首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
The neuroprotective effect of schizandrin on the glutamate (Glu)-induced neuronal excitotoxicity and its potential mechanisms were investigated using primary cultures of rat cortical cells. After exposure of primary cultures of rat cortical cells to 10 microM Glu for 24 h, cortical cell cultures exhibited remarkable apoptotic death. Pretreatment of the cortical cell cultures with schizandrin (10, 100 microM) for 2 h significantly protected cortical neurons against Glu-induced excitotoxicity. The neuroprotective activity of schizandrin was the most potent at the concentration of 100 microM. Schizandrin reduced apoptotic characteristics by DAPI staining in Glu-injured cortical cell cultures. In addition, schizandrin diminished the intracellular Ca2+ influx, inhibited the subsequent overproduction of nitric oxide (NO), reactive oxygen species (ROS), and cytochrome c, and preserved the mitochondrial membrane potential. Furthermore, schizandrin also increased the cellular level of glutathione (GSH) and inhibited the membrane lipid peroxidation malondialdehyde (MDA). As indicated by Western blotting, schizandrin attenuated the protein level changes of procaspase-9, caspase-9, and caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Taken together, these results suggest that schizandrin protected primary cultures of rat cortical cells against Glu-induced apoptosis through a mitochondria-mediated pathway and oxidative stress.  相似文献   

2.
Aminoglutethimide is a clinically available drug that suppresses steroid biosynthesis by inhibiting enzymes such as cytochrome P450scc and aromatase. Because several members of neurosteroids regulate glutamate receptors, we investigated the effect of aminoglutethimide on cell death induced by overactivation of glutamate receptors in CNS neurons. Long-term pretreatment of organotypic cerebrocortical slice cultures with aminoglutethimide (100-1000 microM) for 6 days or over resulted in concentration-dependent suppression of neuronal cell death induced by NMDA. Aminoglutethimide (1000 microM) also inhibited neurotoxicity of AMPA and kainate, but not of ionomycin or staurosporine. The protective effect of aminoglutethimide against NMDA cytotoxicity was not mimicked by other steroid synthesis inhibitors including trilostane and exemestane, and was not reversed by concurrent application of steroids such as pregnenolone, estrone, 17beta-estradiol and estriol. In dissociated rat cerebrocortical cell cultures, long-term treatment with aminoglutethimide (10-1000 microM) attenuated NMDA receptor-mediated glutamate cytotoxicity but produced no significant effect on glutamate-induced increases in intracellular Ca2+. Brief as well as long-term pretreatment with aminoglutethimide (30-1000 microM) prevented NMDA receptor-dependent ischemic neuronal injury in organotypic cerebrocortical slice cultures, which was associated with suppression of glutamate release during the ischemic insult. These results indicate that aminoglutethimide, irrelevant to its actions on neurosteroid synthesis, protects CNS neurons from excitotoxic and ischemic injuries. Development of aminoglutethimide analogs possessing neuroprotective properties may be of therapeutic value.  相似文献   

3.
The underlying cause of the selective death of the nigral dopaminergic neurons in Parkinson's disease is not fully understood. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of dopamine and nitric oxide. Because BH4 contributes to the syntheses of these two potential oxidative stressors and also undergoes autoxidation, thereby producing reactive oxygen species, it was possible that BH4 may play a role in the selective vulnerability of dopaminergic cells. BH4 given extracellularly was cytotoxic to catecholamine cells CATH. a, SK-N-BE(2)C, and PC12, but not to noncatecholamine cells RBL-2H3, CCL-64, UMR-106-01, or TGW-nu-1. This was not caused by increased dopamine or nitric oxide, because inhibition of their syntheses did not attenuate the damage and BH4 did not raise their cellular levels. Dihydrobiopterin and biopterin were not toxic, indicating that the fully reduced form is responsible. The toxicity was caused by generation of reactive oxygen species, because catalase, superoxide dismutase, and peroxidase protected the cells from the BH4-induced demise. Furthermore, thiol agents, such as reduced glutathione, dithiothreitol, beta-mercaptoethanol, and N-acetylcysteine were highly protective. The BH4 toxicity was initiated extracellularly, because elevation of intracellular BH4 by sepiapterin did not result in cell damage. BH4 was spontaneously released from the cells of its synthesis to a large extent, and the release was not further enhanced by calcium influx. This BH4-induced cytotoxicity may represent a mechanism by which selective degeneration of dopaminergic terminals and neurons occur.  相似文献   

4.
The present study was designed to investigate whether cocaine modifies the production of reactive oxygen species, affects cellular enzyme-mediated antioxidant defense systems and, subsequently, promotes apoptosis and/or necrosis of hepatocytes. Primary cultures of hepatocytes isolated from phenobarbital-induced rats were exposed to cocaine (0-1000 microM) for 24 hr, and cell death (apoptosis or necrosis), antioxidant enzyme activities and mRNA levels, and peroxide generation were determined. Cocaine cytotoxicity by apoptosis was observed by detecting apoptotic nuclei using optic microscopy and by measurement of the hypodiploid peak (<2C) in DNA histograms obtained by flow cytometry. Necrosis was evidenced by lactate dehydrogenase (LDH) leakage, and peroxide production was quantified with 2',7'-dichlorodihydrofluorescein diacetate. Low concentrations of cocaine (less than 100 microM) resulted in an increase in dichlorofluorescein fluorescence, associated with an enhancement in apoptotic cell death and sharp decreases in the enzyme activities and RNAs of catalase and manganese-superoxide dismutase (Mn-SOD). The progressive decrease in peroxide production in cell cultures detected in the range of 250-1000 microM cocaine was associated with increases in LDH leakage and decreases in the percentage of apoptotic cells, accompanied by low levels in catalase and Mn-SOD enzyme activities and mRNAs, without apparent changes in apoptosis. These data indicate that oxygen radicals may contribute directly or indirectly to cocaine-induced apoptosis in cultured hepatocytes. We conclude that, in primary hepatocyte cultures, cocaine-induced cell death by necrosis was dependent on cocaine concentration, while cell death by apoptosis was parallel to peroxide concentration. The down-regulation of the gene expression of antioxidant enzyme systems should be one of the mechanisms involved in cocaine toxicity.  相似文献   

5.
Trimethyltin (TMT) and triethyltin (TET) caused cell death in cultures of primary human neurons and astrocytes, rat neurons and human neuroblastoma cell lines. Human neurons and astrocytes showed a delayed response to TMT cytotoxicity. After 24h of TMT exposure, LC50 values were 148.1, 335.5 and 609.7 microM for SK-N-MC neuroblastoma cell line, neurons and astrocytes, respectively. Over 5 days of exposure, the cytotoxic potency of TMT increased about 70-fold in human cortical neurons. Rat hippocampal neurons were the most vulnerable cells to TMT cytotoxicity, exhibiting an LC50 value 30-fold lower (1.4 microM) than that of rat cerebellar granule cells (44.28 microM). With the exception of rat hippocampal neurons, TET was more potent than TMT in inducing cell death (LC50 values of 3.5-16.9 microM). Moreover, TET was more effective than TMT in increasing intracellular free Ca2+ concentration in human and rat neurons. This work shows that human fetal neuron and astrocyte cultures are a useful model for studying the neurotoxic effects of these environmental contaminants and, thus, predicting their impact on human health.  相似文献   

6.
Activation of protein kinase C (PKC) plays an important role in lead (Pb(2+))-induced cytotoxicity. The effects of low dose exposure to Pb(2+) on cytosolic free calcium (Ca(2+)), PKC activity and mechanisms involved in cell death were studied in PC12 cells. Exposure of PC12 cells to low dose Pb(2+) (0.01 microM) increased PKC activity, while exposure to a higher dose (10 microM) led to decreased PKC activity. Additionally, in normal extracellular medium, low concentration of Pb(2+) (0.01 microM) stimulated increase in cytosolic free calcium while the higher concentrations of Pb(2+) (10 microM) did not. However, the effect of low dose Pb(2+) (0.01 microM) was blocked by removing Ca(2+) from external medium. The role of Pb(2+)-induced changes in PKC activity and its relationship to oxidative stress and related cytotoxicity was also studied. Pb(2+) alone (0.01-10 microM) produced reactive oxygen species (ROS) dose dependently over the period of 24 h. Pb(2+)-induced ROS were potentiated in the presence of 500 microM glutamate. Furthermore, a correlation was observed between ROS generation and the levels of cytotoxicity, which was observed after 24 h exposures to Pb(2+) by trypan blue method, and the cytotoxicity was enhanced by glutamate co-treatment. Pb(2+)-induced cell death was blocked partially by staurosporine (PKC inhibitor, 100 nM) and NMDA antagonist, MK-801 (1 microM). It is concluded that, in Pb-induced cytotoxicity, modulation of PKC and intracellular calcium play significant roles in augmenting glutamate receptor mediated oxidative species formation and subsequent cell death.  相似文献   

7.
Artemisinin and its analogue dihydroartemisinin exert cytotoxic effects in some kinds of cancer cell lines. Here we determined whether dihydroartemisinin inhibits the growth and induces apoptosis of rat C6 glioma cells. We found dihydroartemisinin (5-25 microM) inhibited the growth and induced apoptosis of C6 cells in a concentration- and time-dependent manner; however, it was much less toxic to rat primary astrocytes. Dihydroartemisinin (5-25 microM) also increased the generation of reactive oxygen species in C6 cells. These effects of dihydroartemisinin were enhanced by ferrous ions (12.5-100 microM) and reduced by the iron chelator deferoxamine (25-200 microM). Immunoblotting analysis revealed that dihydroartemisinin (5-25 microM) significantly reduced hypoxia- and deferoxamine-induced expression of hypoxia inducible factor-1alpha and its target gene protein, vascular endothelial growth factor, in C6 cells. The results showed that dihydroartemisinin exerts a selective cytotoxic effect on C6 cells by increasing the reactive oxygen species and inhibiting hypoxia inducible factor-1alpha activation.  相似文献   

8.
Im JY  Kim D  Lee KW  Kim JB  Lee JK  Kim DS  Lee YI  Ha KS  Joe CO  Han PL 《Molecular pharmacology》2004,66(3):368-376
The pretreatment of cultured cortical neurons with neurotrophic factors markedly potentiates the cytotoxicity induced by low concentrations of Zn(2+) or excitotoxins. In the current study, we investigated the mechanism underlying the insulin-like growth factor-I (IGF-I)-induced Zn(2+) toxicity potentiation. The pretreatment of primary cortical cultures for more than 12 h with 100 ng/ml of IGF-I increased the cytotoxicity induced by 80 microM Zn(2+) by more than 2-fold. The IGF-I-enhanced cell death was blocked by the COX-2-specific inhibitors N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398; 10-100 microM) and 1-[(4-methylsulfonyl)phenyl]-3-trifluoro-methyl-5-[(4-fluoro)phenyl]pyrazole (SC58125; 10 microM) and by the antioxidant trolox (30 microM). In addition, it was observed that COX-2 expression was increased 12 to 24 h after IGF-I treatment. Preincubation of cortical cultures with IGF-I increased arachidonic acid (AA)-induced cytotoxicity, and AA increased Zn(2+) toxicity, which suggested the involvement of COX activity in these cellular responses. Moreover, enhanced COX-2 activity led to a decrease in the cell's reducing power, as indicated by a gradual depletion of intracellular GSH. Cortical neurons pretreated with IGF-I and then Zn(2+) showed consistently enhanced reactive oxygen species production, which was repressed by NS-398 and SC58125. Cortical neurons treated with Zn(2+) and then AA displayed the increased ROS production, which was also suppressed by NS-398 and SC58125. These results suggest that COX-2 is an endogenous factor responsible for the IGF-I-induced potentiation of Zn(2+) toxicity and that enhanced COX-2 activity leads to a decrease in the cell's reducing power and an increase in ROS accumulation in primary cortical cultures.  相似文献   

9.
Intracellular levels of glutathione have been shown to affect the sensitivity of cells to cell death-inducing stimuli, as well as the mode of cell death. We found in five human colorectal cancer cell lines (HT-29, LS-180, LOVO, SW837, and SW1116) that GSH depletion by L-buthionine-[S,R]-sulfoximine (BSO) below 20% of control values increased L-phenylalanine mustard (L-PAM; Melphalan) cytotoxicity 2- to 3-fold. Effects on kinetics of both cell cycle progression and cell death were further investigated in the HT-29 cell line. BSO treatment alone had no effect on cell cycle kinetics, but did enhance the inhibition of S phase progression as induced by L-PAM; at high concentration of of L-PAM, BSO pretreatment resulted in blockage in all phases of the cell cycle. Yet, BSO pretreatment did not affect the intracellular L-PAM content. L-PAM induced apoptosis in both normal and GSH-depleted cells. A combination of annexin V labeling and propidium iodide staining revealed that even the higher concentration of L-PAM (420 microM) did not induce apoptosis until 48 hr after treatment, but that induction of cell death was markedly accelerated as a result of GSH depletion: 48 hours after L-PAM (420 microM) treatment, GSH-depleted cells showed a 4-fold increase in DNA fragmentation and a 7-fold increase in the fraction of apoptotic (annexin V-positive) cells as compared to cells with normal GSH levels. Various antioxidant treatment modalities could not prevent this potentiating effect of GSH depletion on L-PAM cytotoxicity, suggesting that reactive oxygen species do not play a role. These data show that after BSO treatment the mode of L-PAM-induced cell death does not necessarily switch from apoptosis to necrosis.  相似文献   

10.
Weiller M  Latta M  Kresse M  Lucas R  Wendel A 《Toxicology》2004,201(1-3):21-30
The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.  相似文献   

11.
tert-Butylhydroperoxide has been reported to inhibit growth and induce apoptosis in number of cell types, but little is known about the molecular mechanism mediating these effects. In the present study, we determined the molecular pathways that lead to apoptosis after treatment of cells with t-BOOH. The cells were exposed to different concentrations of t-BOOH (100-750 microM) for 1-4 h and various parameters such as cytotoxicity, ROS (reactive oxygen species) generation, MMP (mitochondrial membrane potential), intracellular Ca++ levels and expression of various proteins involved in apoptosis were determined. Exposure of U-937 cells to t-BOOH induced cytotoxicity in a time dependent manner with about 50% toxicity at 400 microM t-BOOH in 4h. t-BOOH treatment resulted in a time dependent increase in reactive oxygen species levels, Ca++ influx and annexin V positive cells. There was a significant fall in MMP following exposure to t-BOOH with time. t-BOOH treatment of U-937 cells leads to apoptosis, which is accompanied by activation of caspase-3. The caspase-3 inhibitor (Ac-DEVD-CHO) inhibits the cytotoxicity induced by t-BOOH, indicating a direct link between caspase-3 activation and cell death. This activation of apoptosis is accompanied by release of cytochrome c, down regulation of anti-apoptotic protein Bcl-2 levels with concurrent increase in pro-apoptotic proteins Bax and Bad levels. These observations indicate that t-BOOH induces cell death in U-937 macrophages by apoptosis, which is mediated through mitochondrial pathway.  相似文献   

12.
目的 探讨大鼠原代神经细胞培养体系放射性损伤敏感性与ROS含量关系以及依达拉奉的保护作用。方法 X射线单次照射来源于大鼠海马的原代神经元,星形胶质细胞以及星形胶质细胞-神经元共培养体系,对比评价正常培养或依达拉奉干预与否条件下细胞死亡、凋亡以及活性氧(ROS)含量变化。结果 X射线照射引起原代神经元培养体系ROS含量及细胞死亡率明显升高。共培养体系细胞损伤较轻,星形胶质细胞培养体系则无明显损伤。依达拉奉通过清除ROS可以阻止细胞死亡。结论 放射损伤后原代神经元培养体系ROS含量明显增高,导致神经元凋亡失调。依达拉奉通过清除ROS逆转这一病理过程而产生神经元保护作用,值得临床推广。  相似文献   

13.
Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 microM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (>52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 microM. Short-term exposure to sanguinarine (>0.5 microM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 microM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 microM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death.  相似文献   

14.
Selective induction of cell death is a means to remove unwanted cell populations from a tissue or organ. Understanding the signaling events responsible for mediating cell death by cytokines, such as tumor necrosis factor-alpha (TNFalpha) are key to the development of pharmacologic inducers of this response. Ceramide has been implicated as a secondary messenger for TNFalpha-induced cell death, but many of the intracellular effects of ceramide are not fully understood. Recent reports suggest that ceramide signaling may involve oxidative stress. To explore the relationship between TNF sensitivity and ceramide signaling, two genetic variants of mouse JB6 RT101 epidermal tumor cells, one resistant and one sensitive to TNFalpha-induced cytotoxicity, were treated with C2-ceramide. Treatment with 20 microM ceramide induced apoptosis and this was quickly followed by oncotic necrosis in the TNFalpha-sensitive JB6 (TNFs) cells. The same concentration of ceramide induced apoptosis, but not oncotic necrosis of the TNFalpha resistant JB6 (TNFr) cells. The basal level of glutathione was significantly higher in TNFr cells than in TNFs cells. Treatment with 20 microM ceramide decreased cellular glutathione in TNFs cells by 50%, in contrast to an insignificant decrease in the TNFr cells. A significant increase in reactive oxygen was noted in TNFs cells treated with 10 or 20 microM ceramide. Furthermore, pretreatment with the antioxidant N-acetylcysteine or with glutathione monoethylester delayed the onset of ceramide-induced oncotic necrosis, but did not inhibit apoptosis. Our results suggest that the severity of the decrease in glutathione appears to determine whether cells undergo just apoptosis or also oncotic necrosis. They also suggest that ceramide-induced oncotic necrosis is modulated by a decline in cellular glutathione and an elevation of reactive oxygen. These results suggest that a decrease in cellular redox potential determines susceptibility to ceramide-dependent killing pathways.  相似文献   

15.
Benzotriazole derivatives have been shown to be able to induce growth inhibition in cancer cells. In the present study, we synthesized bioactive compound, 3-(1H-benzo [d] [1,2,3] triazol-1-yl)-1-(4-methoxyphenyl)-1-oxopropan-2-yl benzoate (BmOB), which is a novel benzotriazole derivative. BmOB displayed anti-proliferative effects on several human tumor cell lines. Human hepatocarcinoma BEL-7402 cell line was selected as a model to illustrate BmOB's inhibition effect and its potential mechanism, since it was the highest susceptible cell line to BmOB. It was shown that treatment with BmOB resulted in generation of reactive oxygen species, disruption of mitochondrial membrane potential (DeltaPsim), and cell death in BEL-7402 cells. BmOB induced cytotoxicity could be prevented by antioxidant vitamin C and mitochondrial permeability transition inhibitor cyclosporine A. cyclosporine A could also protect the BmOB induced collapse of DeltaPsim in BEL7402 cells, while vitamin C did not show similar effects. The results suggest that BmOB could inhibit BEL-7402 cell proliferation, and the cell death may occur through the modulation of mitochondrial functions regulated by reactive oxygen species. It appears that collapse of DeltaPsim prior to intracellular reactive oxygen species arose during the cytotoxic process in our experimental system.  相似文献   

16.
Renal failure associated with aspergillosis is caused by pathogenic fungi. Gliotoxin is a toxic epipolythiodioxopiperazine metabolite produced by the pathogens. The present study investigated the cytotoxicity and underlying mechanisms induced by gliotoxin in LLC-PK1 cells, a porcine renal proximal tubular cell line. Gliotoxin at 100 ng/ml did not show a cytotoxic effect, but unmasked a dose-dependent cell death induced by TNF-alpha. TNF-alpha-induced cell death in the presence of gliotoxin was associated with hypodiploid nuclei and activation of caspase-3-like proteases. Blockade of caspases by boc-aspartyl (OMe)-fluoromethylketone and z-DEVD.fmk inhibited TNF-alpha-induced cell death. As the concentrations of gliotoxin were increased, gliotoxin killed the cells directly in a dose-dependent manner. Further analyses of DNA fragmentation, hypodiploid nuclei, mitochondrial membrane potential, and plasma membrane integrity revealed that cell death proceeded via apoptosis. Gliotoxin-induced apoptosis was associated with dose-dependent and time-dependent activation of caspase-3-like proteases. Boc-aspartyl (OMe)-fluoromethylketone attenuated the killing effect. Gliotoxin also increased the intracellular levels of reactive oxygen species as measured by flow cytometry. N-acetylcysteine, a well-known antioxidant, completely abolished the gliotoxin-induced caspase-3-like activity, cytotoxicity, and reactive oxygen species. In conclusion, (1) gliotoxin at 100 ng/ml unmasks the ability of TNF-alpha-induced apoptosis, and the effect of TNF-alpha is mediated by caspase-3-like proteases; and (2) at higher concentrations gliotoxin itself induces cell death, which is via apoptosis and dependent on caspase-3-like activity and reactive oxygen species.  相似文献   

17.
Rotenone, an environmental toxin that inhibits mitochondrial complex I, has been used to induce experimental Parkinsonism in animals and cell cultures. We investigated the mechanism underlying rotenone-induced death of SK-N-MC neuroblastoma cells. Rotenone-induced cell death preceded intracellular accumulation of reactive oxygen species, and antioxidants failed to protect cells, indicating that oxidative stress was minimally involved in rotenone-induced death of SK-N-MC cells. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase, has been implicated in the pathogenesis of neurodegeneration. We showed that rotenone activated GSK3beta by enhancing its phosphorylation at tyrosine 216 while inhibiting phosphorylation at serine 9. Inhibitors of GSK3beta and dominant negative (kinase deficient) GSK3beta partially protected SK-N-MC cells against rotenone cytotoxicity. Rotenone also induced endoplasmic reticulum (ER) stress which was evident by an increase in phosphorylation of PERK, PKR, and eIF2alpha as well as the expression of GRP78. Rotenone had a modest effect on the expression of CHOP. An eIF2alpha siRNA significantly reduced rotenone cytotoxicity. ER stress was experimentally induced by tunicamycin and thapsigargin, but tunicamycin/thapsigargin did not activate GSK3beta in SK-N-MC cells. Down-regulation of eIF2alpha also offered partial protection against rotenone cytotoxicity. Combined treatment of GSK3beta inhibitors and eIF2alpha siRNA provided much greater protection than either treatment alone. Taken together, the results suggest that GSK3beta activation and ER stress contribute separately to rotenone cytotoxicity.  相似文献   

18.
Neuronal response to radical stress   总被引:1,自引:0,他引:1  
Glutamate and reactive oxygen species including nitric oxide (NO) and superoxide anion (O2.-) have been postulated to play pivotal roles in the pathogenesis of the neuronal cell loss that is associated with several neurological disease states including Parkinson's disease and amyotrophic lateral sclerosis. In mesencephalic cultures, nondopaminergic neurons but not dopaminergic neurons are susceptible to NO cytotoxicity, although both types of neurons are damaged by glutamate. Methylphenylpyridium ion (MPP+) selectively enhances glutamate and NO cytotoxicity against dopaminergic neurons of mesencephalic cultures. It is suggested that glutathione plays an important role in the expression of NO-mediated glutamate cytotoxicity in dopaminergic neurons. In cultured spinal neurons, glutamate coadministered with the glutamate transporter inhibitor selectively damages motor neurons. Motor neurons are injured by NO, whereas nonmotor neurons are protected by NO through the guanylyl cyclase-cGMP cascade. It is suggested that selective motor neuronal death caused by chronic low-level exposure to glutamate is mediated by the formation of NO in nonmotor neurons. It is possible that neurotoxicity induced by NO and O2.- associated with neurodegenerative disorders is regulated by intracellular defense systems such as glutathione and cGMP.  相似文献   

19.
Flupirtine is an analgesic drug thought to have NMDA receptor antagonistic and antiapoptotic effects. We investigated the effects of Ethyl-2-amino-6-(4-(4-fluorbenzyl)amino)-pyridine-3-carbamamic+ ++ acid, maleate (flupirtine) and the related compound N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid, ethyl ester) (retigabine) (Desaza-flupirtine) on the toxicity of L-glutamate and L-3,4-dihydroxyphenylalanine (L-DOPA) in rat pheochromocytoma PC 12 cells in vitro. Both drugs (10 microM) markedly decreased nonreceptor-mediated necrotic cell death in PC 12 cultures treated with L-glutamate (10 mM) for 72 h. In contrast, apoptosis induced by L-DOPA (250 microM) after 48 h was not affected by either substance. While L-DOPA elicited massive generation of reactive oxygen intermediates, L-glutamate-induced cell death was accompanied by only slightly increased levels of reactive oxygen intermediates. Flupirtine and retigabine exerted anti-oxidative effects in PC 12 cultures independent of their ability to prevent cell death. Further examination of the protective action of flupirtine and retigabine against L-glutamate toxicity showed that it had no influence on monoamine oxidase (monoamine: oxygen oxidoreductase (deaminating), EC 1.4.3.4., MAO) activity. Thus, flupirtine and retigabine provided protection against cystine deprivation and L-glutamate toxicity but did not protect against L-glutamate under cystine-free conditions indicating that both compounds are sufficiently effective to compensate the oxidative stress elicited by cystine deprivation but not excessive activity of monoamine oxidase after L-glutamate treatment.  相似文献   

20.
The cytotoxic effects of phenyl-hydroquinone (PHQ) and some other hydroquinones on freshly isolated rat hepatocytes were investigated. Addition of PHQ (0.5 or 0.75 mM) to the hepatocytes elicited dose-dependent cell death accompanied by losses of intracellular glutathione (GSH), protein thiols and ATP. These effects were related to both PHQ loss and phenyl-benzoquinone (PBQ) formation in the cell suspension. The cytotoxicity of PHQ was prevented by sulphydryl compounds such as cysteine and GSH. In Krebs-Henseleit buffer without cells, loss of PHQ (0.5 mM; initial concentration) and formation of PBQ, monitored by spectral measurements, were inhibited by addition of 50 microM GSH. Further, the oxygen consumption owing to autoxidation of PHQ (0.5 mM) in Krebs-Henseleit buffer without cells was depressed by addition of 50 microM GSH. Among all the hydroquinones tested (at 0.5 mM), tert-butyl-hydroquinone and PHQ were most toxic, followed by hydroquinone and 2,5-di(tert-butyl)-1,4-benzohydroquinone. However, accumulation of cellular malondialdehyde was not affected by these hydroquinones. The toxicity was related to the rate of oxygen consumption by each hydroquinone in the buffer. These results suggest that hydroquinone-induced cytotoxicity is dependent on the rate of oxidation of these compounds as well as the loss of protein thiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号