccades to auditory targets decreased as stimulus eccentricity increased. The longest auditory latencies were for the smallest values of motor error (the difference between target position and fixation eye position) or desired saccade size, regardless of the position of the auditory target relative to the head or the amplitude of the executed saccade. Similarly, differences in initial eye position did not affect the accuracy of saccades of the same desired size. When saccadic error was plotted as a function of motor error, the curves obtained at the different fixation positions overlapped completely. Thus, saccadic programs in the central nervous system compensated for eye position regardless of the modality of the saccade target, supporting the hypothesis that the saccadic ocular motor system uses motor error signals to direct saccades to auditory targets. Received: 8 September 1995 / Accepted: 22 November 1996  相似文献   

9.
Summary Four subjects — all made large numbers of Express saccades in the normal gap task — were instructed to make saccades in the direction opposite to the side where a visual stimulus appeared (anti task). Gap and overlap trials were used. Saccadic reaction time (SRT), velocity and amplitude of the corresponding eye movements were analysed and compared to those of saccades made in the normal task. The velocity of anti saccades was found to be slightly (up to 15%) but significantly slower in two subjects. The distributions of SRTs in normal gap tasks show a small group of anticipatory saccades (with SRT below 80 ms and slower velocities) followed by a group of saccades with fast reaction times between 80 ms and 120 ms (Express saccades) followed by another large group ranging up to 180 ms (regular saccades). In the gap anti task there are anticipatory saccades and saccades with SRTs above 100 ms; Express saccades are missing. The distribution of SRTs obtained in the overlap anti task was unimodal with a mean value of 231 ms as compared to 216 ms in the normal task. The introduction of the gap therefore clearly decreases the reaction times of the anti saccades. Control experiments show that the delay of anti saccades is not due to an interhemispheric transfer time but must be attributed to the saccade generating system taking more time to program a saccade to a position where no visual stimulus appears. These data are discussed as providing further evidence for the existence of a reflex-like pathway connecting the retina to the oculomotor nuclei mediating the Express saccade.  相似文献   

10.
Previous research has shown that saccadic reaction times (SRTs) are shorter when a stimulus is flashed on the same side as the observed gaze direction of another individual. The gaze imitation hypothesis contends that observed gaze evokes the preparation of a saccade toward the same direction. Previous studies of this phenomenon have employed pro-saccade tasks in which the instructed saccade is directed toward the stimulus. In agreement with previous findings, we found that SRTs on pro-saccade trials were shorter when the stimulus appeared in the same direction as observed gaze. Here we also included anti-saccade trials in which subjects were required to look-away from a stimulus and toward its mirror position in the opposite visual field. The gaze imitation hypothesis predicts that subjects will have shorter SRTs on anti-saccade trials in which the stimulus appears opposite the observed gaze direction because they will have prepared already a saccade in that direction. However, contrary to the prediction of the gaze imitation hypothesis, we found that subjects had shorter SRTs on anti-saccade trials when the stimulus appeared in the same direction as observed gaze. Moreover, subjects also made more pro-saccade errors on anti-saccade trials in which the stimulus was presented opposite the observed gaze direction. The results of our study indicate that subjects prepared a saccade in the same direction as observed gaze on pro-saccade trials but opposite the observed gaze direction on anti-saccade trials. These findings suggest that the effect of social gaze cues on SRTs is task dependent.  相似文献   

11.
1. This study investigates the contribution of the optic tectum in encoding the metric and kinetic properties of saccadic head movements. We describe the dependence of head movement components (size, direction, and speed) on parameters of focal electrical stimulation of the barn owl's optic tectum. The results demonstrate that both the site and the amount of activity can influence head saccade metrics and kinetics. 2. Electrical stimulation of the owl's optic tectum elicited rapid head movements that closely resembled natural head movements made in response to auditory and visual stimuli. The kinetics of these movements were similar to those of saccadic eye movements in primates. 3. The metrics and kinetics of head movements evoked from any given site depended strongly on stimulus parameters. Movement duration increased with stimulus duration, as did movement size. Both the size and the maximum speed of the movement increased to a plateau value with current strength and pulse rate. Movement direction was independent of stimulus parameters. 4. The initial position of the head influenced the size, direction, and speed of movements evoked from any given site: when the owl initially faced away from the direction of the induced saccade, the movement was larger and faster than when the owl initially faced toward the direction of the induced movement. 5. A characteristic movement of particular size, direction, and speed could be defined for each site by the use of stimulation parameters that elicited plateau movements with normal kinetic profiles and by having the head initially centered on the body. The size, direction, and speed of these characteristic movements varied systematically with the site of stimulation across the tectum. The map of head movement vector (size and direction) was aligned with the sensory representations of visual and auditory space, such that the movement elicited from a given site when the owl initially faced straight ahead brought the owl to face that region of space represented by the sensory responses of the neurons at the site of stimulation. 6. The results imply that both the site and the amount of neural activity in the optic tectum contribute to encoding the metrics and kinetics of saccadic movements. A comparison of the present findings with previous studies on saccadic eye movements in primates and combined eye and head movements in cats suggests striking similarities in the ways in which tectal activity specifies a redirection in gaze to such dissimilar motor effectors as the eyes and head.  相似文献   

12.
In a series of experiments, we examined the change in saccade trajectories observed when distractors are presented at non-target locations. The primary aim of the experiments was to examine multisensory interaction effects between the visual, auditory and somatosensory modalities in saccade generation. In each experiment observers made saccades to visual targets above and below fixation in the presence of visual, auditory or tactile stimuli to the left or right of fixation. In experiment 1 distractor location indicated which of two stimuli was the target for the saccade. Saccade trajectories showed strong leftward curvature following right-side distractors and showed rightward curvature following left-side distractors. The largest effects on trajectories were observed for visual distractors, but significant curvature was observed with auditory and somatosensory distractors. In experiment 2 saccades were made following the onset of a visual target (reflexive) or following presentation of an arrow at fixation (voluntary), and task-irrelevant crossmodal distractors were presented simultaneously with target onset. Both voluntary and reflexive saccades were found to curve away from task-irrelevant visual distractors, but auditory and somatosensory distractors did not modulate saccade trajectories. In experiment 3 task-irrelevant distractors preceded the onset of the target by 100 ms. Reflexive saccades were found to curve away from visual, auditory and somatosensory distractors, but voluntary saccades curved away from visual distractors only. The modulation of saccade trajectories by distractors from different modalities is interpreted in terms of inhibitory processes operating in neural structures involved in saccade generation. Our findings suggest that visual, auditory and somatosensory distractors can all modulate saccade trajectories. Such effects could be related to the inhibition of populations of neurons, in a common motor map, for the selection of a saccade target.  相似文献   

13.
Experiments on visual attention have employed both physical cues and verbal instructions to enable subjects to allocate attention at a location that becomes relevant within a perceptual or motor task some time later (cue lead time, CLT). In this study we have used valid visual peripheral cues (CLT between 100 and 700 ms) to indicate the direction and location of the next saccade. A cue is considered valid or invalid if its meaning with respect to the next saccade is correct or incorrect. A cue is called an anti- or pro-cue if the side of its presentation is opposite to or the same as the direction of the saccade required on a given trial. Correspondingly, a saccade is called an anti- or pro-saccade if it is directed to the side opposite to or the same as the stimulus presentation. A condition in which the cue and the stimulus are presented on opposite sides provides a simple way of dissociating voluntary attention allocation from automatic orienting. This paper considers the anti-cue pro-saccade task: the subjects were instructed to use the cue to direct attention to the opposite side, i.e. the location, where on valid trials the saccade target would occur. In the companion paper we have used the same physical condition, but we have reversed the instructions as to saccade direction and we have reversed the meaning of the cue, i.e. we designed a pro-cue anti-saccade task. In this first paper, the saccadic reaction times (SRTs) of pro-saccades of five adult subjects were measured in the gap paradigm (fixation point offset precedes target onset by 200 ms). With a CLT of 100 ms, valid anti-cues reduced the number of express saccades (i.e. saccades with SRTs in the range 80–120 ms) significantly compared with the control values (no cues). Valid anti-cues with increasingly long CLTs (100–700 ms) resulted in an increasing incidence of anticipatory saccades and saccades with longer SRTs (more than 120 ms), while the frequency of express saccades remained below the control value. When cue and saccade target were dissociated in location or in both location and direction, the effects of the cueing revealed a much lower spatial selectivity as compared to the effects that have been described for voluntary attention allocation by means of central cues. The results suggest that voluntary allocation of attention and cue-induced automatic orienting not only have different time courses but also have opposite effects on the generation of express saccades, and different spatial selectivities. A possible neuronal basis of these results is discussed considering related findings from electrophysiological studies in monkeys. Received: 27 March 1997 / Accepted: 17 December 1997  相似文献   

14.
In three patients who had one cortical hemisphere removed surgically (hemidecortication), we studied visually-triggered saccades directed contralateral to the intact cortical hemisphere (i.e., ipsilesional saccades). Both saccade reaction times (SRTs) and accuracy of these saccades have been reported as abnormal in hemidecorticate patients, but not monkeys. One explanation for this difference is that deficits in hemidecorticate patients may not have been directly caused by removal of cortical oculomotor structures themselves, but may have been a manifestation of compensatory strategies used to cope with contralesional hemianopia. We hypothesized that deficits in saccade performance to the ipsilesional (seeing) visual hemifield would be directly linked to how easily patients could localize targets in their blind hemifield with searching saccades. To test this hypothesis, we examined how deficits in our patients varied when targets were: (1) randomly presented to either the seeing or blind hemifield for long durations thereby permitting searching saccades in the blind hemifield; (2) presented as in Experiment 1, but briefly flashed thereby removing visual feedback prior to saccade onset thereby rendering searching saccades useless; (3) briefly flashed as in Experiment 2, but at random locations in only the seeing hemifield (blind hemifield irrelevant). Mean SRTs to the seeing hemifield were 165 ms longer than normal in Experiment 2, but only about 40 ms longer in Experiments 1 and 3. Saccade accuracy was characterized by task-dependent hypometria in all three experiments with a mean undershoot of about twice the amplitude variance. The largest undershoots were in Experiments 2 and 3. Our data suggest that deficits resulted from the direct effects of the lesions themselves coupled with context-dependent strategies used to cope with contralesional hemianopia.  相似文献   

15.
Influence of previous visual stimulus or saccade on saccadic reaction times in monkey. Saccadic reaction times (SRTs) to suddenly appearing targets are influenced by neural processes that occur before and after target presentation. The majority of previous studies have focused on how posttarget factors, such as target attributes or changes in task complexity, affect SRTs. Studies of pretarget factors have focused on how prior knowledge of the timing or location of the impending target, gathered through cueing or probabilistic information, affects SRTs. Our goal was to investigate additional pretarget factors to determine whether SRTs can also be influenced by the history of saccadic and visual activity even when these factors are spatially unpredictive as to the location of impending saccadic targets. Monkeys were trained on two paradigms. In the saccade-saccade paradigm, monkeys were required to follow a saccadic target that stepped from a central location, to an eccentric location, back to center, and finally to a second eccentric location. The stimulus-saccade paradigm was similar, except the central fixation target remained illuminated during presentation of the first eccentric stimulus; the monkey was required to maintain central fixation and to make a saccade to the second eccentric stimulus only on disappearance of the fixation point. In both paradigms, the first eccentric stimulus was presented at the same, opposite, or orthogonal location with respect to the final target location in a given trial. We measured SRTs to the final target under conditions in which all parameters were identical except for the location of the first eccentric stimulus. In the saccade-saccade paradigm, we found that the SRT to the final target was slowest when it was presented opposite to the initial saccadic target, whereas in the stimulus-saccade paradigm the SRT to the final target was slowest when it was presented at the same location as the initial stimulus. In both paradigms, these increases in SRTs were greatest during the shortest intervals between presentation of successive eccentric stimuli, yet these effects remained present for the longest intervals employed in this study. SRTs became faster as the direction and eccentricity of the two successive stimuli became increasingly misaligned from that which produced the maximal SRT slowing in each paradigm. The results of the stimulus-saccade paradigm are similar to the phenomenon of inhibition of return (IOR) in which human subjects are slower to respond to stimuli that are presented at previously cued locations. We interpret these findings in terms of overlapping representations of visuospatial and oculomotor activity in the same neural structures.  相似文献   

16.
Neurons in the rostral superior colliculus (SC) of alert cats exhibit quasi-sustained discharge patterns related to the fixation of visual targets. Because some SC neurons also respond to auditory stimuli, we investigated whether there is a population of neurons in the rostral SC which is active in relation to fixation of both auditory and visual targets. We identified cells which were active with visual fixation and which continued to discharge if the fixation stimulus was briefly extinguished. The population of neurons exhibited similar discharge characteristics when the fixation stimulus was auditory. Few neurons were significantly more active during fixation of visual targets than during fixation of auditory targets. Most fixation neurons showed a diminished discharge rate during spontaneous (self-generated) saccadic eye movements away from a visual fixation stimulus, regardless of the direction of the saccade. this diminished discharge rate (or pause) typically began, on average, 12.2 ms before saccade onset and the duration of the pause was Ionger than the duration of the saccade. These observations are consistent with the hypothesis that increased discharge of these neurons is related to active fixation and that reductions in their activity are important for the generation of saccades. However, the lack of a precise relationship between pause duration and saccade duration implies that these neurons would be unlikely to project directly to the saccadic burst generator. The mean interval from the beginning of the pauses of fixation neurons to be beginning of the saccades away from fixation targets is also shorter than has been found in brainstem omnipause neurons. By analogy with the concept of a receptive field, agaze position error field depicts the range of gaze position error for which a cell is active. Although fixation neurons appear to encode the magnitude and direction of the error between visual targets and the visual axis, visual error fields at the end of fixating eye movements were significantly larger than those at stimulus onset. For auditory stimuli, this difference was not significant. These observations are compatible with a number of recent experiments indicating that neural signals of eye position are damped or delayed with respect to current eye position.  相似文献   

17.
The control of eye movements depends in part on subcortical motor centres. Gaze is often directed towards salient visual stimuli of our environment with no conscious voluntary commands. To further understand to what extent preprogrammed eye movements can be triggered subcortically, we carried out a study in normal volunteers to examine the effects of a startling auditory stimulus (SAS) on externally guided saccades. A peripheral visual cue was presented in the horizontal plane at a site distant 15° from the fixation point, and subjects were instructed to make a saccade to it. SAS was presented together with the peripheral visual cue in 20% of trials. To force rapid visual fixation at the end of the saccade, targets were loaded with a second cue, a small arrow pointing towards the right or the left (or a neutral sign), not distinguishable with peripheral vision. Subjects were requested to perform a flexion/extension wrist movement, according to the direction of the arrow (or not to move if the second cue was the neutral sign). SAS presented together with the visual target caused a significant shortening of the latency of saccadic movements. The wrist movements performed as a response to the second cue had similar reaction times regardless of whether the trial contained a SAS or not. Our results show that voluntary saccades to peripheral targets are speeded up by activation of the startle circuit, and that this effect does not cause a significant disturbance in the execution of simple in-target cues. These results suggest that subcortical structures play a main role in preparation of externally guided saccades.  相似文献   

18.
Although saccadic reaction times to a visual stimulus are facilitated if an auditory accompanying stimulus is presented at the same location, this intersensory facilitation effect (IFE) has not been explored for antisaccades (saccades directed opposite to a visual target). In this study participants were asked to make an antisaccade opposite to a point of light presented right or left of fixation while accompanied by an auditory stimulus either at the same or at the opposite location with different stimulus onset asynchronies. Antisaccade reaction times for unimodal auditory and bimodal stimuli were shorter than for unimodal visual stimulation, in line with prosaccade studies. The auditory accompanying stimulus afforded antisaccade reaction times approximately as fast as prosaccades in the direction of a visual target, especially when it was presented 40 ms before the spatially congruent visual target. Moreover, predictiveness of the target position facilitated performance only when the auditory stimulus was presented at the opposite location and 40 ms before the visual target (interstimulus contingency effect). We conclude that intersensory facilitation is a mandatory, bottom-up process, but in the particular case of a response conflict due to a visual target, IFE can be shown to be modulated by the predictability of the target location.  相似文献   

19.
Eye movements provide a direct link to study the allocation of overt attention to stimuli in the visual field. The initiation of saccades towards visual stimuli is known to be influenced by the bottom-up salience of stimuli as well as the motivational context of the task. Here, we asked whether the initiation of saccades is also influenced by the intrinsic motivational salience of a stimulus. Face stimuli were first associated with positive or negative motivational salience through instrumental learning. The same faces served as target stimuli in a subsequent saccade task, in which their motivational salience was no longer task-relevant. Participants performed either voluntary saccades, which required the selection of the saccade target out of two simultaneously presented stimuli (experiment 1), or reactive saccades, where only the target stimulus was presented (experiment 2). We found a specific effect of learned positive stimulus value on the latencies of voluntary saccades: For faces with high versus low positive motivational salience, saccadic latencies were significantly reduced. No such difference was observed for previously punished faces. In contrast, reactive saccades to both previously rewarded and punished faces were unaffected by learned stimulus value. Our findings show for the first time that saccadic preparation is susceptible to the acquired intrinsic motivational salience of visual stimuli. Based on the observation that only voluntary saccades but not reactive saccades were modulated, we conclude that the recruitment of neural processes for target identification is required to allow for an influence of motivational stimulus salience on saccadic preparation.  相似文献   

20.
Orienting movements of the eyes and head are made to both auditory and visual stimuli even though in the primary sensory pathways the locations of auditory and visual stimuli are encoded in different coordinates. This study was designed to differentiate between two possible mechanisms for sensory-to-motor transformation. Auditory and visual signals could be translated into common coordinates in order to share a single motor pathway or they could maintain anatomically separate sensory and motor routes for the initiation and guidance of orienting eye movements. The primary purpose of the study was to determine whether neurons in the superior colliculus (SC) that discharge before saccades to visual targets also discharge before saccades directed toward auditory targets. If they do, this would indicate that auditory and visual signals, originally encoded in different coordinates, have been converted into a single coordinate system and are sharing a motor circuit. Trained monkeys made saccadic eye movements to auditory or visual targets while the activity of visual-motor (V-M) cells and saccade-related burst (SRB) cells was monitored. The pattern of spike activity observed during trials in which saccades were made to visual targets was compared with that observed when comparable saccades were made to auditory targets. For most (57 of 59) V-M cells, sensory responses were observed only on visual trials. Auditory stimuli originating from the same region of space did not activate these cells. Yet, of the 72 V-M and SRB cells studied, 79% showed motor bursts prior to saccades to either auditory or visual targets. This finding indicates that visual and auditory signals, originally encoded in retinal and head-centered coordinates, respectively, have undergone a transformation that allows them to share a common efferent pathway for the generation of saccadic eye movements. Saccades to auditory targets usually have lower velocities than saccades of the same amplitude and direction made to acquire visual targets. Since fewer collicular cells are active prior to saccades to auditory targets, one determinant of saccadic velocity may be the number of collicular neurons discharging before a particular saccade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号