首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophic support is generally believed to result from a direct action of growth factors on developing neurons. However, there is increasing evidence that growth factors can indirectly affect neuronal development by glial-mediated processes. To investigate a possible role of glia in mediating neurotrophic effects on dopaminergic neurons, four purified growth factors were screened for dual effects on the survival and differentiation of dopaminergic neurons and on the proliferation of mesencephalic glial cells in vitro. Dissociated embryonic day 14.5 rat mesencephalon was grown at low cell density without serum, conditions under which both glial growth and neuronal survival are not optimal. Treatment of these cultures with acidic fibroblast growth factor (aFGF) or basic fibroblast growth factor (bFGF) increased the number of surviving tyrosine hydroxylase-immunoreactive (TH-IR) neurons by 90-110% [corrected] at 8 d in vitro in a dose-dependent manner. The effects of these factors were not additive. High-affinity dopamine uptake was increased by bFGF, but not by aFGF. Length of TH-IR neurites was not affected by either aFGF or bFGF. Both growth factors induced proliferation of mesencephalic astrocytes as demonstrated by autoradiographic labeling with 3H-thymidine combined with immunocytochemistry for glial fibrillary acidic protein (GFAP). In contrast, platelet-derived growth factor (PDGF) and interleukin-1 had no effect on the survival or differentiation of dopaminergic neurons or the proliferation of mesencephalic astrocytes. Inhibition of glial proliferation abolished the neurotrophic effects exerted by aFGF or bFGF on dopaminergic neurons. Moreover, conditioned medium derived from mesencephalic glial cultures replated in the virtual absence of neurons also contained neurotrophic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Numerous purified growth factors as well as yet-unidentified neurotrophic activities within mesencephalic glia support the survival of dopaminergic neurons. To further characterize the functional role of these multiple growth factor influences in dopaminergic cell development, various purified growth factors as well as mesencephalic glial-conditioned medium (CM) were screened for effects on dopaminergic cell survival and glial numbers in serum-free low density cultures of the dissociated embryonic day (E) 15 and E17 rat mesencephalon. In E15 mesencephalic cultures, dopaminergic cell survival increased with brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), transforming growth factor α (TGFα), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-BB (PDGF-BB), and interleukin-6 (IL-6). bFGF, TGFα, PDGF, and IL-6 also stimulated glial proliferation as demonstrated by autoradiographic labeling for 3H-thymidine. Moreover, CM derived from the mesencephalic glial cell line Mes42 completely prevented the death of E15 dopaminergic neurons within the initial days of cultivation. In E17 mesencephalic cultures, survival-promoting effects on dopaminergic neurons were present with BDNF, GDNF, and bFGF. TGFα, IGF-1, PDGF-BB, and IL-6 stimulated glial proliferation but did not affect dopaminergic cell survival. Similarly, mesencephalic glial-CM completely failed to support the survival of E17 dopaminergic neurons. These observations demonstrate that during embryonic development, dopaminergic cell survival sequentially depends on distinct sets of growth factors. The concomitant loss of sensitivity of developing dopaminergic neurons for mesencephalic glial-CM as well as TGFα, IGF-1, PDGF-BB, and IL-6 further provides evidence that these growth factors indirectly affect early dopaminergic neurons through glial-mediated processes and suggests a crucial role of glia during the initial stages of neuronal development. J. Neurosci. Res. 51:508–516, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Our previous studies have shown that primary mesencephalic glia secrete factors that promote dopaminergic cell survival and differentiation in vitro. To obtain enough starting material to identify the neurotrophic activity, embryonic day (E)14.5 rat mesencephalic glia were stimulated with acidic fibroblast growth factor to increase number of cells. These cells were replated in the absence of neurons and immortalized by transfection with the SV 40 large T-antigen. Clonal cell lines were established and characterized for immunoreactivity (IR) to various glial and non-glial markers. Media conditioned by these cell lines were tested for survival-promoting effects on dopaminergic neurons in serum-free cultures of the dissociated E14.5 rat mesencephalon. All cell lines expressed IR for the astrocytic marker, GFAP, the oligodendroglial marker, CNP, and for A2B5, a marker for O-2A progenitor cells, but were negative for the neuronal marker, microtubule associated protein-2, and the fibroblast marker, fibronectin. Moreover, treatment of serum-free cultures of the dissociated E14.5 mesencephalon with glial cell line-conditioned medium (CM) delayed dopaminergic cell death in a dose-dependent manner, resulting in a maximal twofold to sixfold increase in the number of surviving tyrosine hydroxylase-IR neurons at various days in vitro. This increase in dopaminergic cell survival was not mimicked by GDNF, BDNF or NT-3 within the initial 3 days of cultivation. Moreover, initial biochemical characterization demonstrated that the neurotrophic activity is restricted to the high MW fraction of >50 kD of glial cell line-CM. Since the apparent MW of this factor exceeds the size of most known growth factors, it may represent a novel dopaminergic neurotrophic factor. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Apomorphine, the catechol-derived dopamine D1/D2 receptor agonist, is currently in use as an antiparkinsonian drug. It has previously been reported that apomorphine was able to elicit expression of the enzyme tyrosine hydroxylase, a marker for DA neurons, in the fetal rat cerebrocortical cultures whilst in the presence of brain-derived neurotrophic factor. The present study demonstrated that treatment of fetal rat ventral mesencephalic cultures with apomorphine caused a marked increase in the number of dopaminergic neurons. The action of apomorphine can be mimicked by dopamine receptor (D1 and D2) agonists or blocked by preincubation with D1/D2 receptor antagonists. Incubation of recipient mesencephalic cultures with the conditioned medium derived from apomorphine-stimulated donor mesencephalic cultures elicited a 3.72-fold increase in the number of TH-positive neurons. Increased mRNA expression levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were also found in the apomorphine-treated mesencephalic cells along with concomitant protein expression increases in the conditioned medium. Moreover, the trophic activity observed could be partially neutralized by antibodies against either brain-derived neurotrophic factor or glial cell line-derived neurotrophic factor. Cultured fetal striatal cells, but not hippocampal cells, also responded to apomorphine treatment. The membrane filtration studies revealed that both <30 kDa and >50 kDa fractions contained trophic activities. The latter characterization distinguishes them from most known neurotrophic factors. These results suggest that the apomorphine-modulated development of dopaminergic neurons may be mediated by activation of the dopamine receptor subtypes D1 and D2 thereby increasing the production of multiple growth factors.  相似文献   

5.
Clinical improvements in Parkinson's disease produced by dopamine D3 receptor-preferring agonists have been related to their neuroprotective actions and, more recently, to their neuroregenerative properties. However, it is unclear whether dopamine agonists produce their neurotrophic effects by acting directly on receptors expressed by the mesencephalic dopaminergic neurons or indirectly on receptors expressed by astrocytes, via release of neurotrophic factors. In this study, we investigated the effects of the dopamine D3 receptor-preferring agonists quinpirole and 7-hydroxy-N,N-di-propyl-2-aminotetralin (7-OH-DPAT), as well as of the indirect agonist amphetamine, on dopaminergic neurons identified by tyrosine hydroxylase immunoreactivity (TH-IR). Experiments were performed on neuronal-enriched primary cultures containing less than 0.5% of astrocytes prepared from the mouse embryo mesencephalon. After 3 days of incubation, both quinpirole (1-10 microm) and 7-OH-DPAT (5-500 nm) dose-dependently increased the maximal dendrite length (P < 0.001), number of primary dendrites (P < 0.01) and [3H]dopamine uptake (P < 0.01) of TH-IR-positive mesencephalic neurons. Similar effects were observed with 10 microm amphetamine. All neurotrophic effects were blocked by the unselective D2/D3 receptor antagonist sulpiride (5 microm) and by the selective D3 receptor antagonist SB-277011-A at a low dose (50 nm). Quinpirole and 7-OH-DPAT also increased the phosphorylation of extracellular signal-regulated kinase (ERK) within minutes, an effect blocked by pretreatment with SB-277011-A. Inhibition of the D2/D3 receptor signalling pathway to ERK was obtained with PD98059, GF109203 or LY294002, resulting in blockade of neurotrophic effects. These data suggest that dopamine agonists increase dendritic arborizations of mesencephalic dopaminergic neurons via a direct effect on D2/D3 receptors, preferentially involving D3 receptor-dependent neurotransmission.  相似文献   

6.
The effect of hypoxia on immature and mature mesencephalic neurons was studied in in vitro rat cerebral cell cultures on different days. In immature cultures (6-8 days in vitro), exposure to 24 h of hypoxia (10-20 mm Hg pO(2) in the culture medium) did not change the number of neuron-specific enolase (NSE)-immunoreactive (IR) (NSE-IR) neurons but increased the number of tyrosine hydroxylase (TH)-IR (TH-IR) cells, which might be attributed to transient induction of TH. In mature cultures (13-15 days in vitro), 16 h of hypoxia induced a considerable loss of both NSE- and TH-IR cells. A decrease in the number of TH-IR cells 6 and 24 h after hypoxia was more pronounced than that of NSE-IR cells; however, their numbers equalized 48 h after hypoxia, suggesting similar hypoxic vulnerability of dopaminergic and nondopaminergic neurons in mature mesencephalic cultures. In immature cultures, hypoxia slightly stimulated both apoptosis and necrosis, while in mature cultures, it dramatically increased the number of solely necrotic cells.  相似文献   

7.
C Rosenblad  D Kirik  A Bj?rklund 《Neuroreport》1999,10(8):1783-1787
We investigated here the effect of the novel glial cell line-derived neurotrophic factor (GDNF)-family member neurturin (NTN) on transplanted fetal dopamine (DA) neurons. Three groups of rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA system received intrastriatal grafts of embryonic ventral mesencephalic tissue. Following transplantation animals received repeated injections of vehicle or NTN (0.3 microg or 3.0 microg) over three weeks posttransplantation. NTN-treated animals had significantly (1.8-fold) more tyrosine hydroxylase-immunoreactive (TH-IR) neurons. Graft volume, TH-IR cell volume and overall dopaminergic host reinnervation remained unchanged. Amphetamine-induced rotation was rapidly compensated in all grafted rats. We conclude that administration of NTN may be a powerful way to increase survival of transplanted fetal DA neurons.  相似文献   

8.
We have studied the stability of the dopaminergic phenotype in a conditionally immortalized human mesencephalic cell line, MESC2.10. Even though MESC2.10 cells exhibit features of dopaminergic neurons in vitro, none of the cells expressed tyrosine hydroxylase (TH) after transplantation into a rat model of Parkinson's disease. We examined whether this is caused by cell death or loss of transmitter phenotype. Cells were cultured in differentiation medium, then harvested and replated into the same medium where they continued to express TH, whereas replated cells fed medium lacking differentiation factors (dibutyryl cAMP and glial cell line-derived neurotrophic factor) did not. Interestingly, cultures grown in the absence of differentiation factors could regain TH expression once exposed to differentiation medium. Our data suggest that TH expression in vitro is inducible in neurons derived from the MESC2.10 cell line and that the dopaminergic phenotype of these cells in vivo might be unstable.  相似文献   

9.
To study the selectivity of neurotrophic actions in the brain, we analyzed the actions of several known growth factors on septal cholinergic, pontine cholinergic, and mesencephalic dopaminergic neurons in culture. Similar to nerve growth factor (NGF), basic fibroblast growth factor (bFGF) stimulated choline acetyltransferase activity in septal cultures. In contrast to NGF, bFGF also enhanced dopamine uptake in mesencephalic cultures and stimulated cell proliferation in all 3 culture types. Insulin and the insulin-like growth factors I and II stimulated transmitter-specific differentiation and cell proliferation in all culture types. Epidermal growth factor (EGF) produced a small increase in dopamine uptake by mesencephalic cells and stimulated cell proliferation in all culture types. In septal cultures, bFGF was most effective when given at early culture times, NGF at later times. The stimulatory actions of bFGF and insulin did not require the presence of glial cells and were not mediated by NGF. In mesencephalic cultures, the stimulation of dopamine uptake by bFGF and EGF was dependent on glial proliferation. The results suggest different degrees of selectivity of the neurotrophic molecules. NGF and, very similarly, bFGF seem to influence septal cholinergic neurons directly and rather selectively, whereas the neurotrophic actions of insulin and the insulin-like growth factors appear to be more general.  相似文献   

10.
Sexual differentiation of dopaminergic neurons was studied in gender-specific cultures. Dissociated cell cultures were prepared from di- or mesencephalon of gestational day 14 rat embryos and raised in the absence or presence of 17 beta-estradiol or testosterone for up to 13 days in vitro (DIV). Developmental profiles of levels of dopamine (DA) and metabolites as well as capacity for vesicular storage of the transmitter were determined by HPLC. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted. Higher levels of DA were measured in female than in male cultures of both brain regions. In mesencephalic cultures, the differences in DA levels were fully accounted for by sex differences in numbers of TH-IR cells, whereas no sex differences in cell numbers were found in diencephalic cultures. Dihydroxyphenylacetic acid (DOPAC) levels and vesicular storage capacity matured faster in mesencephalic than in diencephalic cultures, but no sex differences were observed. Homovanillic acid (HVA) could not be detected except in 13-DIV mesencephalic cultures. Hormonal treatment did not erase sexual differentiation of dopaminergic neurons. Irrespective of the gender, however, both steroids decreased DA and DOPAC contents in diencephalic cultures but not in mesencephalic cultures. It is proposed that sexual differentiation of dopaminergic systems proceeds in a region-specific fashion and that neurogenesis and development of various parameters of dopaminergic activity may be differentially affected. Sexual differentiation of dopaminergic neurons may be initiated independently of the action of gonadal steroid hormones and may subsequently be modified by differences in hormonal environment.  相似文献   

11.
Extracts from skeletal muscle cell cultures have been shown to increase levels of the enzyme tyrosine hydroxylase (TH) and promote survival of different types of developing neurons in vitro. To determine the effect of muscle cell co-grafts on the survival of dopamine neurons in a rat model of Parkinson's disease, we transplanted an embryonic day (ED)-15 rat mesencephalic cell suspension alone or with neonatal muscle cells into 6-hydroxydopamine (6-OHDA) denervated rat striatum. In parallel experiments conducted in vitro, we cultured ED-15 rat mesencephalon or rat striatum in conditioned medium from neonatal rat muscle cultures (MC-CM). Our results showed that: (A) in vitro, MC-CM increased the number of TH-immunoreactive (TH-IR) neurons in embryonic mesencephalic cultures but did not induce expression of TH in embryonic striatal cultures; (B) in vivo, animals with co-grafts of muscle cells and ED-15 mesencephalon had more TH-IR in the grafted striatum compared to animals that received mesencephalic cells grafts alone, although the graft-induced reversal of circling behavior in response to methamphetamine was the same in both transplanted groups; and (C) grafts of muscle cells alone did not induce TH-IR in the denervated striatum and did not reduce methamphetamine-induced circling. These findings suggest that in vivo, neonatal muscle cells secrete factors that promote survival and/or outgrowth of fetal midbrain dopamine cells and improve the levels of TH-IR in grafted striatum.  相似文献   

12.
Cell cultures for Parkinson's disease research have the advantage of virtually unlimited access, they allow rapid screening for disease pathogenesis and drug candidates, and they restrict the necessary number of animal experiments. Limitations of cell cultures, include that the survival of neurons is dependent upon the culture conditions; that the cells do not develop their natural neuronal networks. In most cases, neurons are deprived from the physiological afferent and efferent connections. In Parkinson's disease research, mesencephalic slice cultures, primary immature dopaminergic neurons and immortalized cell lines--either in a proliferating state or in a differentiated state--are used. Neuronal cultures may be plated in the presence or absence of glial cells and serum. These different culture conditions as well as the selection of outcome parameters (morphological evaluation, viability assays, biochemical assays, metabolic assays) have a strong influence on the results of the experiments and the conclusions drawn from them. A primary example is the question of whether L-Dopa is toxic to dopaminergic neurons or whether it provides neurotrophic effects: In pure, neuronal-like cultures, L-Dopa provides toxicity, whereas in the presence of glial cells, it provides trophic effects when applied. The multitude of factors that influence the data generated from cell culture experiments indicates that in order to obtain clear-cut and unambiguous results, investigators need to choose their model carefully and are encouraged to verify their main results with different models.  相似文献   

13.
Several peptide growth factors can maintain survival or promote recovery of injured central neurons. In the present study, the effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on the toxicity produced by the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), were investigated in rat mesencephalic dopaminergic neurons in culture. High affinity [3H]DA uptake and morphometric analyses of tyrosine hydroxylase immunostained neurons were used to assess the extent of MPP+ toxicity, dopaminergic neuronal survival and growth of neurites. Consistent with previous reports, EGF and bFGF treatments stimulated neuritic outgrowth in dopaminergic neurons, increased DA uptake and enhanced their long-term survival in vitro. These growth factors also stimulated proliferation of astrocytes. The time course of EGF and bFGF effects on dopaminergic neurons coincided with the increase in glial cell density, suggesting that proliferation of glia mediates their trophic effects. Several findings from our study support this possibility. When MPP+ was applied to cultures at 4 days in vitro, before glial cells had proliferated, the damage to dopaminergic neurons was not affected by EGF or bFGF pretreatments. However, when cultures maintained in the presence of the growth factors for 10 days were exposed to MPP+, after they had become confluent with dividing glial cells, the MPP(+)-induced decreases in DA uptake and cell survival were significantly attenuated. Furthermore, when glial cell proliferation was inhibited by 5-fluoro-2'-deoxyuridine, the protective effects of EGF and bFGF against MPP+ toxicity were abolished. Continuous treatment of MPP(+)-exposed cultures with EGF or bFGF resulted in the stimulation of process regrowth of damaged dopaminergic neurons with concomitant recovery of DA uptake, suggesting that the injured neurons are able to respond to the trophic effects of EGF and bFGF. In summary, our study shows that the trophic effects of EGF and bFGF on mesencephalic dopaminergic neurons include protection from the toxicity produced by MPP+ and promotion of recovery of MPP(+)-damaged neurons. Stimulation of glial cell proliferation is necessary for these effects.  相似文献   

14.
Parkinson's disease is characterized by the progressive degeneration of midbrain dopaminergic neurons. Several studies have examined the effects of the dopaminergic neurotrophins growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) on these neurons in vitro. However, there is little information regarding their effects on astroglial cells. Here, the effects of GDF5 and GDNF on dopaminergic neuronal and astroglial survival and differentiation in embryonic rat midbrain cultures were examined. Both GDF5 and GDNF enhanced the survival and differentiation of dopaminergic neurons. GDF5 significantly increased the survival of astroglial cells, whereas GDNF had no significant effect on these cells. The possible involvement of astroglia in the dopaminergic neurotrophic effect induced by GDF5 was investigated by examining the effect of GDF5 on the survival of dopaminergic neurons in glia-depleted midbrain cultures. There was no significant difference between the survival of dopaminergic neurons in glia-depleted cultures treated with GDF5 and that in mixed cell cultures treated with GDF5, suggesting that GDF5 acts directly on dopaminergic neurons in exerting its neurotrophic effect. GDF5 and GDNF have been established as potent neurotrophic factors for dopaminergic neurons. However, the effects of adding a combination of these neurotrophins to midbrain cultures have not been previously examined. The present study found that combined treatment with GDF5 and GDNF significantly increased the survival of dopaminergic neurons in cultures compared with that in cultures treated with either neurotrophin alone. This was an additive effect, indicating that these neurotrophins act on separate subpopulations of dopaminergic neurons.  相似文献   

15.
Growth/differentiation factor 5 is a member of the transforming growth factor β superfamily, which has neurotrophic and neuroprotective effects on dopaminergic neurons both in vitro and in vivo. Here we investigate the effects of growth/differentiation factor 5 on foetal mesencephalic grafts transplanted into a rat model of Parkinson's disease, and compare them with those of glial cell line-derived neurotrophic factor. Mesencephalic tissue was suspended in solutions containing either growth/differentiation factor 5 or glial cell line-derived neurotrophic factor prior to transplantation into the left striatum of rats with 6-hydroxydopamine lesions of the left medial forebrain bundle. Both proteins enhanced graft-induced compensation of amphetamine-stimulated rotations. Positron emission tomography studies showed that both neurotrophins increased graft-induced recovery of striatal binding of [11C]RTI-121, a marker for dopaminergic nerve terminals. Post mortem analysis at 8 weeks after transplantation showed that both neurotrophins significantly increased the survival of grafted dopaminergic neurons. This study shows that growth/differentiation factor 5 is at least as effective as glial cell line-derived neurotrophic factor in enhancing the survival and functional activity of mesencephalic grafts, and thus is an important candidate for use in the treatment of Parkinson's disease.  相似文献   

16.
Neurturin (NRTN), artemin (ARTN), persephin (PSPN) and glial cell line-derived neurotrophic factor (GDNF) form a group of neurotrophic factors, also known as the GDNF family ligands (GFLs). They signal through a receptor complex composed of a high-affinity ligand binding subunit, postulated ligand specific, and a common membrane-bound tyrosine kinase RET. Recently, also NCAM has been identified as an alternative signaling receptor. GFLs have been reported to promote survival of cultured dopaminergic neurons. In addition, GDNF treatments have been shown to increase morphological differentiation of tyrosine hydroxylase immunoreactive (TH-ir) neurons. The present comparative study investigated the dose-dependent effects of GFLs on survival and morphological differentiation of TH-ir neurons in primary cultures of E14 rat ventral mesencephalon. Both NRTN and ARTN chronically administered for 5 days significantly increased survival and morphological differentiation of TH-ir cells at all doses investigated [0.1–100 ng/ml], whereas PSPN was found to be slightly less potent with effects on TH-ir cell numbers and morphology at 1.6–100 ng/ml and 6.3–100 ng/ml, respectively. In conclusion, our findings identify NRTN, ARTN and PSPN as potent neurotrophic factors that may play an important role in the structural development and plasticity of ventral mesencephalic dopaminergic neurons.  相似文献   

17.
We have developed a novel Schwann cell line, SCTM41, derived from postnatal sciatic nerve cultures and have stably transfected a clone with a rat glial cell line-derived neurotrophic factor (GDNF) construct. Coculture with this GDNF-secreting clone enhances in vitro survival and fiber growth of embryonic dopaminergic neurons. In the rat unilateral 6-OHDA lesion model of Parkinson's disease, we have therefore made cografts of these cells with embryonic day 14 ventral mesencephalic grafts and assayed for effects on dopaminergic cell survival and process outgrowth. We show that cografts of GDNF-secreting Schwann cell lines improve the survival of intrastriatal embryonic dopaminergic neuronal grafts and improve neurite outgrowth into the host neuropil but have no additional effect on amphetamine-induced rotation. We next looked to see whether bridge grafts of GDNF-secreting SCTM41 cells would promote the growth of axons to their striatal targets from dopaminergic neurons implanted orthotopically into the 6-OHDA-lesioned substantia nigra. We show that such bridge grafts increase the survival of implanted embryonic dopaminergic neurons and promote the growth of axons through the grafts to the striatum.  相似文献   

18.
Lee DY  Oh YJ  Jin BK 《Glia》2005,51(2):98-110
This study evaluated the role of thrombin-activated microglia in the neurodegeneration of mesencephalic cultures. Immunocytochemical and biochemical evidence indicated that in co-cultures consisting of rat cortical microglia and mesencephalic neurons, thrombin led to nonselective loss of mesencephalic neurons. Accompanying neurodegeneration, microglial activation was obvious, evidenced by expression of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-1beta, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) and by increasing production of TNF-alpha and nitric oxide (NO). In mesencephalic neurons treated with conditioned media (CM) taken from thrombin-activated microglia, the number of dopaminergic neurons was significantly attenuated. The neurotoxicity of the CM was diminished when it was derived from microglia co-treated with thrombin and either an extracellular signal-regulated kinase 1/2 (ERK1/2) pathway inhibitor (PD98059) or a p38-mitogen-activated protein kinase (p38-MAPK) inhibitor (SB203580). Moreover, jun N-terminal kinase (JNK) and p38-MAPK were activated in mesencephalic neurons treated with CM of thrombin-activated microglia. Inhibition of JNK and p38-MAPK rescued the dopaminergic neurons. Collectively, these results indicate that thrombin-activated microglia induce neurodegeneration in cultured mesencephalic neurons and that the MAPKs actively participate in both microglial activation and neurodegeneration. The present data carefully suggest that microglial activation triggered by thrombin may be involved in the neuropathological processes of dopaminergic neuronal cell death that occur in Parkinson's disease.  相似文献   

19.
This study examines the effects of high K+concentration on the growth and development of mesencephalic cells and their glutamate vulnerability. Mesencephalic cell cultures obtained from Wistar rat embryos on the 14th gestational day were maintained for 14 days in medium with either normal (4.2 mM) or elevated (24.2 mM) potassium concentration. There was no significant difference due to various K+concentration in cell growth and survival up to dayin vitro(DIV) 13–15. In order to test the glutamate (Glu) vulnerability, cultures were treated with 100 μMGlu for 15 min in salt solution on the DIV 3, 6, 8, and 13. Glu-induced neuronal damage was estimated 24 h later by measuring the neuron-specific enolase (NSE) content in the culture medium and by counting the number of tyrosine hydroxylase-immunoreactive (TH-IR) neurons. Glu had no damaging effect on the cells on DIV 3, but became pronounced beyond DIV 6. Elevated potassium concentration (24.2 mM) in the culture medium during development significantly increases neuronal vulnerability to Glu treatment, indicated by a higher increase of NSE content in the medium and by a more pronounced Glu-induced decrease of the number of TH-IR cells. The Glu-induced decrease of the number of TH-IR cells and of NSE-IR cells let us conclude that dopaminergic neurons are more vulnerable to glutamate than other neurons from mesencephalic culture.  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for mesencephalic dopaminergic neurons. Subpopulations of these neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Understanding the specific effects of GDNF on these neurons is important for the development of an optimal cell replacement therapy for Parkinson's disease. To investigate the effects of GDNF on the morphological complexity of mesencephalic tyrosine hydroxylase (TH)-immunoreactive (-ir), CB-ir, and CR-ir neurons, dissociated cultures of embryonic (E14) rat ventral mesencephalon were prepared. Chronic administration of GDNF (10 ng/ml) for 7 days promoted the survival of TH-ir and CB-ir neurons but did not alter the density of CR-ir neurons. Total fiber length/neuron and number of branching points/neuron of CB-ir and CR-ir cells were significantly increased after GDNF treatment (2x for CB-ir cells and 1.4x and 1.7x, respectively, for CR-ir cells), which resulted in a significantly larger size of neurite field/neuron (2.9x and 1.5x for CB-ir and CR-ir neurons, respectively). The number of primary neurites/neuron of CB-ir neurons was found to be 1.5x larger, while no difference could be detected for CR-ir cells. Assessment of the effects of GDNF on TH-ir neurons unveiled a similar outcome with an increased total fiber length/neuron (1.5x), an increased number of primary neurites/neuron (1.6x), and a twofold larger size of neurite field/neuron. In conclusion, our findings recognize GDNF as a neurotrophic factor that stimulates the morphological differentiation of ventral mesencephalic CB-ir and CR-ir neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号