首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Voltage-gated K(+) channels containing pore-forming subunits of the Kv3 subfamily have specific roles in the fast repolarization of action potentials and enable neurons to fire repetitively at high frequencies. Each of the four known Kv3 genes encode multiple products by alternative splicing of 3' ends resulting in the expression of K(+) channel subunits differing only in their C-terminal sequence. The alternative splicing does not affect the electrophysiological properties of the channels, and its physiological role is unknown. It has been proposed that one of the functions of the alternative splicing of Kv3 genes is to produce subunit isoforms with differential subcellular membrane localizations in neurons and differential modulation by signaling pathways. We investigated the role of the alternative splicing of Kv3 subunits in subcellular localization by examining the brain distribution of the two alternatively spliced versions of the Kv3.1 gene (Kv3.1a and Kv3.1b) with antibodies specific for the alternative spliced C-termini. Kv3.1b proteins were prominently expressed in the somatic and proximal dendritic membrane of specific neuronal populations in the mouse brain. The axons of most of these neurons also expressed Kv3.1b protein. In contrast, Kv3.1a proteins were prominently expressed in the axons of some of the same neuronal populations, but there was little to no Kv3.1a protein expression in somatodendritic membrane. Exceptions to this pattern were seen in two neuronal populations with unusual targeting of axonal proteins, mitral cells of the olfactory bulb, and mesencephalic trigeminal neurons, which expressed Kv3.1a protein in dendritic and somatic membrane, respectively. The results support the hypothesis that the alternative spliced C-termini of Kv3 subunits regulate their subcellular targeting in neurons.  相似文献   

2.
GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K+-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as ‘fast-spiking’. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K+-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.  相似文献   

3.
McDonald AJ  Mascagni F 《Neuroscience》2006,138(2):537-547
The expression of Kv3.1 and Kv3.2 voltage-gated potassium channel subunits appears to be critical for high-frequency firing of many neuronal populations. In the cortex these subunits are mainly associated with fast-firing GABAergic interneurons containing parvalbumin or somatostatin. Since the basolateral nuclear complex of the amygdala contains similar interneurons, it is of interest to determine if these potassium channel subunits are expressed in these same interneuronal subpopulations. To investigate this issue, peroxidase and dual-labeling fluorescence immunohistochemistry combined with confocal laser scanning microscopy was used to determine which interneuronal subpopulations in the basolateral nuclear complex of the rat amygdala express Kv3.1b and Kv3.2 subunits. Antibodies to parvalbumin, somatostatin, calretinin, and cholecystokinin were used to label separate subsets of basolateral amygdalar interneurons. Examination of immunoperoxidase preparations suggested that the expression of both channels was restricted to nonpyramidal interneurons in the basolateral amygdala. Somata and proximal dendrites were intensely-stained, and axon terminals arising from presumptive basket cells and chandelier cells were lightly stained. Immunofluorescence observations revealed that parvalbumin+ neurons were the main interneuronal subpopulation expressing the Kv3.1b potassium channel subunit in the basolateral amygdala. More than 92-96% of parvalbumin+ neurons were Kv3.1b+, depending on the nucleus. These parvalbumin+/Kv3.1b+ double-labeled cells constituted 90-99% of all Kv3.1b+ neurons. Parvalbumin+ neurons were also the main interneuronal subpopulation expressing the Kv3.2 potassium channel subunit. More than 67-78% of parvalbumin+ neurons were Kv3.2+, depending on the nucleus. However, these parvalbumin+/Kv3.2+ double-labeled cells constituted only 71-81% of all Kv3.2+ neurons. Most of the remaining neurons with significant levels of the Kv3.2 subunit were somatostatin+ interneurons. These Kv3.2-containing somatostatin+ interneurons constituted 27-50% of the somatostatin+ population, depending on the nucleus in question. These data suggest that both fast-firing and burst-firing parvalbumin+ interneurons in the basolateral amygdala express the Kv3.1b subunit. The significance of Kv3.2 expression in some parvalbumin+ and somatostatin+ interneurons remains to be determined.  相似文献   

4.
A pre-embedding immunocytochemical method was used to study the subcellular distribution of the voltage-dependent potassium channel Kv3.1b in the medial nucleus of the trapezoid body (MNTB) in developing and adult rat. The main finding was the localization of the channel in specific membrane compartments of the calyces of Held and principal globular neurons. Thus, at postnatal day (P) 9 immunoparticles were densely localized in plasma membranes of globular cell bodies and their main dendrites. At P16, a strong Kv3.1b labeling was still observed in these globular cell compartments, but the most remarkable feature was the presence of immunoparticles in synaptic terminal membranes of the calyces of Held. However, the presynaptic and postsynaptic specializations of the calyx of Held-globular cell synapses were virtually devoid of immunoparticles. This same subcellular distribution of Kv3.1b was seen in adult, with membranes of calycine terminals more uniformly labeled. The developmental profile of Kv3.1b expression in MNTB coincides with the functional maturation of the calyx of Held-principal globular neuron synapse. The presence of the channel in this system is crucial for the high-frequency synaptic transmission of auditory signals.  相似文献   

5.
The medial septum diagonal band complex (MS/DB) projects via cholinergic and GABAergic pathways to the hippocampus and plays a key role in the hippocampal theta rhythm. In the MS/DB we have previously described a population of fast spiking GABAergic neurons that contain parvalbumin and mediate theta frequency activity in vitro. The Kv3.1 potassium channel is a delayed rectifier channel that plays a major role in fast spiking neurons in the CNS, and has previously been localized in the MS/DB. To determine which cell types in the MS/DB express the Kv3.1b ion channel subunit, transgenic mice in which the expression of GABAergic and glutamate markers are associated with the expression of green fluorescent protein (GFP; GAD67-GFP and VGluT2-GFP mice, respectively) were used for immunofluorescence and axonal tract tracing. Electrophysiological studies were also carried out on rat MS/DB slices to examine the role of the Kv3.1 channel in theta frequency oscillations. The results for the MS/DB were as follows: (1) cholinergic cells did not express GFP in either GAD67-GFP or VGluT2-GFP mice, and there was GAD67 immunoreactivity in GFP-positive neurons in GAD67-GFP mice and in a small proportion (6%) of GFP-positive neurons in VGluT2-GFP mice. (2) Kv3.1b immunofluorescence was associated with the somata of GABAergic neurons, especially those that contained parvalbumin, and with a minority of glutamatergic neurons, but not with cholinergic neurons, and with GABAergic axonal terminal-like processes around certain GABAergic neurons. (3) Both Kv3.1b-positive and -negative GABAergic neurons were septo-hippocampal, and there was a minor projection to hippocampus from VGluT2-GFP neurons. (4) Kainate-induced theta oscillations in the MS/DB slice were potentiated rather than inhibited by the Kv3.1 blocker 4-aminopyridine, and this agent on its own produced theta frequency oscillations in MS/DB slices that were reduced by ionotropic glutamate and GABA receptor antagonists and abolished by low extracellular calcium. These studies confirm the presence of heterogeneous populations of septo-hippocampal neurons in the MS/DB, and suggest that presence of Kv3.1 in the GABAergic neurons does not contribute to theta activity through fast spiking properties, but possibly by the regulation of transmitter release from axonal terminals.  相似文献   

6.
The globus pallidus plays central roles in the basal ganglia circuitry involved in movement control as well as in cognitive and emotional functions. There is therefore great interest in the anatomic and electrophysiological characterization of this nucleus. Most pallidal neurons are GABAergic projecting cells, a large fraction of which express the calcium binding protein parvalbumin (PV). Here we show that PV-containing pallidal neurons coexpress Kv3. 1 and Kv3.2 K+ channel proteins and that both Kv3.1 and Kv3.2 antibodies coprecipitate both channel proteins from pallidal membrane extracts solubilized with nondenaturing detergents, suggesting that the two channel subunits are forming heteromeric channels. Kv3.1 and Kv3.2 channels have several unusual electrophysiological properties when expressed in heterologous expression systems and are thought to play special roles in neuronal excitability including facilitating sustained high-frequency firing in fast-spiking neurons such as interneurons in the cortex and the hippocampus. Electrophysiological analysis of freshly dissociated pallidal neurons demonstrates that these cells have a current that is nearly identical to the currents expressed by Kv3.1 and Kv3.2 proteins in heterologous expression systems, including activation at very depolarized membrane potentials (more positive than -10 mV) and very fast deactivation rates. These results suggest that the electrophysiological properties of native channels containing Kv3.1 and Kv3.2 proteins in pallidal neurons are not significantly affected by factors such as associated subunits or postranslational modifications that result in channels having different properties in heterologous expression systems and native neurons. Most neurons in the globus pallidus have been reported to fire sustained trains of action potentials at high-frequency. Kv3.1-Kv3.2 voltage-gated K+ channels may play a role in helping maintain sustained high-frequency repetitive firing as they probably do in other neurons.  相似文献   

7.
Sound localization by auditory brainstem nuclei relies on the detection of microsecond interaural differences in action potentials that encode sound volume and timing. Neurons in these nuclei express high amounts of the Kv3.1 potassium channel, which allows them to fire at high frequencies with short-duration action potentials. Using computational modeling, we show that high amounts of Kv3.1 current decrease the timing accuracy of action potentials but enable neurons to follow high-frequency stimuli. The Kv3.1b channel is regulated by protein kinase C (PKC), which decreases current amplitude. Here we show that in a quiet environment, Kv3.1b is basally phosphorylated in rat brainstem neurons but is rapidly dephosphorylated in response to high-frequency auditory or synaptic stimulation. Dephosphorylation of the channel produced an increase in Kv3.1 current, facilitating high-frequency spiking. Our results indicate that the intrinsic electrical properties of auditory neurons are rapidly modified to adjust to the ambient acoustic environment.  相似文献   

8.
Neurons with the capacity to discharge at high rates--'fast-spiking' (FS) neurons--are critical participants in central motor and sensory circuits. It is widely accepted that K+ channels with Kv3.1 or Kv3.2 subunits underlie fast, delayed-rectifier (DR) currents that endow neurons with this FS ability. Expression of these subunits in heterologous systems, however, yields channels that open at more depolarized potentials than do native Kv3 family channels, suggesting that they differ. One possibility is that native channels incorporate a subunit that modifies gating. Molecular, electrophysiological and pharmacological studies reported here suggest that a splice variant of the Kv3.4 subunit coassembles with Kv3.1 subunits in rat brain FS neurons. Coassembly enhances the spike repolarizing efficiency of the channels, thereby reducing spike duration and enabling higher repetitive spike rates. These results suggest that manipulation of K3.4 subunit expression could be a useful means of controlling the dynamic range of FS neurons.  相似文献   

9.
Song ZM  Hu J  Rudy B  Redman SJ 《Neuroscience》2006,139(2):531-538
One class of spinal interneurons, the Renshaw cells, is able to discharge at very high frequencies in adult mammals. Neuronal firing at such high frequencies requires voltage-gated potassium channels to rapidly repolarize the membrane potential after each action potential. We sought to establish the pattern of expression of calbindin and potassium channels with Kv3.1b and Kv3.2 subunits in Renshaw cells at different developmental stages of postnatal mice. The pattern of expression of calbindin changed dramatically during early postnatal development. An adult pattern of calbindin reactive neurons started to emerge from postnatal day 10 to postnatal day 14, with cells in laminae I and II of superficial dorsal horn and the ventral lamina VII. Renshaw cells were identified immunohistochemically by their expression of calbindin and their location in the ventral horn of the spinal cord. Western blot results of the lumbar spinal cord showed that Kv3.1b expression became faintly evident from postnatal day 10, reached a maximum at postnatal day 21 and was maintained through postnatal day 49. Double labeling results showed that all Renshaw cells expressed Kv3.1b weakly from postnatal day 14, and strongly at postnatal day 21. Western blot results showed that Kv3.2 expression became detectable in the lumbar cord from postnatal day 12, and increased steadily until reaching an adult level at postnatal day 28. In contrast to the Kv3.1b results, Kv3.2 was not expressed in Renshaw cells, although some neurons located at laminae VIII and VI expressed Kv3.2. We conclude that Renshaw cells express Kv3.1b but not Kv3.2 from postnatal day 14.  相似文献   

10.
Recent studies have demonstrated that total cellular levels of voltage-gated potassium channel subunits can change on a time scale of minutes in acute slices and cultured neurons, raising the possibility that rapid changes in the abundance of channel proteins contribute to experience-dependent plasticity in vivo. In order to investigate this possibility, we took advantage of the medial nucleus of the trapezoid body (MNTB) sound localization circuit, which contains neurons that precisely phase-lock their action potentials to rapid temporal fluctuations in the acoustic waveform. Previous work has demonstrated that the ability of these neurons to follow high-frequency stimuli depends critically upon whether they express adequate amounts of the potassium channel subunit Kv3.1. To test the hypothesis that net amounts of Kv3.1 protein would be rapidly upregulated when animals are exposed to sounds that require high frequency firing for accurate encoding, we briefly exposed adult rats to acoustic environments that varied according to carrier frequency and amplitude modulation (AM) rate. Using an antibody directed at the cytoplasmic C-terminus of Kv3.1b (the adult splice isoform of Kv3.1), we found that total cellular levels of Kv3.1b protein—as well as the tonotopic distribution of Kv3.1b-labeled cells—was significantly altered following 30 min of exposure to rapidly modulated (400 Hz) sounds relative to slowly modulated (0–40 Hz, 60 Hz) sounds. These results provide direct evidence that net amounts of Kv3.1b protein can change on a time scale of minutes in response to stimulus-driven synaptic activity, permitting auditory neurons to actively adapt their complement of ion channels to changes in the acoustic environment.  相似文献   

11.
The synRas transgenic mice express constitutively activated Valin12-Harvey Ras in postnatal neocortical pyramidal neurons. This leads to somatodendritic hypertrophy, higher densities of spines and synapses, and an enhancement of synaptic long-term potentiation associated with an increased glutamate receptor-mediated activity. It was less clear how the interneurons respond to these alterations, and this prompted the quantitative assessment of interneuron neurochemistry. Interneurons rarely expressed the transgene, however, several interneuron types displayed a transient somatic hypertrophy. Furthermore, NPY mRNA expression was persistently increased as were the laminar percentages of labeled neurons. The expression of parvalbumin and voltage-gated potassium channels Kv3.1b/3.2 was unchanged. A significant decline of GAD-67, but not GAD-65, mRNA expressing neurons was observed in layer VI in animals older than P60. This suggested that subtle deficits in inhibition and enhanced excitation evoke the interneuronal changes in the synRas-transgenic mouse cortex.  相似文献   

12.
Fast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.2 subunits display biophysical properties that may contribute to the FS phenotype. Given that RTN expresses high levels of Kv3.1, with little or no Kv3.2, we tested whether this subunit was required for the fast action potential repolarization mechanism essential to the FS phenotype. Single- and multiple-action potentials were recorded using whole-cell current clamp in RTN neurons from brain slices of wild-type and Kv3.1-deficient mice. At 23 degrees C, action potentials recorded from homozygous Kv3.1 deficient mice (Kv3.1(-/-)) compared with their wild-type (Kv3.1(+/+)) counterparts had reduced amplitudes (-6%) and fast after-hyperpolarizations (-16%). At 34 degrees C, action potentials in Kv3.1(-/-) mice had increased duration (21%) due to a reduced rate of repolarization (-30%) when compared with wild-type controls. Action potential trains in Kv3.1(-/-) were associated with a significantly greater spike decrement and broadening and a diminished firing frequency versus injected current relationship (F/I) at 34 degrees C. There was no change in either spike count or maximum instantaneous frequency during low-threshold Ca(2+) bursts in Kv3.1(-/-) RTN neurons at either temperature tested. Our findings show that Kv3.1 is not solely responsible for fast spikes or high-frequency firing in RTN neurons. This suggests genetic redundancy in the system, possibly in the form of other Kv3 members, which may suffice to maintain the FS phenotype in RTN neurons in the absence of Kv3.1.  相似文献   

13.
Voltage-gated K+ channels activating close to resting membrane potentials are widely expressed and differentially located in axons, presynaptic terminals and cell bodies. There is extensive evidence for localisation of Kv1 subunits at many central synaptic terminals but few clues to their presynaptic function. We have used the calyx of Held to investigate the role of presynaptic Kv1 channels in the rat by selectively blocking Kv1.1 and Kv1.2 containing channels with dendrotoxin-K (DTX-K) and tityustoxin-Kα (TsTX-Kα) respectively. We show that Kv1.2 homomers are responsible for two-thirds of presynaptic low threshold current, whilst Kv1.1/Kv1.2 heteromers contribute the remaining current. These channels are located in the transition zone between the axon and synaptic terminal, contrasting with the high threshold K+ channel subunit Kv3.1 which is located on the synaptic terminal itself. Kv1 homomers were absent from bushy cell somata (from which the calyx axons arise); instead somatic low threshold channels consisted of heteromers containing Kv1.1, Kv1.2 and Kv1.6 subunits. Current-clamp recording from the calyx showed that each presynaptic action potential (AP) was followed by a depolarising after-potential (DAP) lasting around 50 ms. Kv1.1/Kv1.2 heteromers had little influence on terminal excitability, since DTX-K did not alter AP firing. However TsTX-Kα increased DAP amplitude, bringing the terminal closer to threshold for generating an additional AP. Paired pre- and postsynaptic recordings confirmed that this aberrant AP evoked an excitatory postsynaptic current (EPSC). We conclude that Kv1.2 channels have a general presynaptic function in suppressing terminal hyperexcitability during the depolarising after-potential.  相似文献   

14.
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 m m ) and 4-aminopyridine (4-AP; 30 μ m ). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects.  相似文献   

15.
Neuronal Kv7 channels (also termed KCNQ channels) are the molecular correlate of the M-current. The Kv7 channels activate at rather negative membrane potentials (≤ 60 mV), thereby 'fine-tuning' the resting membrane potential. The Kv7 channels are widely expressed in the brain with the Kv7.2, Kv7.3 and Kv7.5 channels being the most abundant. The Kv7.4 subunit has the most restricted brain regional expression being present in discrete nuclei of brainstem only. Kv7 channels are expressed at different subcellular locations, being on both somatodendritic, axonal and terminal sites. This complex subcellular distribution of Kv7 channels enables them to participate in both pre- and postsynaptic modulation of basal and stimulated excitatory neurotransmission. Activation of neuronal Kv7 channels limits repetitive firing thereby potentially limiting the generation of long bursts, with subsequent inhibition of monoaminergic neurotransmitter release. In this review, we focus on the influence of Kv7 channels on dopaminergic and serotonergic neurotransmission. The data suggest a novel action of Kv7 channel openers which could translate into having therapeutic value in the treatment of disease states characterized by overactivity of dopaminergic (e.g. schizophrenia and drug abuse) and serotonergic neurotransmission (e.g. anxiety).  相似文献   

16.
Grabert J  Wahle P 《Neuroscience》2009,158(2):654-664
Among the GABAergic neocortical interneurons, parvalbumin-containing fast-spiking (FS) basket cells are essential mediators of feed-forward inhibition, network synchrony and oscillations, and timing of the critical period for sensory plasticity. The FS phenotype matures after birth. It depends on the expression of the voltage-gated potassium channels Kv3.1b/3.2 which mediate the fast membrane repolarization necessary for firing fast action potentials at high frequencies. We have now tested in rat visual cortex if visual deprivation affects the Kv3 expression. During normal development, Kv3.1b/3.2 mRNA and protein expression increased in rat visual cortex reaching adult levels around P20. Dark rearing from birth neither prevented nor delayed the upregulation. Rather unexpectedly, the expression of Kv3.1b protein and Kv3.2 mRNA and protein increased to higher levels from the third postnatal week onwards. Triple-labeling revealed that in dark-reared visual cortex Kv3.2 was upregulated in parvalbuminergic interneurons in supragranular layers which in normal animals rarely display Kv3.2 expression. Recovery from dark rearing normalized Kv3.2 expression. This showed that visual experience influences the Kv3 expression. The results suggest that an altered expression of Kv3 channels affects the functional properties of FS neurons, and may contribute to the deficits in inhibition observed in the sensory-deprived cortex.  相似文献   

17.
Grabert J  Wahle P 《Neuroscience》2008,156(3):618-629
Among the GABAergic neocortical interneurons, fast-spiking (FS) basket and chandelier cells are essential mediators for feed-forward inhibition, network synchrony and oscillations. The FS properties are in part mediated by the voltage-gated potassium channels Kv3.1b/3.2 which allow the fast repolarization of the membrane necessary for firing non-adapting action potentials at high frequencies. It has been recently reported that the FS phenotype fails to mature in BDNF knockout mice suggesting a role for neurotrophins. We now describe the role of neuronal activity and neurotrophins for Kv3.1b/3.2 expression using organotypic cultures of rat visual cortex as model system. Chronic activity deprivation from 2 days in vitro (DIV) prevented the postnatal developmental increase of Kv3.2, but not Kv3.1b mRNA expression. However, chronic activity deprivation failed to alter Kv3.1b and marginally delayed Kv3.2 protein expression. Activity deprivation by glutamate receptor blockade from 10 to 20 DIV reduced both mRNAs, whereas deprivation with tetrodotoxin (TTX) reduced both mRNAs and the Kv3.2 protein. Thalamic and cortical afferents in cocultures failed to alter the expression. BDNF and NT4 supplemented from 2 DIV onwards increased the expression of Kv3.1b, but not Kv3.2 mRNA in young cultures. Only NT4 increased the expression of both mRNAs later in development. Kv3 protein levels were not changed by exogenous tropomyosin-related kinase B (TrkB) ligands, but the levels decreased upon inhibiting the MAPK signaling suggesting a role for endogenous factors and in particular MEK2 signaling for translation. The results show that Kv3.1b/3.2 expression is differentially controlled by neuronal activity and neurotrophic factors.  相似文献   

18.
We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and ∼80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25–50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 n m ) also inhibited ∼40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential.  相似文献   

19.
20.
Jinno S  Jeromin A  Kosaka T 《Neuroscience》2005,134(2):483-494
Voltage-dependent potassium (Kv) channels in the CNS are involved in regulation of subthreshold membrane potentials, and thus reception and integration of synaptic signals. Although such features are particularly important for induction of hippocampal synaptic plasticity, relatively little is known about their subcellular localization. Here we analyzed the detailed distribution of Kv4.2 potassium channels in the mouse hippocampal region using confocal and electron microscopy. At the light microscopic level, the Kv4.2 immunoreactivity occurred in a punctate fashion in the whole area of the hippocampal region. In the hippocampus proper, most of the Kv4.2-positive puncta were small, and they were abundant at the dendritic compartments of pyramidal neurons. High-resolution confocal microscopy revealed that there was no apparent association between Kv4.2-positive puncta with major synaptic markers, such as vesicular glutamate transporters and glutamic acid decarboxylase. In the subicular complex and dentate gyrus, we encountered large distinct Kv4.2-positive puncta at the perimeter of somata and proximal dendrites of principal cells. These puncta were often in contact with glutamic acid decarboxylase-positive boutons, but showed no apparent association with vesicular glutamate transporters. The glutamic acid decarboxylase-positive boutons apposing to Kv4.2-positive puncta were parvalbumin-positive. Quantitative image analysis showed that approximately half of Kv4.2-positive puncta were closely apposed to glutamic acid decarboxylase-positive boutons in the parasubiculum and dentate gyrus. Electron microscopic examination substantiated the presence of large Kv4.2-positive patches at postsynaptic sites of symmetric synapses and small patches at extrasynaptic sites. No presynaptic terminals were labeled. The present findings indicate targeted clustering of Kv4.2 potassium channels at postsynaptic sites of GABAergic synapses and extrasynaptic sites, and provide some key to understand their role in the hippocampal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号