首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dental materials》2020,36(8):e266-e278
ObjectivesDental plaque build-up on the cervical area adjacent to gingival margins is a trigger factor for secondary caries around restored root caries lesions. Dimethylaminohexadecyl methacrylate (DMAHDM) and amorphous calcium phosphate nanoparticles (NACP) impart anti-caries effect by reducing the bacterial growth and releasing high concentrations of calcium and phosphate ions, respectively. The present study explored the optimization and formulation of dental composite with increased concentration of DMAHDM combined with NACP and its effect on mechanical behavior and antibacterial response.MethodsDMAHDM was incorporated into dental composite formulation at 3% and 5% with 20% NACP fillers. Mechanical properties were assessed by flexural strength and elastic modulus. The cationic charge density of the samples was determined using fluorescein staining assay. A human saliva-derived microcosm biofilm model was used to assess antibacterial response via colony-forming units, metabolic activities, lactic acid production, and live/dead assay. Surface roughness was measured after 48 h-biofilm formation.ResultsThe viability of human saliva microcosm biofilms was DMAHDM concentration-dependent, where all the microbiological assays were substantially reduced in the presence of 5%DMAHDM. The increased DMAHDM concentration mirrors an increased surface charge density of composites by 8–12 folds and reduced the growth of cariogenic species by 2–5 log (p  0.05). Metabolic activity and lactic acid were reduced by 70–90% and 48–99%, respectively. Increasing DMAHDM concentration up to 5% and its association with NACP fillers did not adversely affect the mechanical properties.SignificanceA highly potent antibiofilm bioactive composite for root caries restorations having DMAHDM-NACP could be flexibly tailored during formulation without detrimental outcome for mechanical function. The enhanced antibacterial performance of the novel bioactive composite has great potential to suppress the dental plaque build-up that triggers secondary caries around the restored root caries lesions.  相似文献   

2.
《Dental materials》2020,36(1):68-75
ObjectiveTo evaluate the addition of dimethylaminohexadecyl methacrylate (DMAHDM) and chlorhexidine diacetate on cytotoxicity, antimicrobial activity, physical, and mechanical properties of a self-cured resin.Methods132 disk-shaped and 48 rectangular specimens were divided into four experimental groups as described: Control Group (CG – no addition), dCHX (1%), DMAHDM (5%), and DMAHDM + dCHX (5% + 1%). The biofilm viability, flexural strength (FS - ISO 20795-1:2013), surface roughness (SR), and color stability (ΔE) were analyzed after being stored for 4 weeks in distilled water and immersed for 72 h in coffee. Cytotoxicity was measured after 24 h, 3, and 7 days of elution using an MTT test on L929 cells (ISO 10993-5:2009). SR and ΔE were measured by a contact profilometer and a spectrophotometer using the CIELab parameter. Data were submitted to ANOVA and Bonferroni’s/Tukey’s tests (p  0.05).ResultsSignificant antimicrobial activity against Streptococcus mutans and Candida albicans was detected in all groups when compared to the CG (p < 0.05). Only the dCHX group, in 24 h of elution, demonstrated no cytotoxicity effects. There was a statistical difference for FS on the tested groups (p < 0.05). No differences were detected in the initial roughness’ measurements among the groups (p > 0.05). However, after storage and immersion in coffee, the groups containing DMAHDM presented with rougher surfaces and significantly lower color stability compared to the control (p < 0.05).SignificanceThe addition of dCHX and DMAHDM in self-cured resin presented antimicrobial properties; however, cytotoxicity, physical, and mechanical properties were compromised.  相似文献   

3.
ObjectivesThe main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties.MethodsScotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured.ResultsMinimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p < 0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p < 0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p < 0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength.ConclusionsA new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives.  相似文献   

4.

Objective

Investigate physical and chemical properties of model composites formulated with quaternary ammonium salt monomers (QAS) at different concentrations and alkyl chains lengths

Methods

QAS with 12 dimethylaminododecyl methacrylate (DMADDM) and 16 dimethylaminohexadecyl methacrylate (DMAHDM) chains lengths were synthesized and incorporated at 5 and 10% in model composites, resulting in four groups: G12.5 (DMADDM 5%), G12.10 (DMADDM 10%), G16.5 (DMAHDM 5%), G16.10 (DMAHDM 10%). One group was used as control group (CG 0%). Degree of conversion (DC); water sorption (WS) and solubility (SL); hygroscopic expansion (HE); degradation temperature (DT); glass transition temperature (Tg) and polymerization shrinkage (PS) were determined. Knoop hardness (KNH), flexural strength (FS) and elastic modulus (EM) were measured before and after storage Data were submitted to ANOVA and Tukey's test (p  0.05).

Results

DC ranged between 76.1 (G12.10) and 70.7 (G16.5) %; CG had the lowest WS, SL and HE. There was no statistical difference for PS and FS. KHN values ranged between 30.2 (GC) and 25 (G16.10) and after storage the performance was depended on QAS concentration and chain length. For EM, CG had the highest values before and after storage and no difference was observed in the QAS groups before storage. After storage, the results were dependent on QAS concentration (3.5-4.3 GPa).

Significance

In general, the addition of QAS increased composite’s degradation compared with the CG. In the tested QAS, the addition of DMADDM at 5% concentration resulted in a less degradable material.  相似文献   

5.
《Dental materials》2020,36(10):e316-e328
ObjectiveDentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated.MethodsDentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24 h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP + DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP + DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography.ResultsThe in vitro experiment results showed that the NACP + DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP + DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group.SignificanceThe NACP + DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP + DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.  相似文献   

6.
ObjectivesThis study evaluated the effect of fluoride and non-fluoride sealants on hardness decrease (HD) and marginal adaptation (MA) on enamel substrates after cariogenic challenge.MethodsOcclusal enamel blocks, from human third molars, were randomly divided into six groups (n = 12), according to occlusal fissures condition (S – sound; C – caries-like lesion; CF – caries-like lesion + topical fluoride) and sealants (F – FluroShield; H – Helioseal Clear Chroma). Lesion depths were 79.3 ± 33.9 and 61.3 ± 23.9 for C and CF groups, respectively. Sealants were placed on occlusal surface and stored at 100% humidity (37 °C; 24 h/d). HD was measured by cross-sectional microhardness analysis at the sealant margin distances: ?1 (under sealant), 0 (sealant margin), 1, 2 (outer sealant). Sealant MA was observed by polarized light microscopy and scored according to: 0 – failure (no sealant MA or total sealant loss); 1 – success (sealant MA present). MA and HD were analysed by ANOVA-R and mixed model analysis, respectively.ResultsFor HD (ΔS), F values (6900.5 ± 3686.6) were significantly lower than H values (8534.6 ± 5375.3) regardless of enamel substrates and sealant margin distances. Significant differences were observed among sealant margin distances: ?1 (5934.0 ± 3282.6) < 0 (8701.5 ± 6175.7) = 1 (8473.2 ± 4299.4) = 2 (7761.5 ± 4035.1), regardless of sealant and substrate. MA was similar for all groups (p  0.05).ConclusionMA was not affected by sealant type or substrate condition, whereas enamel HD was favourably impacted by fluoride in the sealant. In addition, sealants were more effective as a physical barrier than as its chemical potency in reducing enamel HD.Clinical significanceSealing with a fluoride material is a recommended procedure to prevent caries of occlusal permanent molars in high-caries-risk patients, even though those exhibiting white spot lesions, since the enamel hardness decrease when fluoride sealant was used in vitro.  相似文献   

7.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

8.
《Archives of oral biology》2014,59(12):1384-1390
ObjectiveSince some probiotic bacteria are cariogenic themselves, their suitability for caries management is questionable. Inactivated bacteria or their supernatants have been found to exert probiotic effects, whilst having several advantages compared with living bacteria. We hypothesized that viable and heat-inactivated Bifidobacterium animalis BB12 reduces the cariogenicity of Streptococcus mutans (SM) in vitro.DesignWe assessed mono- and mixed species biofilms of SM and viable or heat-inactivated BB12. Biofilms were grown in a continuous-culture-system under cariogenic conditions on smooth proximal enamel or cavitated dentine. For each of eight experimental subsets (4 biofilms × 2 hard-tissue conditions), a total of 32 specimens was used. After 10 days, bacterial numbers of 12 biofilms per group were analysed, and all specimens submitted to transversal microradiography.ResultsMineral loss was higher in cavitated dentine than smooth enamel for all biofilms (p < 0.001, t-test). BB12-monospecies biofilms induced significantly less mineral loss than SM in both enamel (p < 0.05) and dentine (p < 0.001). Viable BB12 did not significantly reduce cariogenicity of SM (p > 0.05), whilst heat-inactivated BB12 decreased cariogenicity of SM in dentinal cavities (p < 0.01). Bacterial numbers were higher on dentine than enamel (p < 0.05), but not significantly influenced by biofilm species (p > 0.05).ConclusionsHeat-inactivated BB12 reduced the cariogenicity of SM in dentinal cavities in vitro. Inactivated probiotics might be suitable for caries control.  相似文献   

9.
《Dental materials》2014,30(8):891-901
ObjectiveRecurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties.MethodsNanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4.ResultsAdding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds.SignificanceBonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit biofilms and remineralize tooth lesions thereby increasing the restoration longevity.  相似文献   

10.
《Dental materials》2014,30(12):e317-e323
Objectives10-Methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) is currently considered as one of the most effective functional monomers for dental bonding, this in part thanks to its long and relatively hydrophobic spacer chain, adequately separating the polymerizable from the phosphate functionalities. This study compared functional monomers with different spacer chains’ length and hydrophilicity to 10-MDP on their dentin and enamel bonding performance.MethodsAtomic absorption spectroscopy (AAS) was used to characterize the chemical interaction. Micro-tensile bond strength (μTBS) and fractographic analyses were performed after 24 h and one year. Confocal micro-permeability and SEM nanoleakage assessments were also undertaken. The tested functional monomers were 2-MEP (2-carbon spacer), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (high hydrophilic polyether spacer chain) and CAP-P (intermediate hydrophilic ester spacer).ResultsAAS revealed clear differences (p < 0.05) in monomer-calcium salt formation in this order: 12-MDDP = 10-MDP > CAP-P > MTEP > 2-MEP. The highest initial dentin μTBS was obtained using 10-MDP or 12-MDDP. After 1-year aging, a significant drop (p < 0.05) in μTBS was observed for the adhesives with MTEP (enamel and dentin), 2-MEP (enamel) and CAP-P (enamel). MTEP presented the highest micro-permeability, while 2-MEP, CAP-P and MTEP showed increased nanoleakage after aging.SignificanceThese outcomes showed that more hydrophilic and shorter spacer chains may compromise the chemical interaction with calcium and the dentin/enamel bonding performance.  相似文献   

11.
AimTo test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure.Materials and methodsExtracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n = 10 points/location), representing conditions before and after bleaching.ResultsTooth shade changes were significant (p < 0.001; 95% CI = −1/−8; power = 99%), and most of the enamel layer was unaffected after bleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R2 = 0.97; p < 0.0001; power > 99%).ConclusionsChanges in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss > organic gain > water gain > decrease in permeability) and decreased from the enamel surface inward.  相似文献   

12.
《Dental materials》2019,35(10):1479-1489
ObjectivesRoot canal re-infection and weakening of roots are two main challenges in endodontics. The objectives of the study were: (1) to develop a novel root canal sealer containing dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to investigate the effects on the physical, anti-biofilm, remineralizing ions, and hardness of human dentin for the first time.MethodsMethacrylate-resin dual-cured root canal sealer contained 5% DMAHDM, 0.15% NAg, and NACP at 10%, 20% and 30% mass fractions. The flow, film thickness, and Ca and P ions release were investigated. The effects of NACP on radicular dentin hardness after treatment with sodium hypochlorite (NaOCL) and ethylenediaminetetraacetic acid (EDTA) were assessed. Antibacterial properties were measured against Enterococcus faecalis (E. faecalis)-impregnated dentin blocks; colony-forming units (CFU) and live/dead assays were measured.ResultsIncorporating DMAHDM, NAg and NACP did not adversely influence the flow and film thickness properties. Sealer with 30% NACP neutralized the acid and increased the solution pH (p < 0.05). Sealer containing 30% NACP regenerated dentin minerals lost due to NaOCL and EDTA treatment, and increased the dentin hardness to match that of sound dentin (p > 0.1). Incorporating 5% DMAHDM and 0.15% NAg reduced biofilm CFU of E. faecalis-impregnated dentin blocks by nearly 3 logs when compared control group (p < 0.05).SignificanceThe novel therapeutic root canal sealer with triple bioactive agents of DMAHDM, NAg and NACP neutralized acid, raised the pH, regenerated dentin minerals, increased root dentin hardness, and reduced dentin-block-impregnated biofilm CFU by 3 logs. This new sealer with highly desirable antibacterial and remineralization properties are promising to increase the success rate of endodontic therapy and strengthen the tooth root structures.  相似文献   

13.
ObjectivesThis study investigated the effect of two concentrations of fluoride in milk, 2.5 and 5.0 ppm, on the prevention of demineralisation with a cariogenic challenge compared with milk with 0 ppm F.MethodsIn a controlled, randomised, cross-over, double-blind in situ study, 23 subjects wore a lower removable appliance with 2 enamel slabs for 21 days during each study arm. Subjects used F-free toothpaste and the cariogenic challenge comprised of five 2 min dippings per day in 12% sucrose. The slabs were dipped in 50 ml of milk with 0 ppm, 2.5 ppm or 5.0 ppm F twice daily for 5 min. Subjects drank 100 ml twice per day of the same milk. Slabs were analysed with Knoop microhardness to assess changes in mineralisation.ResultsResults showed that enamel was softened in all groups but the extent of enamel softness was reduced with an increasing concentration of F in milk, being highly significant for both F groups compared to the control (p < 0.0001). 5.0 ppm F group showed a trend towards less softening compared to the 2.5 ppm F but was not statistically significant.ConclusionsIn our in situ model, 2.5 and 5.0 ppm F in milk significantly protected enamel from demineralisation.  相似文献   

14.
《Dental materials》2020,36(2):210-220
ObjectiveDisruption of the demineralization–remineralization balance could trigger the development of dental caries, making it challenging for enamel to “self-heal”. Thus, extrinsic assistance is needed to restore enamel lesions and stop undermining progression. The aim of this study was to investigate enamel remineralization in a simulated oral environment via poly (amino amine) (PAMAM) dendrimers quantitatively.MethodsBovine enamel specimens were shaken in demineralization solution (pH 4.5, 37 °C, 50 rpm/min) for 72 h to create initial enamel carious lesions. The subsurface-demineralized specimens were then divided into four groups: enamel treated with PAMAM-NH2, enamel treated with PAMAM−COOH, enamel treated with PAMAM−OH, and enamel treated with deionized water. The treated specimens underwent subsequent 12-day pH cycling. Enamel blocks were analyzed by transverse microradiography (TMR), surface microhardness testing and scanning electron microscopy (SEM) before and after demineralization and pH cycling.ResultsGroups treated with PAMAM dendrimers showed lower lesion depth and less mineral loss, attained more vertical-section surface microhardness recovery, and adsorbed more mineral deposits (p < 0.05). The enamel lesion remineralization values of PAMAM-NH2, PAMAM-COOH, and PAMAM-OH groups were 76.42 ± 3.32%, 60.07 ± 5.92% and 54.52 ± 7.81%, respectively.SignificanceIn conclusion, PAMAM with different terminal groups could induce enamel remineralization, among which PAMAM-NH2 showed the most prominent competence, followed by PAMAM-COOH and PAMAM-OH, in that order.  相似文献   

15.
《Dental materials》2020,36(10):1343-1355
ObjectiveRecurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms.MethodsDimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey’s multiple comparison tests.ResultsAdding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05).ConclusionsThe novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.  相似文献   

16.
《Dental materials》2020,36(2):296-309
ObjectivesAntibacterial quaternary ammonium monomers (QAMs) are used in resins. The rnc gene in Streptococcus mutans (S. mutans) plays a key role in resisting antibiotics. The objectives of this study were to investigate for the first time: (1) the effects of rnc deletion on S. mutans biofilms and acid production; (2) the combined effects of rnc deletion with dimethylaminohexadecyl methacrylate (DMAHDM) on biofilm-inhibition efficacy.MethodsParent S. mutans strain UA159 (ATCC 700610) and the rnc-deleted S. mutans were used. Bacterial growth, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) were measured to analyze the bacterial susceptibility of the parent and rnc-deleted S. mutans against DMAHDM, with the gold-standard chlorhexidine (CHX) as control. Biofilm biomass, polysaccharide and lactic acid production were measured.ResultsThe drug-susceptibility of the rnc-deleted S. mutans to DMAHDM or CHX was 2-fold higher than parent S. mutans. The drug-susceptibility did not increase after 10 passages (p < 0.05). Deleting the rnc gene increased the biofilm susceptibility to DMAHDM or CHX by 2-fold. The rnc-deletion in S. mutans reduced biofilm biomass, polysaccharide and lactic acid production, even at no drugs. DMAHDM was nearly 40 % more potent than the gold-standard CHX. The combination of rnc deletion + DMAHDM treatment achieved the greatest reduction in biofilm biomass, polysaccharide synthesis, and lactic acid production.SignificanceGene modification by deleting the rnc in S. mutans reduced the biofilm growth and acid production, and the rnc deletion + DMAHDM method showed the greatest biofilm-inhibition efficacy, for the first time. The dual strategy of antibacterial monomer + bacterial gene modification shows great potential to control biofilms and inhibit caries.  相似文献   

17.
ObjectivesThis controlled prospective split-mouth study evaluated the clinical behavior of two different resin composites in extended Class II cavities over a period of four years.MethodsThirty patients received 68 direct resin composite restorations (Grandio bonded with Solobond M: n = 36, Tetric Ceram bonded with Syntac: n = 32) by one dentist in a private practice. All restorations were replacement fillings, 24 cavities (35%) revealed no enamel at the bottom of the proximal box, in 33 cavities (48%) the proximal enamel width was less than 0.5 mm. The restorations were examined according to modified USPHS criteria at baseline, and after six months, one, two, and four years. At each recall, impressions were taken for replica preparation. Replicas of 44 select subjects were assessed for marginal quality under a stereo light microscope (SLM) at 130× and 22 replicas were assessed under a scanning electron microscope (SEM) at 200×.ResultsBoth recall rate and survival rate were 100% after four years of clinical service. No significant difference was found between the restorative materials (p > 0.05; Mann–Whitney U-test). Hypersensitivities were significantly reduced over time (p < 0.05; Friedman test). A significant deterioration over time was found for the criteria marginal integrity (66% bravo after four years), tooth integrity (15% bravo), filling integrity (73% bravo) and proximal contact (p < 0.05; Friedman test). SLM and SEM analysis of restoration margins revealed differences in the amount of perfect margins, in favor of Tetric Ceram (p < 0.05).SignificancesBoth materials performed satisfactorily over the four-year observation period. Due to the extension of the restorations, wear was clearly visible after four years of clinical service with 50% bravo ratings.  相似文献   

18.
ObjectiveTo evaluate the effects of three different radiotherapy doses (20, 40, and 70 Gy) on the microhardness, superficial morphology, and mineral content (based on Ca and P values) of three different depths of human enamel (cervical, middle, and occlusal).DesignThirty-four third molars were cut, separated, and prepared. Microhardness samples (n = 30) were embedded in acrylic resin and then polished, and depths were delimited. Microhardness tests were performed on cervical, middle, and occlusal enamel pre- and post-radiotherapy with a load of 50 g for 30 s. For the scanning electron microscopy (SEM) analysis (n = 4) and energy dispersive X-ray spectroscopy (EDS) (n = 12), samples were fixed in a 3% glutaraldehyde solution, washed in 0.1 M cacodylate solution, and dehydrated in crescent concentrations of ethanol. Microhardness data were tested for significant differences using a two-way analysis of variance (ANOVA) and Tukey’s test (p < 0.05), while SEM and EDS were evaluated qualitatively.ResultsThe results showed a decrease in microhardness values only in the cervical enamel, regardless of the radiation dose used; no morphological or mineral change was observed.ConclusionRadiotherapy can affect the microhardness values of only cervical enamel without compromising the morphological or mineral (Ca and P) content at any depth.  相似文献   

19.
《Dental materials》2020,36(12):1595-1607
ObjectiveTo determine the mechanical and surface characteristics of two novel biomimetic interpenetrating phase alumina-polycarbonate (Al2O3-PC) composite materials, comprising aligned honeycomb-like porous ceramic preforms infiltrated with polycarbonate polymer.MethodTwo composite materials were produced and characterised. Each comprised a porous structure with a ceramic-rich (polymer-poor) top layer, graduated through to a more porous ceramic-poor (polymer-rich) bottom layer. In addition, pure polycarbonate and dense alumina specimens were subjected to the same characterisation namely: density, compression, three-point bend, hardness, surface loss and surface roughness testing. Scanning electron microscopy and micro computerised tomography were employed for structural examination.ResultsThree-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using MicroCT. Depending on the ceramic volume in the initial aqueous ceramic suspension, the density of the final interpenetrating composites ranged from 2.64 to 3.01 g/cm3, compressive strength ranged from 192.43 to 274.91 MPa, flexural strength from 105.54 to 148.47 MPa, fracture toughness from 2.17 to 3.11 MPa.m½, hardness from 0.82 to 1.52 GPa, surface loss from 0.71 to 1.40 μm and surface roughness, following tooth brushing, from 0.70 to 0.99 μm. Composite specimens showed characteristic properties part way between enamel and polycarbonate.SignificanceThere was a correlation between the initial solid ceramic loading in the aqueous suspension, used to produce the porous ceramic scaffolds, and the subsequent characteristic properties of the composite materials. These novel composites show potential as aesthetic orthodontic bracket materials, as their properties fit part way between those of ceramic, enamel and polycarbonate.  相似文献   

20.
ObjectiveThis study evaluated the effect of toothpastes containing 1100 ppm F associated or not with micrometric or nano-sized sodium trimetaphosphate (TMP) on enamel demineralization in vitro, using a pH cycling model.DesignBovine enamel blocks (4 mm × 4 mm, n = 96) were randomly allocated into eight groups (n = 12), according to the test toothpastes: Placebo (without fluoride or TMP); 1100 ppm F (1100F); 1100F plus micrometric TMP at concentrations of 1%, 3% or 6%; and 1100F plus nanosized TMP at 1%, 3% or 6%. Blocks were treated 2×/day with slurries of toothpastes and submitted to a pH cycling regimen for five days. Next, final surface hardness (SHf), integrated hardness loss (IHL), differential profile of integrated hardness loss (ΔIHL) and enamel fluoride (F) concentrations were determined. Data were analyzed by ANOVA and Student-Newman-Keuls’ test (p < 0.05).ResultsThe use of 1100F/3%TMPnano led to SHf 30% higher (p < 0.001) and IHL  80% lower (p < 0.001) when compared to 1100F. This toothpaste also resulted in ∼64% reduction of mineral loss (ΔIHL) when compared to 1100F. Moreover, the addition of nano-sized TMP promoted increases in enamel F uptake of 90%, 160% and 100%, respectively for the concentrations of 1%, 3% and 6%, when compared to 1100F (p < 0.001).ConclusionThe addition of nano-sized TMP at 3% to a conventional toothpaste significantly decreased enamel demineralization when compared to its counterparts without TMP or supplemented with micrometric TMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号