首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the molecular findings that many bitter taste receptors (T2Rs) are expressed within the same receptor cells, it has been proposed that bitter taste is encoded by the activation of discrete neural elements. Here we examined how a variety of bitter stimuli are represented by neural activity in central gustatory neurons. Taste responses (spikes/s) evoked by bathing the tongue and palate with intensity-matched concentrations (in M) of 2 sugars (0.32 sucrose and 0.5 D-fructose), ethanol (40%), 4 salts (0.01 NaCl, 0.008 NaNO(3), 0.01 MgCl(2), and 0.05 KCl), 2 acids (0.003 HCl and 0.005 citric acid), and 10 bitter ligands (0.007 quinine-HCl, 0.015 denatonium benzoate, 0.003 l-cysteine, 0.001 nicotine, 0.005 strychnine-HCl, 0.04 tetraethylammonium chloride, 0.03 atropine-SO(4), 0.005 brucine-SO(4), 0.03 papaverine-HCl, and 0.009 sparteine) were recorded from 51 neurons in the nucleus of the solitary tract of anesthetized rats. Cluster analysis was used to categorize neurons into types based on responses to sucrose, NaCl, HCl, and quinine-HCl. Three groupings emerged: type S (responded optimally to sweets), type N (sodium-optimal), and type H/Q (responded robustly to bitters, acids, and salts). Multivariate analyses revealed that across-neuron patterns of response among bitter stimuli were strongly correlated. However, neural type H/Q, which was most responsive to bitter tastants, was not differentially sensitive to bitter stimuli and Na(+) salts, which rats perceive as distinct. Thus central neurons most responsive to bitter substances receive significant input from receptors that mediate other tastes, indicating that bitter stimuli are not represented by activity in specifically tuned neurons.  相似文献   

2.
Summary Physiological characteristics of 45 taste and 15 mechanoreceptive units were examined in the solitary tract nucleus (NTS) of rats decerebrated at the pre-or midcollicular level, and compared with previous findings in the intact rat. The rostro-caudal extent of the area, where taste and mechanoreceptive neurons were recorded, was almost the same in the decerebrate rat as that in intact rat. The spontaneous discharge rate was significantly lower in the decerebrate rat than in the intact rat. The taste profile of the NTS units in decerebrate rats was quite different from that in intact rats; significant decreases in correlation coefficients were found between certain pairs of taste stimuli and spontaneous discharge rate, e.g. NaCl-quinine, sucrose-quinine. A large number of taste (18 of 31) and mechanoreceptive (12 of 15) units examined had receptive fields (RFs) on the palate, and four taste and two mechanoreceptive units on the circumvallate area. This contrasts with the findings in the intact rat. Some taste (n = 1) and mechanoreceptive units (n = 2) had large RFs. Taste units with different RF locations showed different taste profiles. Acute i.v. injection of amobarbital sodium affected only the response magnitude of taste units, suggesting that most of the differences between intact and decerebrate rats might be caused by decerebration. The present findings indicate that neural structures above the pre- or midcollicular level have tonic inhibitory or facilitatory effects on the response properties of NTS taste units.Supported by a grant from the Ministry of Education, Science and Culture of Japan (no 58106008)  相似文献   

3.
Extracellular responses from neurons in the nucleus of the solitary tract (NST) were studied in rats aged 5 days to adulthood during chemical stimulation of the tongue with monochloride salts, citric and hydrochloric acids, sucrose, sodium saccharin, and quinine hydrochloride. Multiunit taste responses were recorded in rats at 5-7 days of age and single-unit responses were recorded from 111 neurons in four other age groups of 14-20 days, 25-35 days, 50-60 days, and adult. NST neurons in rats aged 5-7 days consistently responded to relatively high concentrations (0.5 M) of NH4Cl and KCl and to citric and hydrochloric acid. However, they often did not respond to 0.5 M NaCl or to 0.1 M NH4Cl. Single NST neurons in rats aged 14 days and older characteristically responded to all 0.1 and 0.5 M salts and to both acids. At least 75% of neurons also responded to sucrose and sodium saccharin, and 46% responded to all of these stimuli and quinine hydrochloride. After 14 days, no developmental changes occurred in the number of stimuli to which neurons responded. There were substantial developmental alterations in the response magnitudes to some chemical stimuli. Average response frequencies increased after 35 days of age for 0.1 and 0.5 M NaCl, LiCl, KCl, and for sucrose and sodium saccharin. Response frequencies for NH4Cl, citric and hydrochloric acid, and quinine hydrochloride, however, did not change throughout development. The proportion of single NST neurons that responded maximally to specific monochloride salts did not change during development. Most single neurons in all age groups responded equally well to NH4Cl, NaCl, and LiCl. No NST neuron responded maximally to KCl. There were also no developmental differences in response latencies in rats aged 14 days and older. Response frequencies of second-order NST neurons generally reflect changes in responses from the primary afferent, chorda tympani fibers, throughout development; however, the increases in salt response frequencies from NST neurons occur comparatively later in development. Furthermore, at all ages, the taste responses to monochloride salts include higher response frequencies and a general loss in response specificity in NST compared to chorda tympani neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. Experiments were conducted to examine the possibility that the taste-sensitive neurons with similar taste-selectivity are preferentially innervated by common driving neurons whose taste-selectivity is also similar. 2. Multiple microelectrodes, in most cases a pair of glued electrodes, were inserted into the unilateral solitary tract nucleus (NTS) of the rat, and simultaneous recordings were made in neuron pairs responding to the four basic taste stimuli. The spike response density (RD) of each neuron during tastant stimulation was determined. Correlation coefficients of spike occurrence were calculated for each neuron pair during application of tastants and distilled water and also during spontaneous background activity. The frequency of correlated discharge (FC) of a neuron pair was measured as the area of the peak appearing on the cross-correlogram (CC). The FC value was divided by the RD value to calculate the weight of the correlated discharges in the output of each neuron (WC value). 3. Eleven pairs showed peaks in the CC constructed during tastant stimulation, whereas in other 11 pairs no peaks were found. The cross-correlation-positive group with peaks was composed of 18 NaCl-best (responding most vigorously to NaCl) and 4 HCl-best neurons, whereas the negative group without peaks included 9 NaCl-best, 9 HCl-best, and 4 sucrose-best neurons. 4. In the cross-correlation-positive pairs the taste quality most effective for one of the component neurons was often (13 NaCl-best and 2 HCl-best, 15/22 = 0.681) identical to the taste quality giving the highest probability of correlated discharge, i.e., highest FC value, in the neuron pair. 5. There were five cross-correlation-positive pairs (5/11 = 0.455) in which both of the component neurons were NaCl-best and the FC value was highest during NaCl stimulation. 6. The CCs constructed during water application exhibited peaks for all the pairs which gave positive cross-correlation in response to stimulation with tastants, whereas all pairs with negative cross-correlation during tastant stimulation never gave a detectable peak during water application. 7. In three pairs of the cross-correlation-positive group, the CCs constructed during spontaneous background activity without application of any liquid showed a small peak. 8. During NaCl stimulation some neurons exhibited relatively high FC values, but the WC values were always low. In contrast, during sucrose stimulation, the FC value was always low, but the WC value was quite high in some neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We examined the effect of the sweet transduction blocker gurmarin on taste responses recorded from neurons in the rat solitary nucleus (NST) to determine how gurmarin sensitivity is distributed across neuronal type. Initially, responses evoked by washing the anterior tongue and palate with 0.5 M sucrose, 0.1 M NaCl, 0.01 M HCl, and 0.01 M quinine-HCl were recorded from 35 neurons. For some cells, responses to a sucrose concentration series (0.01-1.0 M) or an array of sweet-tasting compounds were also measured. Gurmarin (10 microg/ml, 2-4 ml) was then applied to the tongue and palate. Stimuli were reapplied after 10-15 min. Neurons were segregated into groups based on similarities among their initial response profiles using hierarchical cluster analysis (HCA). Results indicated that sucrose responses recorded from neurons representative of each HCA-defined class were suppressed by gurmarin. However, a disproportionate percentage of cells in each group displayed sucrose responses that were substantially attenuated after gurmarin treatment. Postgurmarin sucrose responses recorded from neurons that composed 57% of class S, 40% of class N, and 33% of class H were suppressed by >or=50% relative to control. On average, attenuation was statistically significant only in class S and N neurons. Although the magnitude of gurmarin-induced response suppression did not differ across sucrose concentration, responses to different sweet-tasting compounds were differentially affected. Responses to NaCl, HCl, or quinine were not suppressed by gurmarin. Results suggest that information from gurmarin-sensitive and -insensitive receptor processes converges onto single NST neurons.  相似文献   

6.
Individual mouse taste cells respond to multiple chemical stimuli   总被引:8,自引:1,他引:8  
Sensory organs are specialized to detect and decode stimuli in terms of intensity and quality. In the gustatory system, the process of identifying and distinguishing taste qualities (e.g. bitter versus sweet) begins in taste buds. A central question in gustatory research is how information about taste quality is extracted by taste receptor cells. For instance, whether and how individual taste cells respond to multiple chemical stimuli is still a matter for debate. A recent study showed that taste cells expressing bitter-responsive taste receptors do not also express sweet-responsive taste receptors and vice versa. These results suggest that the gustatory system may use separate cellular pathways to process bitter and sweet signals independently. Results from electrophysiological studies, however, reveal that individual taste receptor cells respond to stimuli representing multiple taste qualities. Here we used non-invasive Ca2+ imaging in slices of lingual tissue containing taste buds to address the issue of quality detection in murine taste receptor cells. We recorded calcium transients elicited by chemical stimuli representing different taste qualities (sweet, salty, sour and bitter). Many receptor cells (38 %) responded to multiple taste qualities, with some taste cells responding to both appetitive ('sweet') and aversive ('bitter') stimuli. Thus, there appears to be no strict and separate detection of taste qualities by distinct subpopulations of taste cells in peripheral gustatory sensory organs in mice.  相似文献   

7.
8.
For nervous tissue, lactate is a valuable energy substrate that can be extracted from glucose by astrocytes and released for neuronal use. Therefore, we hypothesized that the glucose-sensing neurons that signal the glycemic changes involved in the control of body energy homeostasis may be responsive to extracellular lactate as well. To test this hypothesis, neuronal activity was recorded extracellularly in the solitary tract nucleus of anesthetized rats in order to compare the effects of microelectrophoretic applications of glucose and lactate and of moderate hyperglycemia and to assess the possible effects of lactate on the response to glucose. About 90% of the investigated neurons behaved in a similar manner after local ejections of glucose and lactate. Among them, most neurons activated by glucose were also activated by lactate and all neurons depressed by glucose were also depressed by lactate. This result suggests that the response to these two compounds is mediated by a common mechanism related to their utilization as oxidizible substrates. In half of the tested neurons, the response to glucose was eliminated or significantly reduced after repeated lactate ejections. This inhibitory effect is a likely result of a modification in glucose metabolism induced by a high extracellular lactate level. Most glycemia-sensitive neurons responded similarly to moderate hyperglycemia and to local lactate ejection, suggesting that high brain lactate levels might interfere with the brain mechanisms that mediate glucoprivic eating.  相似文献   

9.
Single-unit recording was made from neurons in the region of solitary tract nucleus (NTS) of cats. Neurons discharging in correlation with cardiac or respiratory cycle were identified outside the NTS. They showed no obvious change in discharge rate during sleep-wakefulness cycle, and were unresponsive to electrical stimulation of the mesencephalic reticular formation (MRF), suggesting that they are not involved in slow wave sleep (SS) mechanism. More than half of the neurons recorded in the NTS showed an increase in discharge rate during, but not prior to, SS. Most of non-NTS neurons had during SS a discharge rate similar to that during wakefulness. The NTS neurons may be more related to SS mechanism than non-NTS neurons. The effectiveness of electrical stimulation of the MRF in driving or inhibiting the neurons of the NTS region was measured to be expressed by an index. Generally speaking, responses with greater S/W index ratio were excitatory, while those with smaller were inhibitory. During paradoxical sleep the effectiveness was usually reduced.  相似文献   

10.
The contribution of gustation to the perception of food requires an understanding of how neurons represent mixtures of taste qualities. In the periphery, separate groups of fibers, labeled by the stimulus that evokes the best (largest) response, appear to respond to each component of a mixture. In the brain, identification of analogous groups of neurons is hampered by trial-to-trial variability in response magnitude. In addition, convergence of different fiber types onto central neurons may complicate the classification scheme. To investigate these issues, electrophysiological responses to four tastants: sucrose, NaCl, HCl, and quinine, and their binary mixtures were recorded from 56 cells in the nucleus of the solitary tract (NTS, the 1st synapse in the central gustatory pathway) of the anesthetized rat. For 36 of these cells, all 10 stimuli were repeated at least five times (range: 5-23; median = 10). Results showed that 39% of these cells changed their best stimulus across stimulus repetitions, suggesting that response magnitude (firing rate) on any given trial produces an ambiguous message. Averaged across replicate trials, mixture responses most often approximated the response to the more effective component of the mixture. Cells that responded best to a taste mixture rather than any single-component tastant were identified. These cells were more broadly tuned than were cells that responded best to single-component stimuli and showed evidence of convergence from more than one best stimulus fiber type. Functionally, mixture-best cells may amplify the neural signal produced by unique configurations of basic taste qualities.  相似文献   

11.
This study investigated effects of nicotine applied to the tongue surface on responses of gustatory neurons in the nucleus of the solitary tract (NTS) in rats. In pentobarbital-anesthetized rats, single-unit recordings were made from NTS units responsive to one or more tastants (sucrose, NaCl, citric acid, monosodium glutamate, quinine). Application of nicotine (0.87, 8.7, or 600 mM) excited gustatory NTS units and significantly attenuated NTS unit responses to their preferred tastant in a dose-dependent manner. The depressant effect of nicotine was equivalent regardless of which tastant best excited the NTS unit. Nicotinic excitation of NTS units and depression of their tastant-evoked responses were both significantly attenuated by the nicotinic antagonist mecamylamine, which itself did not excite NTS units. In rats with bilateral trigeminal ganglionectomy, nicotine still excited nearly all NTS units but no longer depressed tastant-evoked responses. Nicotine did not elicit plasma extravasation when applied to the tongue. The results indicate that nicotine directly excites NTS units by gustatory nerves and inhibits their tastant-evoked responses by a nicotinic acetylcholine receptor-mediated excitation of trigeminal afferents that inhibit NTS units centrally.  相似文献   

12.
It has been proposed that nucleus accumbens neurons respond to outcome (reward and punishment) and outcome-predictive information. Alternatively, it has been suggested that these neurons respond to salient stimuli, regardless of their outcome-predictive properties, to facilitate a switch in ongoing behavior. We recorded the activity of 82 single-nucleus accumbens neurons in thirsty rats responding within a modified go/no-go task. The task design allowed us to analyze whether neurons responded to conditioned stimuli that predicted rewarding (saccharin) or aversive (quinine) outcomes, and whether the neural responses correlated with behavioral switching. Approximately one third (28/82) of nucleus accumbens neurons exhibited 35 responses to conditioned stimuli. Over 2/3 of these responses encoded the nature of the upcoming rewarding (19/35) or aversive (5/35) outcome. No response was selective solely for the switching of the rat's behavior, although the activity of approximately one third of responses (11/35) predicted the upcoming outcome and was correlated with the presence or absence of a subsequent behavioral switch. Our data suggest a primary functional role for the nucleus accumbens in encoding outcome-predicting information and a more limited role in behavioral switching.  相似文献   

13.
1. The activity of 117 single neurons was recorded in the rostral nucleus of the solitary tract (NST) and tested with each of four standard chemical stimuli [sucrose, NaCl, citric acid, and quinine HCl (QHCl)] and distilled water in awake, behaving rats. In 101 of these neurons, at least one sapid stimulus elicited a significant taste response. The mean spontaneous rate of the taste neurons was 4.1 +/- 5.8 (SD) spike/s. The mean response magnitudes were as follows: sucrose, 10.6 +/- 11.7; NaCl, 8.6 +/- 14.6; citric acid, 6.2 +/- 7.8; and QHCl, 2.4 +/- 6.6 spikes/s. 2. On the basis of their largest response, 42 taste neurons were classified as sucrose-best, 25 as NaCl-best, 30 as citric acid-best, and 4 as QHCl-best. The mean spontaneous rates for these categories were 4.9 +/- 6.2 for sucrose-best cells, 5.8 +/- 7.4 for NaCl-best, 1.6 +/- 2.0 for citric acid-best, and 5.8 +/- 6.0 spikes/s for QHCl-best. The spontaneous rate of the citric acid-best neurons was significantly lower than that of the other categories. 3. At the standard concentrations, 45 taste cells (44.6%) responded significantly to only one of the gustatory stimuli. Of the 30 acid-best neurons, 23 (76.7%) responded only to citric acid. For sucrose-best cells, specific sensitivity was less common (18/42, 42.9%), and for NaCl-best neurons, it was relatively uncommon (3/25, 12%). One of the 4 QHCl-best neurons was specific. In a concentration series, more than one-half of the 19 specific neurons tested responded to only one chemical at any strength. 4. The mean entropy for the excitatory responses of all gustatory neurons was 0.60. Citric acid-best cells showed the least breadth of responsiveness (0.49), sucrose-best cells were somewhat broader (0.56), but NaCl-best and QHCl-best cells were considerably less selective (0.77 and 0.79, respectively). Inhibition was observed infrequently and never reached the criterion for significance. 5. In the hierarchical cluster analysis, the four largest clusters segregated neurons primarily by best-stimulus category. The major exception to this was a group of sucrose-best neurons that also responded to NaCl and were grouped with the NaCl-best neurons. In a two-dimensional space, the specific taste neurons, those that responded to only one of the four standard sapid stimuli, remained in well-separated groups. These specific groups, however, were joined in a ring-like formation by other neurons that responded to more than one of the sapid stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS). GABAergic neurons are scattered throughout the NTS, but their relation to solitary tract (ST) afferent pathways is imprecisely known. We hypothesized that most GABAergic NTS neurons would be connected only indirectly to the ST. We identified GABAergic neurons in brain stem horizontal slices using transgenic mice in which enhanced green fluorescent protein (EGFP) expression was linked to glutamic acid decarboxylase expression (GAD(+)). Finely graded electrical shocks to ST recruit ST-synchronized synaptic events with all-or-none thresholds and individual waveforms did not change with greater suprathreshold intensities--evidence consistent with initiation by single afferent axons. Most (approximately 70%) GAD(+) neurons received ST-evoked excitatory postsynaptic currents (EPSCs) that had minimally variant latencies (jitter, SD of latency <200 micros) and waveforms consistent with single, direct ST connections (i.e., monosynaptic). Increasing stimulus intensity evoked additional ST-synchronized synaptic responses with jitters >200 micros including inhibitory postsynaptic currents (IPSCs), indicating indirect connections (polysynaptic). Shocks of suprathreshold intensity delivered adjacent (50-300 microm) to the ST failed to excite non-ST inputs to second-order neurons, suggesting a paucity of axons passing near to ST that connected to these neurons. Despite expectations, we found similar ST synaptic patterns in GAD(+) and unlabeled neurons. Generally, ST information that arrived indirectly had small amplitudes (EPSCs and IPSCs) and frequency-dependent failures that reached >50% for IPSCs to bursts of stimuli. This ST afferent pathway organization is strongly use-dependent--a property that may tune signal propagation within and beyond NTS.  相似文献   

15.
Swallowing-related activity was examined in respiratory (   n = 60  ) and non-respiratory (   n = 82  ) neurons that were located in and around the nucleus of the solitary tract (NTS) in decerebrated, neuromuscularly blocked and artificially ventilated rats. Neurons that were orthodromically activated by electrical stimulation of the superior laryngeal nerve (SLN) were identified, and fictive swallowing was evoked by SLN stimulation. The pharyngeal phase of swallowing was monitored by hypoglossal nerve activity. Two types of non-respiratory neurons with swallowing-related bursts were identified: 'early' swallowing neurons (   n = 24  ) fired during periods of hypoglossal bursts, and 'late' swallowing neurons (   n = 8  ) fired after the end of hypoglossal bursts. The remaining non-respiratory neurons were either suppressed (   n = 21  ) or showed no change in activity (   n = 29  ) during swallowing. On the other hand, respiratory neurons with SLN inputs included 56 inspiratory and four expiratory neurons. Inspiratory neurons were classified into two major types: a group of neurons discharged simultaneously with hypoglossal bursts (type 1 neurons,   n = 19  ), while others were silent during bursts but were active during inter-hypoglossal bursts when swallowing was provoked repetitively (type 2 neurons,   n = 34  ). Three of the expiratory neurons fired during hypoglossal bursts. Many of the swallowing-related non-respiratory neurons and the majority of the inspiratory neurons received presumed monosynaptic inputs from the SLN. Details of the distribution and firing patterns of these NTS neurons, which have been revealed for the first time in a fictive swallowing preparation in the rat, suggest their participation in the initiation, pattern formation and mutual inhibition between swallowing and respiration.  相似文献   

16.
NaCl and KCl are monovalent salts that can be discriminated behaviorally by hamsters on the basis of their tastes. We examined the effects of the passive Na+ channel blocker amiloride on responses to both of these salts in 34 taste-responsive neurons of the nucleus of the solitary tract (NST) in the hamster. The effects of amiloride were assessed with two different, commonly employed stimulus protocols. Additionally, concentration-response functions for each salt were measured in 37 neurons. Cells were characterized by their best response to (in M) 0. 03 NaCl, 0.1 sucrose, 0.003 HCl, 0.001 quinine hydrochloride, and 0. 1 KCl. In neurons classified as NaCl-best, amiloride reversibly blocked responses to both NaCl and KCl. In neurons classified as HCl-best, amiloride had no effect on either stimulus. In sucrose-best neurons, amiloride blocked the response to NaCl but not KCl. These results support the hypothesis that both salts are transduced by at least two different receptor mechanisms. In the NST, information arising from these different inputs is maintained in discrete populations of neurons. In addition to differences in amiloride sensitivity, the cell types also differed in their responses to the salts across concentration. At midrange salt concentrations, NaCl-best neurons were far more responsive to NaCl than KCl, whereas HCl- and sucrose-best neurons responded equivalently to the two salts at all concentrations. Because NaCl- and HCl-best cells cannot by themselves distinguish NaCl from KCl, it is the relative activity across these cell types that comprises the code for taste discrimination.  相似文献   

17.
Despite evidence for an abundance of inhibitory synaptic processes within the taste-responsive portion of the brain stem, little is known about how these processes are activated or modulated. In this context, this study tested the hypothesis that activation of the chorda tympani nerve (CT) invokes inhibition that influences gustatory neural information processing in the rostral nucleus of the solitary tract (NTS). Stimulating electrodes were implanted in the middle ear of urethane-anesthetized rats to enable the passage of current across the CT. Electrophysiological responses to sucrose, NaCl, HCl, and quinine were recorded from single NTS neurons both individually and immediately following tetanic electrical stimulation of the CT. Additionally, NTS field responses to paired pulse stimulation of the CT were recorded. Electrical pulses delivered to the CT were found to produce a compound action potential with four components. Taste-responsive units in the NTS showed tetanus-evoked responses that varied in latency and strength. Those cells that showed strong, short latency responses to CT stimulation showed large magnitude responses to NaCl and were relatively narrowly tuned. Units with longer latencies generally responded more broadly to taste stimuli and with lower response magnitudes. Following tetanus, taste responses in 20 (43%) of the 46 units were reversibly altered in a stimulus-selective manner. Taste responses in 18 units were both enhanced and attenuated following tetanic stimulation, although attenuation was much more common. Additionally, tetanus was found to affect the temporal organization of spikes within taste responses to one stimulus in seven units (15%), four of which also showed changes in response magnitude to a different stimulus following tetanus. The influence of tetanus on taste responses was shown to be reliable and repeatable in neurons from which stimulus trials were recorded more than once. Across all units, responses to quinine were most dramatically and frequently attenuated following tetanus, while those to NaCl were least susceptible to change. NTS field responses evoked by paired pulse stimulation of the CT suggested that the initial pulse evoked an inhibitory influence in the NTS that decayed and returned to baseline by 2 s. These data are consistent with the idea that afferent input to the NTS normally activates inhibitory synaptic activity. As with other sensory systems, such inhibition may serve to facilitate contrast in the neural representation of different stimulus qualities.  相似文献   

18.
19.
Electrophysiological studies were performed to determine if neurons of the nucleus of the solitary tract (NTS) which receive inputs from the stomach via vagal afferents also respond to olfactory bulb (OB) stimulation. The frequency of neuronal activity of the rostral ventral portion of the NTS was increased by gastric distension (GD). The evoked potentials in the same site due to vagal stimulation displayed short latencies; whereas, the evoked potentials in the dorsomedial part of the NTS due to vagal stimulation had considerably longer latencies. Gastric distension decreased neuronal activity in the dorsomedial NTS. Evoked potentials and increases in neuronal activity were also observed in the dorsomedial NTS due to electrical stimulation. In the dorsomedial NTS, OB stimulation enhanced the decrease in neuronal activity due to GD. Olfactory and visceral functions apparently interact in the NTS in modulating taste mechanisms involved in food selection and ingestion.  相似文献   

20.
Proprioceptive sensory information carried by spinocerebellar tracts provides a major input to the spinocerebellum, which has an important role in coordinating motor output for posture and locomotion. Until recently it was assumed that the information transmitted by the dorsal spinocerebellar tract (DSCT) was organized to represent single muscles or single joints in the ipsilateral hindlimb. Recent studies have shown, however, that DSCT activity represents global kinematic parameters of the hindlimb. We now present evidence that the DSCT neurons are also modulated by passive step-like movements of either hindlimb, implying they receive a bilateral sensory input. About two-thirds of 78 cells studied had significant responses to movements of the contralateral limb alone and about 70% responded differently to bipedal movements than to ipsilateral movement alone. The same basic behavior was observed in anesthetized, paralyzed cats and in unanesthetized, decerebrate cats, although decerebrate cats may have had larger responses on average. The results suggest that many DSCT cells may encode information about interlimb coordination. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号