首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Remethylation of homocysteine to methionine can occur through either the folate-dependent methionine synthase pathway or the betaine-dependent betaine-homocysteine methyltransferase pathway. The relevance of betaine as a determinant of fasting total homocysteine (tHcy) is not known, nor is it known how the 2 remethylation pathways are interrelated. OBJECTIVE: The objectives of the study were to examine the relation between plasma betaine concentration and fasting plasma tHcy concentrations and to assess the effect of folic acid supplementation on betaine concentrations in healthy subjects. DESIGN: A double-blind randomized trial of 6 incremental daily doses of folic acid (50-800 microg/d) or placebo was carried out in 308 Dutch men and postmenopausal women (aged 50-75 y). Fasted blood concentrations of tHcy, betaine, choline, dimethylglycine, and folate were measured at baseline and after 12 wk of vitamin supplementation. RESULTS: Concentrations of tHcy were inversely related to the betaine concentration (r = -0.17, P < 0.01), and the association was independent of age, sex, and serum concentrations of folate, creatinine, and cobalamin. Folic acid supplementation increased betaine concentration in a dose-dependent manner (P for trend = 0.018); the maximum increase (15%) was obtained at daily doses of 400-800 microg/d. CONCLUSIONS: The plasma betaine concentration is a significant determinant of fasting tHcy concentrations in healthy humans. Folic acid supplementation increases the betaine concentration, which indicates that the 2 remethylation pathways are interrelated.  相似文献   

2.
BACKGROUND: Betaine comes from the diet and from choline, and it is associated with vascular disease in some patient groups. Betaine supplementation lowers plasma total homocysteine. OBJECTIVE: We compared the acute effects of dietary and supplementary betaine and choline on plasma betaine and homocysteine under standard conditions and after a methionine load. DESIGN: In a randomized crossover study, 8 healthy men (19-40 y) consumed a betaine supplement (approximately 500 mg), high-betaine meal (approximately 517 mg), choline supplement (500 mg), high-choline meal (approximately 564 mg), high-betaine and -choline meal (approximately 517 mg betaine, approximately 622 mg choline), or a low-betaine and -choline control meal under standard conditions or postmethionine load. Plasma betaine, dimethylglycine, and homocysteine concentrations were measured hourly for 8 h and at 24 h after treatment. RESULTS: Dietary and supplementary betaine raised plasma betaine concentrations relative to control (P < 0.001) under standard conditions. This was not associated with raised plasma dimethylglycine concentration, and no significant betaine appeared in the urine. A small increase in dimethylglycine excretion was observed when either betaine or choline was supplied (P = 0.011 and < 0.001). Small decreases in plasma homocysteine 6 h after ingestion under standard conditions (P < or = 0.05) were detected after a high-betaine meal and after a high-betaine and high-choline meal. Dietary betaine and choline and betaine supplementation attenuated the increase in plasma homocysteine at both 4 and 6 h after a methionine load (P < or = 0.001). CONCLUSIONS: Dietary betaine and supplementary betaine acutely increase plasma betaine, and they and choline attenuate the postmethionine load rise in homocysteine concentrations.  相似文献   

3.
BACKGROUND: Vitamin B-12 deficiency is associated with cognitive impairment in older people. However, evidence from randomized trials of the effects of vitamin B-12 supplementation on cognitive function is limited and inconclusive. OBJECTIVE: The objective was to investigate whether daily supplementation with high doses of oral vitamin B-12 alone or in combination with folic acid has any beneficial effects on cognitive function in persons aged >/=70 y with mild vitamin B-12 deficiency. DESIGN: In a double-blind, placebo-controlled trial, 195 subjects were randomly assigned to receive 1000 microg vitamin B-12, 1000 microg vitamin B-12 + 400 microg folic acid, or placebo for 24 wk. Vitamin B-12 status was assessed on the basis of methylmalonic acid, total homocysteine (tHcy), and holotranscobalamin (holoTC) concentrations before and after 12 and 24 wk of treatment. Cognitive function was assessed before and after 24 wk of treatment with the use of an extensive neuropsychologic test battery that included the domains of attention, construction, sensomotor speed, memory, and executive function. RESULTS: Vitamin B-12 status did not change significantly after treatment in the placebo group; however, oral vitamin B-12 supplementation corrected mild vitamin B-12 deficiency. Vitamin B-12 + folic acid supplementation increased red blood cell folate concentrations and decreased tHcy concentrations by 36%. Improvement in memory function was greater in the placebo group than in the group who received vitamin B-12 alone (P = 0.0036). Neither supplementation with vitamin B-12 alone nor that in combination with folic acid was accompanied by any improvement in other cognitive domains. CONCLUSION: Oral supplementation with vitamin B-12 alone or in combination with folic acid for 24 wk does not improve cognitive function.  相似文献   

4.
Cystic fibrosis (CF) is associated with many clinical complications including steatosis for which the relation to defective CF transmembrane conductance regulator protein is unclear. Choline deficiency results in hepatic steatosis. Choline is the precursor of betaine, which donates methyl groups for remethylation of homocysteine to methionine and dimethylglycine. Previously, we have shown phospholipid malabsorption and increased plasma homocysteine in children with CF. In these studies we used normal phase HPLC with tandem mass spectrometry to determine plasma choline, betaine, and dimethylglycine in children with CF (n = 34) and healthy control children without CF (n = 15). Plasma choline, betaine, and dimethylglycine were significantly lower in children with CF (means +/- SEM, 6.48 +/- 0.35, 23.8 +/- 1.49, 1.49 +/- 0.13 mumol/L, respectively) than in children without CF (8.98 +/- 0.46, 37.3 +/- 1.84, 3.01 +/- 0.17 mumol/L, respectively). Plasma choline (r = 0.373, P = 0.007) and betaine (r = 0.399, P = 0.005) were positively related to methionine, and choline was inversely related to homocysteine (r = -0.316, P = 0.03). Choline, betaine, and dimethylglycine were all significantly and positively related to the plasma S-adenosylmethionine:S-adenosylhomocysteine (SAM:SAH) ratio (r = 0.294, r = 0.377, r = 0.442, respectively; P < 0.05). The plasma choline:betaine and betaine:dimethylglycine ratios did not differ between the children with CF and the control children, suggesting no increase in betaine synthesis, or betaine-dependent remethylation of homocysteine. These studies suggest that choline depletion may contribute to increased homocysteine in children with CF. Choline depletion and altered thiol metabolism may contribute to the clinical complications associated with CF.  相似文献   

5.
Periconceptional intake of folic acid prevents some neural tube defects (NTDs). Other nutrients may also contribute to NTD etiologies; a likely candidate is choline. Similar to folic acid, choline is involved in one-carbon metabolism for methylation of homocysteine to methionine. The authors investigated whether maternal periconceptional dietary intakes of choline and its metabolite betaine influence NTD risk. Data were derived from a case-control study of fetuses and infants with NTDs among 1989-1991 California births. In-person interviews were conducted with mothers of 424 NTD cases and with mothers of 440 nonmalformed controls. A standard 100-item food frequency questionnaire was used to assess nutrient intake. Dietary intakes of choline were associated with reduced NTD risks. Controlling for intake of supplemental folic acid, dietary folate, dietary methionine, and other covariates did not substantially influence risk estimates for choline. NTD risk estimates were lowest for women whose diets were rich in choline, betaine, and methionine. That is, for women whose intake was above the 75th percentile compared with below the 25th percentile for all three nutrients, the odds ratio was 0.17 (95% confidence interval: 0.04, 0.76). Study findings for dietary components other than folic acid offer additional clues about the complex etiologies of NTDs.  相似文献   

6.
Moderate regular consumption of alcoholic beverages is believed to protect against atherosclerosis but can also increase homocysteine or dimethylglycine, which are putative risk factors for atherosclerosis. We aimed (1) to investigate the effect of alcohol consumption on vitamins and several metabolites involved in one-carbon metabolism; and (2) to find the most effective way of decreasing homocysteine during moderate alcohol consumption. Methods: Male volunteers (n = 117) were randomly divided into five groups: the wine-only group (control, 375 mL of white wine daily for one month) and four groups combining wine consumption with one of the supplemented substances (folic acid, betaine, and vitamins B12 or B6). Significant lowering of homocysteine concentration after the drinking period was found in subjects with concurrent folate and betaine supplementation. Vitamin B12 and vitamin B6 supplementation did not lead to a statistically significant change in homocysteine. According to a multiple linear regression model, the homocysteine change in the wine-only group was mainly determined by the interaction between the higher baseline homocysteine concentration and the change in dimethylglycine levels. Folate and betaine can attenuate possible adverse effects of moderate alcohol consumption. Dimethylglycine should be interpreted together with data on alcohol consumption and homocysteine concentration.  相似文献   

7.
Choline and glycine are inter-related through their roles in methyl metabolism. Choline is metabolized to betaine, which donates a methyl group to homocysteine to form methionine, also generating dimethylglycine, which is further metabolized to glycine. Choline is transported across the placenta and is higher in fetal than maternal plasma. Placental glycine transfer, however, is limited and poor glycine status has been suggested in preterm infants. Insufficient glycine for glutathione (GSH) synthesis results in increased metabolism of gamma-glutamyl cysteine to 5-oxoproline. We measured plasma 5-oxoproline as a metabolic indicator to address whether choline, via dimethylglycine, contributes physiologically relevant amounts of glycine in pregnancy. Blood was collected from healthy term pregnant women and their newborn infants at delivery (n = 46) and nonpregnant healthy women (n = 19) as a reference group. Plasma choline, betaine, dimethylglycine, homocysteine, methionine, and 5-oxoproline were quantified by HPLC-tandem MS. Plasma choline was 45% higher, but betaine was 63% lower and dimethylglycine was 28% lower in pregnant than nonpregnant women (P < 0.01). Higher white blood cell choline dehydrogenase messenger RNA levels in a random subset of pregnant (n = 8) than nonpregnant women (n = 7) (P < 0.01) suggest increased betaine and dimethylglycine turnover rather than decreased synthesis. Plasma choline, betaine, and dimethylglycine were higher (P < 0.001) in fetal plasma (36.4 +/- 13, 29.4 +/- 1.0, and 2.44 +/- 0.12 micromol/L, respectively) than maternal plasma (15.3 +/- 0.42, 14.1 +/- 0.6 and 1.81 +/- 0.12 micromol/L, respectively). Concentrations of 5-oxoproline and dimethylglycine were inversely (P < 0.05) correlated in maternal (Spearman rho = -0.35) and fetal plasma (Spearman rho = -0.32), suggesting that choline, via dimethylglycine, contributes glycine for GSH synthesis in human development.  相似文献   

8.
BACKGROUND: Little is known about the interactions between choline and folate and homocysteine metabolism during pregnancy despite the facts that pregnancy places considerable stress on maternal folate and choline stores and that choline is a critical nutrient for the fetus. Choline, via betaine, is an important folate-independent source of methyl groups for remethylating homocysteine in liver. OBJECTIVES: Our aims were to examine the intermediates of choline oxidation in maternal and umbilical cord plasma and to determine the relations between this pathway and folate-dependent homocysteine remethylation. DESIGN: Blood samples were taken from 201 pregnant women and, at delivery, from the umbilical cord veins of their healthy, full-term infants. The blood samples were analyzed for plasma free choline, betaine, dimethylglycine, folate, vitamin B-12, total homocysteine (tHcy), and creatinine concentrations. RESULTS: Choline concentrations in umbilical cord plasma were approximately 3 times those in maternal plasma (geometric x: 36.6 and 12.3 micromol/L, respectively; P < 0.0001). Betaine and dimethylglycine concentrations were also significantly higher in umbilical cord than in maternal plasma. Choline was positively associated with tHcy (r = 0.34, P < 0.0001), betaine (r = 0.58, P < 0.0001), and dimethylglycine (r = 0.30, P < 0.0001) in maternal blood. Much weaker relations were seen in the fetal circulation. In a multiple regression model, choline was a positive predictor of maternal tHcy, whereas vitamin B-12 and betaine were negative predictors. CONCLUSIONS: The positive association between maternal choline and tHcy during pregnancy suggests that the high fetal demand for choline stimulates de novo synthesis of choline in maternal liver, with a resultant increase in tHcy concentrations. If this is confirmed, it may be appropriate to provide choline supplements during pregnancy to prevent elevated tHcy concentrations.  相似文献   

9.
Betaine supplementation lowers plasma homocysteine in healthy men and women   总被引:9,自引:0,他引:9  
Elevated levels of plasma total homocysteine are associated with a higher risk of cardiovascular disease. Betaine and 5-methyltetrahydrofolate can remethylate homocysteine into methionine via independent reactions. We determined the effect of daily betaine supplementation, compared with both folic acid and placebo, on plasma concentrations of total homocysteine after an overnight fast and after methionine loading in men and women with mildly elevated homocysteine. Groups of twelve subjects ingested 6 g betaine, 800 micro g folic acid with 6 g placebo or 6 g placebo each day for 6 wk. A methionine-loading test (i.e., ingestion of 100 mg L-methionine/kg body mass) was performed before and after 6 wk of supplementation. Fasting plasma homocysteine decreased by 1.8 micro mol/L (95% confidence interval [CI]: -3.6, 0.0, P < 0.05) in the betaine group and by 2.7 micro mol/L (95% CI: -4.5, -0.9, P < 0.05) in the folic acid group. These changes are relative to the change in the placebo group, in which fasting plasma homocysteine rose by 0.5 micro mol/L. Furthermore, betaine suppressed the total area under the plasma homocysteine-time curve after methionine loading by 221 micro mol. 24 h/L (95% CI: -425, -16, P < 0.05) compared with placebo, whereas folic acid had no effect. In conclusion, betaine appears to be highly effective in preventing a rise in plasma homocysteine concentration after methionine intake in subjects with mildly elevated homocysteine. It is not known whether this potential of betaine to "stabilize" circulating homocysteine concentrations lowers the risk of cardiovascular disease.  相似文献   

10.
BACKGROUND: Elevated concentrations of homocysteine in blood may be an independent risk factor for the development of atherosclerosis. Elevated homocysteine concentrations can be caused by decreased methylation of homocysteine to form methionine, as occurs in folate deficiency. A parallel pathway exists for methylation of homocysteine, in which choline, by way of betaine, is the methyl donor. OBJECTIVE: Our goal was to determine whether choline deficiency results in a decreased capacity to methylate homocysteine. DESIGN: C57BL/6J mice were fed diets containing 0, 10, or 35 mmol choline/kg diet for 3 wk. We then administered an oral methionine load to the animals and measured plasma homocysteine concentrations. Also, in a pilot study, we examined 8 men who were fed a diet providing 550 mg choline/d per 70 kg body weight for 10 d, followed by a diet providing almost no choline, until the subjects were clinically judged to be choline deficient or for 相似文献   

11.
To test the response to increased utilization of methyl groups, we administered large dosages of nicotinamide to rats fed an adequate diet that contained limited amounts of methionine and choline. During the 4 d after the injection, we observed several significant effects on the hepatic concentrations of the enzymes and metabolites of methionine metabolism. Methionine and S-adenosylmethionine remained at control levels; the concentrations of S-adenosylhomocysteine exceeded the control values from 4 to 16 h; and the levels of serine and betaine were lower after 16 h. Treatment with nicotinamide resulted in higher hepatic levels of methionine adenosyltransferase (after 4 h) and cystathionine synthase (after 16 h). These data indicate that increases in both homocysteine methylation and S-adenosylmethionine synthesis may be components of the response to excessive methyl group consumption. An increased synthesis of cystathionine would provide for the removal of S-adenosylhomocysteine (and homocysteine) derived from the adenosylmethionine-dependent methylation of nicotinamide.  相似文献   

12.
Celiac disease (CD) is an autoimmune enteropathy associated with alterations of metabolism. Metabolomics studies, although limited, showed changes in choline, choline-derived lipids, and methionine concentrations, which could be ascribed to alterations in one-carbon metabolism. To date, no targeted metabolomics analysis investigating differences in the plasma choline/methionine metabolome of CD subjects are reported. This work is a targeted metabolomic study that analyzes 37 metabolites of the one-carbon metabolism in 17 children with CD, treated with a gluten-free diet and 17 healthy control siblings, in order to establish the potential defects in this metabolic network. Our results demonstrate the persistence of defects in the transsulfuration pathway of CD subjects, despite dietary treatment, while choline metabolism, methionine cycle, and folate cycle seem to be reversed and preserved to healthy levels. These findings describe for the first time, a metabolic defect in one-carbon metabolism which could have profound implications in the physiopathology and treatment of CD.  相似文献   

13.
There is strong evidence that whole-grain foods protect against heart disease. Although underlying mechanisms and components are unclear, betaine, found at high levels in wheat aleurone, may play a role. We evaluated the effects of a diet high in wheat aleurone on plasma betaine and related measures. In a parallel, single-blinded intervention study, 79 healthy participants (aged 45-65 y, BMI ≥ 25 kg/m(2)) incorporated either aleurone-rich cereal products (27 g/d aleurone) or control products balanced for fiber and macronutrients into their habitual diets for 4 wk. Fasting blood samples were taken at baseline and postintervention (4 wk) from participants. Compared with the control, the aleurone products provided an additional 279 mg/d betaine and resulted in higher plasma betaine (P < 0.001; intervention effect size: 5.2 μmol/L) and lower plasma total homocysteine (tHcy) (P = 0.010; -0.7 μmol/L). Plasma dimethylglycine and methionine, which are products of betaine-mediated homocysteine remethylation, were also higher (P < 0.001; P = 0.027) relative to control. There were no significant effects on plasma choline or B vitamins (folate, riboflavin, and vitamin B-6). However, LDL cholesterol was lower than in the control group (P = 0.037). We conclude that incorporating aleurone-rich products into the habitual diet for 4 wk significantly increases plasma betaine concentrations and lowers tHcy, which is attributable to enhanced betaine-homocysteine methyltransferase-mediated remethylation of homocysteine. Although this supports a role for betaine in the protective effects of whole grains, concomitant decreases in LDL suggest more than one component or mechanism may be responsible.  相似文献   

14.
BACKGROUND: Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. OBJECTIVE: We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. DESIGN: We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. RESULTS: tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 mug/d than in those with intakes >or=400 microg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (>or=15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). CONCLUSIONS: Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption.  相似文献   

15.
Rima Obeid 《Nutrients》2013,5(9):3481-3495
Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.  相似文献   

16.
BACKGROUND: Liver triacylglycerol accumulation and oxidative stress are common in cystic fibrosis (CF) and also occur in choline deficiency. Previously, we showed an association between elevated plasma homocysteine, reduced ratios of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) and of phosphatidylcholine to phosphatidylethanolamine, and phospholipid malabsorption in children with CF. OBJECTIVE: The objective was to address a possible relation between altered methionine-homocysteine metabolism and choline metabolism in children with CF. DESIGN: Children with CF were assigned without bias to supplementation with 2 g lecithin/d (n = 13), 2 g choline/d (n = 12), or 3 g betaine/d (n = 10) for 14 d. Plasma concentrations of methionine, adenosine, cysteine, cysteinyl-glycine, glutathione, glutathione disulfide (GSSG), and fatty acids; SAM:SAH; and red blood cell phospholipids were measured within each group of children with CF before and after supplementation. Plasma from healthy children without CF (n = 15) was analyzed to obtain reference data. RESULTS: Children with CF had higher plasma homocysteine, SAH, and adenosine and lower methionine, SAM:SAH, and glutathione:GSSG than did children without CF. Supplementation with lecithin, choline, or betaine resulted in a significant increase in plasma methionine, SAM, SAM:SAH, and glutathione:GSSG and a decrease in SAH (n = 35). Supplementation with choline or betaine was associated with a significant decrease in plasma SAH and an increase in SAM:SAH, methionine, and glutathione:GSSG. Supplementation with lecithin or choline also increased plasma methionine and SAM. CONCLUSION: We showed that dietary supplementation with choline-related compounds improves the low SAM:SAH and glutathione redox balance in children with CF.  相似文献   

17.
Previous studies showed that chronic ethanol administration inhibits methionine synthase activity, resulting in impaired homocysteine remethylation to form methionine. This defect in homocysteine remethylation was shown to increase plasma homocysteine and to interfere with the production of hepatic S-adenosylmethionine (SAM) in ethanol-fed rats. These changes were shown to be reversed by the administration of betaine, an alternative methylating agent. This study was undertaken to determine additional effects of ethanol on methionine metabolism and their functional consequences. The influences of methionine loading and betaine supplementation were also evaluated. Adult Wistar rats were fed ethanol or a control Lieber-DeCarli liquid diet for 4 wk, and metabolites of the methionine cycle were measured in vitro in isolated hepatocytes under basal and methionine-supplemented conditions. S-Adenosylhomocysteine (SAH) concentrations were elevated in hepatocytes isolated from ethanol-fed rats compared with controls and in hepatocytes from both groups when supplemented with methionine. The addition of betaine to the methionine-supplemented incubation media reduced the elevated SAH levels. The decrease in the intracellular SAH:SAM ratio due to ethanol consumption inhibited the activity of the liver-specific SAM-dependent methyltransferase, phosphatidylethanolamine methyltransferase. Our data indicate that betaine, by remethylating homocysteine and removing SAH, overcomes the detrimental effects of ethanol consumption on methionine metabolism and may be effective in correcting methylation defects and treating liver diseases.  相似文献   

18.
An elevated plasma total homocysteine (tHcy) concentration is a risk factor for cardiovascular disease and for having offspring with a neural-tube defect. Folate is a methyl donor in the remethylation of homocysteine into methionine. Although folic acid supplementation decreases tHcy concentrations, effects of folic acid supplementation on plasma methionine concentrations are unclear. There is also concern that folic acid supplementation negatively affects vitamin B12 status. We studied effects of low-dose folic acid supplementation on methionine and vitamin B12 concentrations in plasma. We also investigated whether baseline plasma methionine and tHcy concentrations correlated with the baseline folate and vitamin B12 status. For a period of 4 weeks, 144 young women received either 500 micrograms folic acid each day, or 500 micrograms folic acid and placebo tablets on alternate days, or a placebo tablet each day. Plasma methionine, tHcy and plasma vitamin B12 concentrations were measured at start and end of the intervention period. Folic acid supplementation had no effect on plasma methionine or plasma vitamin B12 concentrations although it significantly decreased tHcy concentrations. Plasma methionine concentrations showed no correlation with either tHcy concentrations (Spearman rs-0.01, P = 0.89), or any of the blood vitamin variables at baseline. Baseline tHcy concentrations showed a slight inverse correlation with baseline concentrations of plasma vitamin B12 (rs-0.25, P < 0.001), plasma folate (rs-0.24, P < 0.01) and erythrocyte folate (rs-0.19, P < 0.05). In conclusion, low-dose folic acid supplementation did not influence plasma methionine or plasma vitamin B12 concentrations. Furthermore, no correlation between plasma methionine concentrations and the blood folate and vitamin B12 status was shown.  相似文献   

19.
The effects of chronic betaine ingestion were investigated in rats. Rats were fed an experimental diet containing 5% betaine for 4 wk and methionine was intravenously administered. The elevations of plasma homocysteine were assessed by comparing the increments to the initial measured value and the positive incremental area under the plasma homocysteine concentration curve over the 240-min post-methionine-loading period (deltaAUC0-240). In the betaine-ingesting rats, deltaAUC0-240 was significantly lower than in the control group (48% of the control), and the increments of plasma homocysteine were also lower compared with the control, especially 15-30 min after methionine loading. Choline, a precursor of betaine, did not alter the plasma homocysteine elevation. In a definite period immediately after methionine loading, carnitine, a methyl-group-rich amino acid, induced a significant increase of plasma homocysteine, compared to the control. Moreover, plasma homocysteine concentration was significantly decreased by 4 wk of betaine ingestion. Betaine enhanced liver BHMT activity whereas choline and carnitine did not show any effects on BHMT activity. These results suggest that betaine contributes to both the decrease in the plasma homocysteine concentration and the suppression of plasma homocysteine elevation through the activation of liver BHMT.  相似文献   

20.
BACKGROUND: Epidemiologic studies of choline and betaine intakes have been sparse because a food-composition database was not available until recently. The physiologic relevance of a variation in dietary choline and betaine in the general population and the validity of intake assessed by food-frequency questionnaire (FFQ) have not been evaluated. OBJECTIVE: This study was conducted to examine the physiologic relevance and validity of choline and betaine intakes measured by an FFQ. DESIGN: We examined the relations between choline and betaine intakes measured by FFQ and plasma total homocysteine (tHcy) concentrations in 1960 participants from the Framingham Offspring Study. RESULTS: Higher intakes of dietary choline and betaine were related to lower tHcy concentrations independent of other determinants, including folate and other B vitamins. For the lowest and highest quintiles of dietary choline plus betaine, the multivariate geometric means for tHcy were 10.9 and 9.9 mumol/L (P for trend < 0.0001). The inverse association was manifested primarily in participants with low folate intakes (P for interaction < 0.0001). Among participants with folate intakes < or =250 microg/d, the geometric mean tHcy concentrations in the lowest and highest quintiles of choline plus betaine intakes were 12.4 and 10.2 micromol/L (P for trend < 0.0001). Except for choline from phosphatidylcholine, individual forms of choline were inversely associated with tHcy concentrations. CONCLUSIONS: Our findings provide support for a physiologically important variation in choline and betaine intakes in the general population and for the validity of intake measured by FFQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号