首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to efficiently transfer a gene into repopulating hematopoietic stem cells would create many therapeutic opportunities. We have evaluated the ability of particles bearing an alternative envelope protein, that of the feline endogenous virus (RD114), to transduce stem cells in a nonhuman primate autologous transplantation model using rhesus macaques. We have previously shown this pseudotyped vector to be superior to the amphotropic vector at transducing cells in umbilical cord blood capable of establishing hematopoiesis in immunodeficient mice. Gene transfer efficiency as reflected by the number of genetically modified cells in hematopoietic tissues varied among the five monkeys studied from low levels (<1%) in three animals to much higher levels in two (20-60%). An animal that exhibited extremely high levels for several weeks was found by vector genome insertion site analysis to have reconstitution predominantly with a single clone of cells. This variability among animals is in keeping with computer simulations of reconstitution with limiting numbers of stem cells genetically modified at about 10% efficiency. Our studies provide insights into the biology of hematopoietic reconstitution and suggest approaches for increasing stem cell targeted gene transfer efficiency.  相似文献   

2.
3.
OBJECTIVE: Mobilized peripheral blood (PB) progenitors are increasingly used in autologous and allogeneic transplantation. However, the short- and long-term engraftment potential of mobilized PB or bone marrow (BM) has not been directly compared. Although several studies showed that BM-derived Lin(-)CD34(-) cells contain hemopoietic progenitors, no studies have addressed whether Lin(-)CD34(-) cells from mobilized PB contain hemopoietic progenitors. Here, we compared the short- and long-term engraftment potential of CD34(+) cells and Lin(-)CD34(-) cells in BM and PB of normal donors who received 5 days of granulocyte colony-stimulating factor (G-CSF). MATERIALS AND METHODS: 35 x 10(3) CD34(+) or Lin(-)CD34(-) cells from G-CSF mobilized BM and PB of normal donors were transplanted in 60-day-old fetal sheep. Animals were evaluated 2 and 6 months after transplantation for human hemopoietic cells. In addition, cells recovered after 2 months from fetal sheep were serially passaged to secondary and tertiary recipients to assess long-term engrafting cells. RESULTS: Mobilized PB CD34(+) cells supported earlier development of human hemopoiesis than BM CD34(+) cells. When serially transferred to secondary and tertiary recipients, earlier exhaustion of human hematopoiesis was seen for PB than BM CD34(+) cells. A similar degree of chimerism was seen for Lin(-)CD34(-) cells from PB or BM in primary recipients. We again observed earlier exhaustion of human hemopoiesis with serial transplantation of PB than BM Lin(-)CD34(-) cells. CONCLUSIONS: Differences exist in the short- and long-term repopulating ability of cells in PB and BM from G-CSF mobilized normal donors, and this is independent of the phenotype. Studies are ongoing to examine if this reflects intrinsic differences in the repopulating potential between progenitors from PB and BM, or a lower frequency of long-term repopulating cells in PB than BM CD34(+) and Lin(-)CD34(-) cells, that may not be apparent if larger numbers of cells are transplanted.  相似文献   

4.
The therapeutic combination O(6)-benzylguanine (BG) and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) can be used to select for P140K methylguanine-DNA-methyltransferase (P140K MGMT) transduced hematopoietic progenitors both in vitro and in vivo. SarCNU is a new alkylating agent which has advantages over BCNU. We tested the ability of P140K MGMT transduced human CD34(+) cells to resist SarCNU treatment and be selected for in vitro. BG/SarCNU exposure led to an increase in the proportion of transduced cells from 13 to 27%. The IC(90) was increased sixfold by P140K MGMT transduction. These results suggest that SarCNU may be a suitable agent for in vivo selection strategies.  相似文献   

5.
The authors have shown accelerated endothelialization on polyethylene terephthalate (PET) grafts preclotted with autologous bone marrow. Bone marrow cells have a subset of early progenitor cells that express the CD34 antigen on their surfaces. A recent in vitro study has shown that CD34(+) cells can differentiate into endothelial cells. The current study was designed to determine whether CD34(+) progenitor cells would enhance vascular graft healing in a canine model. The authors used composite grafts implanted in the dog's descending thoracic aorta (DTA) for 4 weeks. The 8-mm x 12-cm composite grafts had a 4-cm PET graft in the center and 4-cm standard ePTFE grafts at each end. The entire composite was coated with silicone rubber to make it impervious; thus, the PET segment was shielded from perigraft and pannus ingrowth. There were 5 study grafts and 5 control grafts. On the day before surgery, 120 mL bone marrow was aspirated, and CD34(+) cells were enriched using an immunomagnetic bead technique, yielding an average of 11.4 +/- 5. 3 x 10(6). During surgery, these cells were mixed with venous blood and seeded onto the PET segment of composite study grafts; the control grafts were treated with venous blood only. Hematoxylin and eosin, immunocytochemical, and AgNO(3 )staining demonstrated significant increases of surface endothelialization on the seeded grafts (92% +/- 3.4% vs 26.6% +/- 7.6%; P =.0001) with markedly increased microvessels in the neointima, graft wall, and external area compared with controls. In dogs, CD34(+) cell seeding enhances vascular graft endothelialization; this suggests practical therapeutic applications. (Blood. 2000;95:581-585)  相似文献   

6.
Hofmann WK  de Vos S  Komor M  Hoelzer D  Wachsman W  Koeffler HP 《Blood》2002,100(10):3553-3560
Gene patterns of expression in purified CD34(+) bone marrow cells from 7 patients with low-risk myelodysplastic syndrome (MDS) and 4 patients with high-risk MDS were compared with expression data from CD34(+) bone marrow cells from 4 healthy control subjects. CD34(+) cells were isolated by magnetic cell separation, and high-density oligonucleotide microarray analysis was performed. For confirmation, the expression of selected genes was analyzed by real-time polymerase chain reaction. Class membership prediction analysis selected 11 genes. Using the expression profile of these genes, we were able to discriminate patients with low-risk from patients with high-risk MDS and both patient groups from the control group by hierarchical clustering (Spearman confidence). The power of these 11 genes was verified by applying the algorithm to an unknown test set containing expression data from 8 additional patients with MDS (3 at low risk, 5 at high risk). Patients at low risk could be distinguished from those at high risk by clustering analysis. In low-risk MDS, we found that the retinoic-acid-induced gene (RAI3), the radiation-inducible, immediate-early response gene (IEX1), and the stress-induced phosphoprotein 1 (STIP1) were down-regulated. These data suggest that CD34(+) cells from patients with low-risk MDS lack defensive proteins, resulting in their susceptibility to cell damage. In summary, we propose that gene expression profiling may have clinical relevance for risk evaluation in MDS at the time of initial diagnosis. Furthermore, this study provides evidence that in MDS, hematopoietic stem cells accumulate defects that prevent normal hematopoiesis.  相似文献   

7.
The purpose of this study was to characterize the spatial distribution, number and size of CD34(+) cells in fetal bone marrow. Thin sections of normal fetal bone marrow from lumbar vertebrae were stained using CD34 antibody QBend/10. Sections were used under light microscopy with various eyepiece graticules to make measurements of CD34(+) cells in situ. Results showed that at mid- and late gestation, approximately 2% and 0.5% of fetal bone marrow cells were CD34(+) respectively. The mean distance of CD34(+) cells from the nearest trabecular bone surface was 61 +/- 4 and 46 +/- 4 microm, respectively, for mid- and late gestation. The mean distance to the nearest neighbour was 46 +/- 5 and 105 +/- 15 microm, and the mean distance to the nearest blood vessel was 13 +/- 1 and 17 +/- 2 microm respectively. The concentration of CD34(+) cells in the peripheral region was 6.5 times greater than that at the centre of the sections. Overall, the percentage number of CD34(+) cells decreased with gestational age. The cellular and nuclear diameters of CD34(+) cells remained unchanged throughout mid- and late gestation at 5.4 +/- 0.1 and 3.8 +/- 0.1 microm respectively. This information will be used to calculate the natural background alpha-radiation dose to haemopoietic stem cells.  相似文献   

8.
The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.  相似文献   

9.
We have used a murine retrovirus vector containing an enhanced green fluorescent protein complimentary DNA (EGFP cDNA) to dynamically follow vector-expressing cells in the peripheral blood (PB) of transplanted rhesus macaques. Cytokine mobilized CD34(+) cells were transduced with an amphotropic vector that expressed EGFP and a dihydrofolate reductase cDNA under control of the murine stem cell virus promoter. The transduction protocol used the CH-296 recombinant human fibronectin fragment and relatively high concentrations of the flt-3 ligand and stem cell factor. Following transplantation of the transduced cells, up to 55% EGFP-expressing granulocytes were obtained in the peripheral circulation during the early posttransplant period. This level of myeloid marking, however, decreased to 0.1% or lower within 2 weeks. In contrast, EGFP expression in PB lymphocytes rose from 2%-5% shortly following transplantation to 10% or greater by week 5. After 10 weeks, the level of expression in PB lymphocytes continued to remain at 3%-5% as measured by both flow cytometry and Southern blot analysis, and EGFP expression was observed in CD4(+), CD8(+), CD20(+), and CD16/56(+) lymphocyte subsets. EGFP expression was only transiently detected in red blood cells and platelets soon after transplantation. Such sustained levels of lymphocyte marking may be therapeutic in a number of human gene therapy applications that require targeting of the lymphoid compartment. The transient appearance of EGFP(+) myeloid cells suggests that transduction of a lineage-restricted myeloid progenitor capable of short-term engraftment was obtained with this protocol. (Blood. 2000;95:445-452)  相似文献   

10.
11.
12.
Sandrin V  Boson B  Salmon P  Gay W  Nègre D  Le Grand R  Trono D  Cosset FL 《Blood》2002,100(3):823-832
Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system, and their host range. We have investigated the capacity of a panel of GPs of both retroviral (amphotropic murine leukemia virus [MLV-A]; gibbon ape leukemia virus [GALV]; RD114, feline endogenous virus) and nonretroviral (fowl plague virus [FPV]; Ebola virus [EboV]; vesicular stomatitis virus [VSV]; lymphocytic choriomeningitis virus [LCMV]) origins to pseudotype lentiviral vectors derived from simian immunodeficiency virus (SIVmac251). SIV vectors were efficiently pseudotyped with the FPV hemagglutinin, VSV-G, LCMV, and MLV-A GPs. In contrast, the GALV and RD114 GPs conferred much lower infectivity to the vectors. Capitalizing on the conservation of some structural features in the transmembrane domains and cytoplasmic tails of the incorporation-competent MLV-A GP and in RD114 and GALV GPs, we generated chimeric GPs encoding the extracellular and transmembrane domains of GALV or RD114 GPs fused to the cytoplasmic tail (designated TR) of MLV-A GP. Importantly, SIV-derived vectors pseudotyped with these GALV/TR and RD114/TR GP chimeras had significantly higher titers than vectors coated with the parental GPs. Additionally, RD114/TR-pseudotyped vectors were efficiently concentrated and were resistant to inactivation induced by the complement of both human and macaque sera, indicating that modified RD114 GP-pseudotyped lentiviral vectors may be of particular interest for in vivo gene transfer applications. Furthermore, as compared to vectors pseudotyped with other retroviral GPs or with VSV-G, RD114/TR-pseudotyped vectors showed augmented transduction of human and macaque primary blood lymphocytes and CD34+ cells.  相似文献   

13.
Stead  RB; Kwok  WW; Storb  R; Miller  AD 《Blood》1988,71(3):742-747
Successful retroviral gene transfer into murine hematopoietic stem cells indicates the potential for somatic gene therapy in the treatment of certain human hereditary diseases. We developed a canine model to test the applicability of these techniques to a preclinical model of human marrow transplantation. Previously we reported that canine CFU-GM could be infected with retroviral vectors carrying either the gene for a mutant dihydrofolate reductase (DHFR) or neomycin phosphotransferase (NEO). This study reports six lethally irradiated dogs transplanted with autologous marrow cocultivated with retroviral vector-producing cells. This procedure conferred drug resistance to 3% to 13% of the CFU- GM. Three dogs infected with either the NEO or DHFR virus engrafted, but we detected no drug-resistant CFU-GM. Three dogs were given marrow infected with a DHFR virus and received methotrexate (MTX) as in vivo selection; all three had evidence of engraftment. In the surviving dog, we detected 0.03% to 0.1% MTX-resistant CFU-GM at 3 to 5 weeks posttransplant during in vivo selection. These results indicate that we can reconstitute lethally irradiated dogs with autologous marrow exposed to retroviral vectors and suggest that gene transfer into hematopoietic cells is feasible on a large scale. However, the low- level transient gene expression indicates that considerable obstacles remain before human gene therapy can be considered.  相似文献   

14.
15.
As stromal cell-derived factor-1 (SDF-1), macrophage inflammatory protein-1alpha (MIP-1alpha), and interleukin-8 (IL-8) are implicated in the homing and mobilization of human hematopoietic progenitors (HPC), we hypothesized that these chemokines mediate the migration of HPC across subendothelial basement membranes by regulating production of matrix metalloproteinases (MMPs) and their natural tissue inhibitors (TIMPs).Assays for migration across reconstituted basement membrane (Matrigel) and chemotaxis were carried out using CD34(+) cells derived from normal human bone marrow (BM) and mobilized peripheral blood (PB). Secretion of MMPs and TIMPs was evaluated by zymography and reverse zymography and gene expression by RT-PCR.We found that an SDF-1 gradient increases the chemotaxis of BM and PB CD34(+) cells across Matrigel (BM > PB), which is blocked by inhibitors of MMPs (o-phenanthroline, rhTIMP-1, rhTIMP-2, and anti-MMP-9 and anti-MMP-2 antibodies) but enhanced by tumor necrosis factor-alpha (TNF-alpha), a strong stimulator of MMPs. Preincubation of these cells with SDF-1 stimulated the secretion of MMP-2 and MMP-9 in BM and PB CD34(+) cells but of TIMP-1 and TIMP-2 only in PB CD34(+) cells. Preincubation with MIP-1alpha and IL-8 also stimulated the secretion of MMP-9 and MMP-2 (BM > PB), but with respect to TIMPs, the effect was reversed (PB > BM), resulting in trans-Matrigel migration of BM but not of PB CD34(+) cells.We therefore propose that MMPs and TIMPs are involved in 1) SDF-1-induced chemotaxis of human HPC across subendothelial basement membranes, and 2) MIP-1alpha- and IL-8-stimulated migration of HPC.  相似文献   

16.
Austin TW  Salimi S  Veres G  Morel F  Ilves H  Scollay R  Plavec I 《Blood》2000,95(3):829-836
Using a mouse bone marrow transplantation model, the authors evaluated a Moloney murine leukemia virus (MMLV)-based vector encoding 2 anti-human immunodeficiency virus genes for long-term expression in blood cells. The vector also encoded the human nerve growth factor receptor (NGFR) to serve as a cell-surface marker for in vivo tracking of transduced cells. NGFR(+) cells were detected in blood leukocytes of all mice (n=16; range 16%-45%) 4 to 5 weeks after transplantation and were repeatedly detected in blood erythrocytes, platelets, monocytes, granulocytes, T cells, and B cells of all mice for up to 8 months. Transgene expression in individual mice was not blocked in the various cell lineages of the peripheral blood and spleen, in several stages of T-cell maturation in the thymus, or in the Lin(-/lo)Sca-1(+) and c-kit(+)Sca-1(+) subsets of bone marrow cells highly enriched for long-term multilineage-reconstituting activity. Serial transplantation of purified NGFR(+)c-kit(+)Sca-1(+) bone marrow cells resulted in the reconstitution of multilineage hematopoiesis by donor type NGFR(+) cells in all engrafted mice. The authors concluded that MMLV-based vectors were capable of efficient and sustained transgene expression in multiple lineages of peripheral blood cells and hematopoietic organs and in hematopoietic stem cell (HSC) populations. Differentiation of engrafting HSC to peripheral blood cells is not necessarily associated with dramatic suppression of retroviral gene expression. In light of earlier studies showing that vector elements other than the long-terminal repeat enhancer, promoter, and primer binding site can have an impact on long-term transgene expression, these findings accentuate the importance of empirically testing retroviral vectors to determine lasting in vivo expression.  相似文献   

17.
We compared the efficiency of transduction by an HIV-1-based lentiviral vector to that by a Moloney murine leukemia virus (MLV) retroviral vector, using stringent in vitro assays of primitive, quiescent human hematopoietic progenitor cells. Each construct contained the enhanced green fluorescent protein (GFP) as a reporter gene. The lentiviral vector, but not the MLV vector, expressed GFP in nondivided CD34(+) cells (45.5% GFP+) and in CD34(+)CD38(-) cells in G0 (12.4% GFP+), 48 hr after transduction. However, GFP could also be detected short-term in CD34(+) cells transduced with a lentiviral vector that contained a mutated integrase gene. The level of stable transduction from integrated vector was determined after extended long-term bone marrow culture. Both MLV vectors and lentiviral vectors efficiently transduced cytokine-stimulated CD34(+) cells. The MLV vector did not transduce more primitive, quiescent CD34(+)CD38(-) cells (n = 8). In contrast, stable transduction of CD34(+)CD38(-) cells by the lentiviral vector was seen for over 15 weeks of extended long-term culture (9.2 +/- 5.2%, n = 7). GFP expression in clones from single CD34(+)CD38(-) cells confirmed efficient, stable lentiviral transduction in 29% of early and late-proliferating cells. In the absence of growth factors during transduction, only the lentiviral vector was able to transduce CD34(+) and CD34(+)CD38(-) cells (13.5 +/- 2.5%, n = 11 and 12.2 +/- 9.7%, n = 4, respectively). The lentiviral vector is clearly superior to the MLV vector for transduction of quiescent, primitive human hematopoietic progenitor cells and may provide therapeutically useful levels of gene transfer into human hematopoietic stem cells.  相似文献   

18.
The mechanism(s) underlying the release of stem/progenitor cells from bone marrow into the circulation is poorly understood. We hypothesized that matrix metalloproteinases (MMPs), especially gelatinases, which are believed to participate in the proteolysis of basement membranes and in the migration of leukocytes, may facilitate this process. First, we investigated whether CD34(+) stem/progenitor cells express gelatinases A (MMP-2) and/or B (MMP-9) and whether growth factors and cytokines (granulocyte colony-stimulating factor [G-CSF], granulocyte-macrophage colony-stimulating factor [GM-CSF], stem cell factor [SCF], macrophage colony-stimulating factor [M-CSF], interleukin-3 [IL-3], IL-6, IL-8, and tumor necrosis factor-alpha [TNF-alpha]) are able to modulate their expression. Next, we examined the transmigration of these stem/progenitor cells through reconstituted basement membrane (Matrigel) and its modulation by growth factors and cytokines. CD34(+) cells were obtained from steady-state bone marrow and peripheral blood (from leukapheresis products collected either in steady-state hematopoiesis or after mobilization with G-CSF plus chemotherapy or G-CSF alone). We found that peripheral blood CD34(+) cells, regardless of whether they were mobilized or not, strongly expressed both gelatinases (MMP-2 and MMP-9) in contrast to steady-state bone marrow CD34(+) cells, which did not. However, all the growth factors and cytokines tested could induce MMP-2 and MMP-9 secretion by the latter cells. Moreover, the stimulatory effects of G-CSF and SCF on both MMP-2 and MMP-9 secretion were found to be significantly higher in CD34(+) cells isolated from bone marrow than in those from peripheral blood. In addition TNF-alpha, GM-CSF, and IL-6 increased the secretion of a partially active form of MMP-2. Basal transmigration of bone marrow CD34(+) cells through Matrigel was lower than that of peripheral blood CD34(+) cells (P <.0001), but growth factors and cytokines increased it by 50% to 150%. Positive correlations were established between expression of gelatinases and CD34(+) cell migration (r >.9). The stimulatory effect of G-CSF was significantly greater on the migration of CD34(+) cells from bone marrow than on those from peripheral blood (P =.004). Moreover, CD34(+) cell migration was reduced to approximately 50% by antibodies to MMP-2 and MMP-9, tissue inhibitors of metalloproteinases (rhTIMP-1 and -2), and o-phenanthroline. TNF-alpha-induced gelatinase secretion and migration of CD34(+) cells and of clonogenic progenitors (colony-forming unit-granulocyte-macrophage [CFU-GM], burst-forming unit-erythroid [BFU-E], colony-forming unit granulocyte, erythroid, monocyte, megakaryocyte [CFU-GEMM], and colony-forming unit-megakaryocyte [CFU-MK]) were dose-dependent. Therefore, this study demonstrated that CD34(+) cells that are circulating in peripheral blood express both MMP-2 and MMP-9 and transmigrate through Matrigel. In contrast, CD34(+) cells from steady-state bone marrow acquire similar properties after exposure to growth factors and cytokines, which upregulate expression of gelatinases and transmigration of these cells when they enter the bloodstream. Hence, we suggest that growth factors and cytokines induce release of stem/progenitor cells from bone marrow into peripheral blood during mobilization, as well as during steady-state hematopoiesis, by signaling through gelatinase pathways.  相似文献   

19.
BACKGROUND AND OBJECTIVE: Gene transfer and expression of exogenous genetic information coding for an immunogenic protein in antigen presenting cells (APCs) can promote an immune response. This was investigated by retroviral transfer of a marker gene into CD34+ derived APCs. DESIGN AND METHODS: To achieve long term expression of a specific transgene in APCs, G-CSF mobilized peripheral blood CD34+ cell populations were retrovirally transduced with the bacterial nlsLacZ, a marker gene used here as a model, in the presence of IL-3, IL-6, GM-CSF and SCF prior to being induced to differentiate into dendritic and macrophage cells by GM-CSF and TNF-a. RESULTS: Addition of IL-4 was found to induce dendritic differentiation preferentially by inhibiting proliferation and differentiation of the macrophage lineage. As assessed by X-Gal staining, LacZ gene expression was observed in cells from both the dendritic lineage (CD1a+/CD14-) which still exhibits the highest immunostimulatory activity in mixed lymphocyte reaction and from the macrophage lineage (CD1a-/ CD14+). INTERPRETATION AND CONCLUSIONS: This study sets out the possibility of transducing dendritic and macrophage progenitors present in the CD34+ cell population and in using a marker gene such as nlsLacZ to study gene expression in antigen presenting cell compartments.  相似文献   

20.
AA和MDS患者骨髓CD+34细胞及G-CSFR的表达及意义   总被引:1,自引:1,他引:0  
目的检测再生障碍性贫血(AA)和骨髓增生异常综合征(MDS)患者骨髓CD+34细胞占单个核细胞(MNC)的比率及其表面粒细胞集落刺激因子受体(G-CSFR)的表达率,以探讨二者可能的发病机制.方法用流式细胞术(FCM)检测13例AA、22例MDS及12例非血液病患者骨髓CD+34细胞占MNC的比率及其表面G-CSFR的表达率.结果 AA组与对照组、AA组与MDS组、MDS-难治性贫血(RA)组与MDS-难治性贫血伴原始细胞增多(RAEB)组的骨髓MNC中CD+34细胞比率比较有显著性差异(P<0.05),但G-CSFR的表达率比较无显著性差异(P>0.05).大多数重型AA(SAA)患者(3/4)及很少慢性AA(CAA)患者(1/9)的骨髓MNC中CD+34细胞比率小于0.1%.大多数G-CSFR表达率低(<14%)的MDS患者(7/9)外周血中性粒细胞减少;中性粒细胞减少在G-CSFR表达率正常(14%~28.9%)的患者(1/6)很少见;G-CSFR表达率高(>28.9%)的患者(3/7)也存在中性粒细胞减少.结论骨髓CD+34细胞检测有助于判断AA患者病情及MDS患者的预后,亦可用于鉴别AA和MDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号