首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
The effects of nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist JTC-801 on allodynia and hyperalgesia were examined in rats in order to explore the involvement of N/OFQ system in these pathological pain states. Tactile allodynia induced by L5/L6 spinal nerve ligation was reversed by both systemic (3–30 mg/kg) and spinal (22.5 and 45 pg) JTC-801 in a dose-dependent manner. Concerning hyperalgesia induced by formalin injection into the hindpaw, JTC-801 dose-dependently suppressed the second phase, but not the first phase, of the licking behavior. Furthermore, systemic JTC-801 reduced Fos-like immunoreactivity in the dorsal horn of the spinal cord (laminae I/II). In conclusion, N/OFQ receptor antagonist JTC-801 exerted anti-allodynic and anti-hyperalgesic effects in rats, suggesting that N/OFQ system might be involved in the modulation of neuropathic pain and inflammatory hyperalgesia.  相似文献   

2.
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). Relative to sham operation controls, rats with the CCI-ION consistently displayed hyperresponsiveness to von Frey filament and heat stimulation of the vibrissal pad. Both mechanical allodynia and thermal hyperalgesia are seen both ipsilateral and contralateral to the side of nerve injury, but is significantly more severe ipsilaterally. Administration of WIN 55,212-2 (0.3-5 mg/kg i.p.) dose-dependently increased the mechanical and heat withdrawal thresholds. WIN 55,212-2 (0.3-3 mg/kg i.p.) produced no significant motor deficits in animals using the rotarod test. The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.  相似文献   

3.
The analgesic properties of the synthetic cannabinoid WIN55,212-2 were investigated in a model of neuropathic pain. In male Wistar rats, bilateral hind limb withdrawal thresholds to cold, mechanical and noxious thermal stimuli were measured. Following this, unilateral L5 spinal nerve ligation was performed. Seven days later, sensory thresholds were reassessed and the development of allodynia to cold and mechanical stimuli and hyperalgesia to a noxious thermal stimulus confirmed. The effect of WIN55,212-2 (0.1 - 5.0 mg kg(-1), i.p.) on the signs of neuropathy was then determined; there was a dose related reversal of all three signs of painful neuropathy at doses which did not generally alter sensory thresholds in the contralateral unligated limb. This effect was prevented by co-administration of the CB(1) receptor antagonist SR141716a, but not by co-administration of the CB(2) receptor antagonist SR144528, suggesting this action of WIN55,212-2 is mediated via the CB(1) receptor. Administration of SR141716a alone had no affect on the observed allodynia and hyperalgesia, which does not support the concept of an endogenous analgesic tone. These data indicate that cannabinoids may have therapeutic potential in neuropathic pain, and that this effect is mediated through the CB(1) receptor.  相似文献   

4.
BACKGROUND AND PURPOSE: The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified. EXPERIMENTAL APPROACH: Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528). KEY RESULTS: Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2. CONCLUSIONS AND IMPLICATIONS: Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord.  相似文献   

5.
6.

BACKGROUND AND PURPOSE

Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes.

EXPERIMENTAL APPROACH

Male Sprague Dawley rats received JTC-801 (6 mg kg−1 i.p., once daily) during days 7–21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [35S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively.

KEY RESULTS

JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG.

CONCLUSION AND IMPLICATIONS

JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain.

LINKED ARTICLES

This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2  相似文献   

7.
The antinociceptive effects of WIN55,212-2, a synthetic cannabinoid, were evaluated in the model of partial sciatic nerve ligation after daily subcutaneous administration of 0.1 mg/kg a week before and two weeks after surgery. Mechanical allodynia and thermal hyperalgesia were evaluated in 46 rats allocated to receive: (1) Vehicle (before surgery)-Vehicle (after surgery); (2) Vehicle-WIN55,212-2; (3) WIN55,212-2-Vehicle; (4) WIN55,212-2-WIN55,212-2; (5) AM251+vehicle; (6) AM251+WIN55,212-2; (7) AM630+vehicle; (8) AM630+WIN55,212-2; (9) Sham receiving vehicle; and (10) Sham receiving WIN55,212-2. The decreased in mechanical allodynia and thermal hyperalgesia by WIN55,212-2 was significantly greater when it was administered during one week before surgery. In conclusion, pre-emptive use of cannabinoids produced greater antinociceptive effects in a model of neuropathic pain and this effect is mediated by cannabinoid CB(1) and CB(2) receptors.  相似文献   

8.

Background and purpose:

Activation of cannabinoid (CB) receptors decreases nociceptive transmission in inflammatory or neuropathic pain states. However, the effects of CB receptor agonists in post-operative pain remain to be investigated. Here, we characterized the anti-allodynic effects of WIN 55,212-2 (WIN) in a rat model of post-operative pain.

Experimental approach:

WIN 55,212-2 was characterized in radioligand binding and in vitro functional assays at rat and human CB1 and CB2 receptors. Analgesic activity and site(s) of action of WIN were assessed in the skin incision-induced post-operative pain model in rats; receptor specificity was investigated using selective CB1 and CB2 receptor antagonists.

Key results:

WIN 55,212-2 exhibited non-selective affinity and agonist efficacy at human and rat CB1 versus CB2 receptors. Systemic administration of WIN decreased injury-induced mechanical allodynia and these effects were reversed by pretreatment with a CB1 receptor antagonist, but not with a CB2 receptor antagonist, given by systemic, intrathecal and supraspinal routes. In addition, peripheral administration of both CB1 and CB2 antagonists blocked systemic WIN-induced analgesic activity.

Conclusions and implications:

Both CB1 and CB2 receptors were involved in the peripheral anti-allodynic effect of systemic WIN in a pre-clinical model of post-operative pain. In contrast, the centrally mediated anti-allodynic activity of systemic WIN is mostly due to the activation of CB1 but not CB2 receptors at both the spinal cord and brain levels. However, the increased potency of WIN following i.c.v. administration suggests that its main site of action is at CB1 receptors in the brain.British Journal of Pharmacology (2009) 157, 645–655; doi:10.1111/j.1476-5381.2009.00184.x; published online 3 April 2009  相似文献   

9.
The effect of cannabinoid drugs (i.p.) on cold/restraint stress-induced gastric ulcers was studied in rats. The cannabinoid receptor agonist (WIN 55,212-2, 0.1-1 mg/kg), but not the less active isomer WIN 55,212-3 (1 mg/kg), reduced gastric ulceration. The protective effect of WIN 55,212-2 (1 mg/kg) was counteracted by the cannabinoid CB1 receptor antagonist SR141716A, but not by the cannabinoid CB2 receptor antagonist SR144528. These results indicate that the antiulcer effect of the cannabinoid receptor agonist WIN 55,212-2 is mediated by cannabinoid CB1 receptors.  相似文献   

10.
Cannabinoid receptor (CB) agonists are known to attenuate allodynia in a range of pain models, but their long-term effects and their mechanisms of action are controversial. The present study compares the antiallodynic effects of long-term treatment with a mixed CB1/CB2 (WIN55,212-2) and a selective CB2 (GW405833) cannabinoid receptor agonist and correlates these effects with their influences on spinal cord (SC) glial activation. The substances were applied daily in a rat neuropathic pain model. Tactile allodynia was assessed, and the development of gliosis was illustrated with immunohistochemical methods. Both substances reduced mechanical allodynia. Their analgesic effect was accompanied by a significant reduction in reactive gliosis and cathepsins (CAT) X and S expression. A daily injection of either substance for 8 days was sufficient to induce a sustained antiallodynic effect, which persisted up to 6 days after the last injection. The re-appearance of mechanical allodynia after this period was associated with a breakout of a strong gliotic response in the lumbar SC. Our results emphasize the therapeutic efficacy of cannabinoid receptor agonists and their inhibitory effects on the formation of gliosis.  相似文献   

11.
Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood–brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8?h at a dose of 11.5?mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5?h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.  相似文献   

12.
In the present study, we investigated the influence of intrathecal (i.t.) administration of morphine and endomorphin-1 on the level of pronociceptin/orphanin FQ and opioid receptor-like 1 (ORL1) receptor mRNAs in the lumbar part of the spinal cord in the rat model of neuropathic pain. The ligation of the sciatic nerve did not change the levels of pronociceptin/orphanin FQ and ORL1 receptor mRNAs in laminae I-VI of the dorsal horn when measured by in situ hybridisation 2 and 7 days after the nerve injury, but ORL1 receptor mRNA level in the ventral horn was significantly increased. Two micro-opioid receptor agonists, morphine and endomorphin-1, whose effectiveness in neuropathic pain is different, also disparately influenced nociceptin/orphanin FQ system in this pain model, inasmuch as an increase in pronociceptin/orphanin FQ and ORL1 receptor mRNAs was observed in laminae I-VI after morphine administration (5 microg i.t.) but not after endomorphin-1 treatment (5 microg i.t.). Moreover, the injection of ORL1 receptor antagonists (PhePsi; 30 microg i.t.) before morphine potentiated the effect of morphine in neuropathic pain model. Therefore, the activation of the endogenous nociceptin/orphanin FQ system, which is known to exhibit antiopioidergic activity, apart from its analgesic action, could be the reason for lower responsiveness to morphine in neuropathic pain.  相似文献   

13.
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. Painful neuropathy was induced in male Wistar rats by intraperitoneal (i.p.) administration of paclitaxel (1mg/kg) on four alternate days. Paclitaxel-treated animals received WIN 55,212-2 (1mg/kg, i.p.) or minocycline (15 mg/kg, i.p.), a microglial inhibitor, daily for 14 days, simultaneous with the antineoplastic. The development of hypersensitive behaviors was assessed on days 1, 7, 14, 21 and 28 following the initial administration of drugs. Both the activation of glial cells (microglia and astrocytes) at day 29 and the time course of proinflammatory cytokine release within the spinal cord were also determined. Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.  相似文献   

14.
Acetaminophen (APAP) produces antinociception and hypothermia. Because the antinociceptive effect in rats is partially dependent on opioid and cannabinoid CB1 receptor activation, we determined if activation of these receptors also contributes to the hypothermic effect of APAP. Rats injected with APAP (100, 250, 375 or 500 mg/kg, i.p.) displayed dose-related hypothermia. For combined administration, the hypothermic effect of APAP (400 mg/kg, i.p.) was not altered by pretreatment with: naltrexone (10 mg/kg, s.c.), a non-selective opioid antagonist; naltrindole (1 mg/kg, s.c.), a delta opioid antagonist; nor-binaltorphimine (10 mg/kg, i.p.), a kappa opioid antagonist; SR 141716A (3 mg/kg, i.m.), a cannabinoid CB1 receptor antagonist; or JTC-801(1 mg/kg, i.p.), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist. The demonstration that APAP produces hypothermia independent of opioid, cannabinoid CB1 or NOP receptor activation is contrary to its antinociceptive effect, which requires opioid and cannabinoid CB1 receptor activation.  相似文献   

15.
The antinociceptive properties of cannabinoids in persistent pain are not fully elucidated. We investigated the effect of repeated treatment with the synthetic cannabinoid receptor agonist WIN 55,212-2 on the neuropathic pain induced in rats by chronic constriction of the sciatic nerve. WIN 55,212-2 administered daily throughout the development of neuropathy reversed the hyperalgesia, at a dose (0.1 mg x kg(-1), s.c.) that had no effect on the nociceptive responses of either paw contralateral to the sciatic ligation or of animals subjected to sham surgery. At 14 days after injury, the levels of mediators known to be involved in neuropathic pain, such as prostaglandin E2, NO and the neuronal NOS, were increased. Repeated treatment with WIN 55,212-2 abolished these increases. In the light of the current clinical need for neuropathic pain treatments, these findings indicate that cannabinoid agonists, at doses devoid of psychoactive effects, could constitute important compounds for the development of new analgesics.  相似文献   

16.
We studied the effects of nociceptin, the endogenous ligand of the opioid OP4 receptor, and of two cannabinoid receptor agonists WIN 55,212-2 and CP-55,940 (0.001-1 micromol/kg each) on the neurogenic tachycardia and bradycardia in pithed rats. Electrical stimulation (1 Hz, 1 ms, 50 V for 10 s) of the preganglionic sympathetic nerve fibres and injection of nicotine 2 micromol/kg or isoprenaline 0.5 nmol/kg increased heart rate by about 70 beats/min (bpm) in pithed rats pretreated with atropine 1.5-2 micromol/kg. The electrically induced tachycardia was reduced dose dependently by nociceptin, WIN 55,212-2 and CP-55,940 (by 60, 30 and 20% at the highest dose, respectively). The OP4 and cannabinoid receptor agonists diminished the nicotine- but not the isoprenaline-stimulated increase in heart rate. In pithed rats pretreated with propranolol 3 micromol/kg, vagal stimulation (5 Hz, 1 ms, 15 V for 10 s) or injection of methacholine (5-10 nmol/kg) decreased heart rate by about 30 bpm. Nociceptin, but not WIN 55,212-2 or CP-55,940 decreased the vagal bradycardia dose dependently (the inhibitory effect of 1 micromol/kg was about 40%). Nociceptin failed to modify the methacholine-induced decrease in heart rate. The OP4 receptor antagonists naloxone benzoylhydrazone 5 micromol/kg and/or [Phe1Psi(CH2-NH)Gly2]-nociceptin(1-13)NH2 0.7 micromol/kg, but not the OP(1-3) receptor antagonist naloxone 10 micromol/kg, diminished the inhibitory action of nociceptin on the neurogenic tachycardia and bradycardia. The inhibitory effect of both cannabinoid receptor agonists on the neurogenic tachycardia was abolished by the CB1 receptor antagonist SR 141716 0.1 micromol/kg. The present data suggest that the postganglionic sympathetic nerve fibres innervating the rat heart are endowed with presynaptic opioid OP4 and cannabinoid CB1 receptors, activation of which inhibits the neurogenic tachycardia. The parasympathetic nerve fibres innervating the heart and causing bradycardia are endowed with presynaptic opioid OP4 but not cannabinoid receptors.  相似文献   

17.
The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ.  相似文献   

18.
Pharmacological effects of a novel opioid receptor-like1 (ORL(1)) receptor antagonist, [N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride] (JTC-801), were examined in in vitro and in vivo. JTC-801 inhibited the binding of [(3)H]-nociceptin to human ORL(1) receptors expressed in HeLa cells with a K(i) value of 44.5 nM. JTC-801 completely antagonized the suppression of nociceptin on forskolin-induced accumulation of cyclic AMP (IC(50) : 2.58 microM) using ORL(1) receptor expressing HeLa cells in vitro. In in vivo, when given intravenously at dosages of 0.01 mg kg(-1) and above, or orally at dosages 1 mg kg(-1) and above, JTC-801 antagonized the nociceptin-induced allodynia in mice. Effects of JTC-801 on various nociceptive models were examined. In mouse hot-plate test, JTC-801 prolonged escape response latency (ERL) to exposed heat stimulus with minimum effective doses (MED) of 0.01 mg kg(-1) by i.v. or 1 mg kg(-1) by p.o. In the rat formalin test, JTC-801 reduced both the first and second phases of the nociceptive response with MED of 0.01 mg kg(-1) by i.v. administration or 1 mg kg(-1) by p.o. administration. This anti-nociceptive action of JTC-801 was not inhibited by naloxone (10 mg kg(-1), s.c.). We have demonstrated that JTC-801 antagonizes the ORL(1) receptor response, and that JTC-801 has efficacious and potent anti-nociceptive effects in acute pain animal models not only by intravenous injection but also oral administration. These results suggest that JTC-801 may represent a new class of analgesics.  相似文献   

19.
Diabetic neuropathy is a frequent complication of diabetes mellitus with a tremendous impact on patients' quality of life, and it remains poorly treated. Cannabinoids relieve the signs of diabetic neuropathy in different experimental models, including streptozotocin- (STZ-) induced type 1 diabetic rodents, and they may also relieve neuropathic signs in type 2 diabetic animals. This study compares the effect of the non-selective cannabinoid agonist WIN 55,212-2 (WIN) in Zucker Diabetic Fatty (ZDF) rats (type 2 diabetes) and in STZ-injected Wistar rats (type 1 diabetes).WIN (or its vehicle) was either systemically administered at a non-psychoactive dose or locally injected. Selective CB1 and CB2 cannabinoid antagonists were used to characterize WIN antineuropathic effects.Both type 1 and type 2 diabetic rats showed mechanical allodynia but not thermal hyperalgesia. WIN alleviated mechanical allodynia in both models of diabetes. In STZ-treated rats, both cannabinoid receptors were involved, whereas in ZDF rats, WIN effects seemed to mainly involve the activation of CB1 receptors. Higher doses of WIN were needed to significantly relieve mechanical allodynia upon intraplantar administration in ZDF vs. STZ-injected rats.Cannabinoids, acting on systemic and/or peripheral receptors, may serve as a new therapeutic alternative for symptom management in painful neuropathy associated with both type 1 and type 2 diabetes. Additionally, our results highlight the need for appropriate selection of diabetic experimental models because the results from studies in STZ-induced diabetic rodents might not be applicable in all diabetic situations.  相似文献   

20.
The effect of the cannabinoid (CB) receptor agonist WIN 55,212-2 on gastric acid secretion was studied in the anaesthetized rat after stimulation with pentagastrin. WIN 55,212-2 (0.5-2 mg/kg, i.v.) was inactive on basal secretion but caused a marked inhibition (80%) of the acid secretion stimulated by pentagastrin (10 microg/kg, i.v.). The enantiomer WIN 55,212-3 (1-3 mg/kg, i.v.) did not significantly modify basal or pentagastrin-induced acid secretion. The inhibitory effect of WIN 55,212-2 against pentagastrin was prevented by the administration of the selective cannabinoid CB1 receptor antagonists SR141716A (1 mg/kg, i.v.) and LY320135 (1 mg/kg, i.v.); by contrast, the CB2 receptor antagonist SR144528 (0.3-1 mg/kg, i.v.) was without effect. The selective CB2 receptor agonist JWH-015 (0.1-10 mg/kg, i.v.) was inactive on the increase of acid output stimulated by pentagastrin. These results suggest that the inhibitory effect of WIN 55,212-2 on pentagastrin-stimulated acid secretion in the anaesthetized rat is mediated by specific cannabinoid receptors. Moreover, the antagonism of WIN 55,212-2-induced effects by the selective CB1 receptor antagonists SR141716A and LY320135 together with the ineffectiveness of both the CB2 receptor agonist JWH-015 and the CB2 receptor antagonist SR144528 indicate that CB1 receptor subtypes are predominantly involved in the antisecretory effect of WIN 55,212-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号