首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Merozoites of the human malaria parasite Plasmodium falciparum express on their surface several antigens derived from a polymorphic glycoprotein precursor of Mr 185,000 synthesised earlier on by trophozoites and schizonts. A panel of 18 monoclonal antibodies against a range of different specificities of the precursor was used to characterise its mature products in spontaneously released merozoites. Merozoites released by [35S]methionine or [14C]glucosamine-labelled schizonts, or surface 125I-labelled purified merozoites, were extracted in detergents, and the antigens were detected by immunoprecipitation or Western blotting. We show that a nonglycosylated peptide of Mr 80,000 and two glycosylated fragments of Mr 40,000 and Mr 16,000, all derived from the precursor, are exposed on the surface of the mature merozoite. Precipitations from extracts in different detergents indicate that the 80 and 40 kDa fragments can form a non-covalent complex with each other and two additional major surface antigens of 36 and 22 kDa. Several antibodies react strongly with the complex but not with its dissociated subunits, thus indicating presence of conformational epitopes. Other epitopes are positively mapped on different dissociated subunits by immunoprecipitation and Western blotting. The 80 and 40 kDa antigens each carry a different polymorphic marker epitope, and both of these markers are absent on the 16 kDa fragment. The 40 and 16 kDa glycoproteins share common epitopes, and the latter may be derived from the former fragments. Only epitopes present on the 16 kDa antigen, but not those specific for the larger fragments, are detectable by immunofluorescence in the ring-stage. This indicates that the whole or a part of the 16 kDa antigen remains on the parasite through the invasion process.  相似文献   

2.
Four monoclonal antibodies (MAbs) recognise an antigen localised in the rhoptries of Plasmodium falciparum merozoites using both indirect immunofluorescence assay and immunoelectron microscopy with immunogold labeling. All MAbs immunoprecipitated bands at 140, 130 and 105 kDa from [35S]methionine-labeled parasites; however, one MAb immunoblotted only the 130 kDa protein and another MAb immunoblotted the 105 kDa protein. The affinity purified antigen complex consisted of proteins of 140, 130, 105 and 98 kDa. The individual proteins were subjected to peptide mapping with Staphylococcus aureus V8 protease; the 98 kDa protein was a degradation product of the 105 kDa protein and the 140, 130, and 105 kDa proteins were found to be unrelated. The antigen complex was synthesised at the mid trophozoite stage and was considered to be soluble as judged by release from mature schizonts by freeze/thaw lysis. One of the MAbs inhibited parasite growth and/or merozoite invasion of erythrocytes, in vitro, to a small but significant extent.  相似文献   

3.
Ten monoclonal antibodies (MoAbs) were generated against five surface-exposed proteins (16 kDa, 42 kDa, 44 kDa, 60 kDa, 225 kDa) on merozoites of Babesia bovis. A genomic library constructed in the lambda gt11 expression vector was screened with MoAbs in a plaque immunoassay for identification of clones expressing recombinant surface proteins. Two recombinant clones were identified (lambda Bo44-15 and lambda Bo44-16) that encoded a protein recognized by a MoAb specific for an epitope on the native 44-kDa surface protein. Southern blot analysis using radiolabeled Bo44-15 DNA (1.25 kb) against merozoite DNA and bovine leukocyte DNA confirmed the parasite-specificity of the cloned insert and revealed multiple bands of hybridization with merozoite DNA. Western blot analyses of lambda Bo44-15 lysogen preparations demonstrated that recombinant protein production in this clone was IPTG-induced and that the recombinant molecule was a beta-galactosidase fusion protein. Additionally, recombinant 44-kDa protein, purified by immunoaffinity chromatography, reacted with specific MoAb in Western blot assay indicating that the integrity of the epitope was retained during purification. Immune sera from calves immunized with purified recombinant Bo44-15 protein immunoprecipitated metabolically radiolabeled merozoite protein of 44 kDa indicating that antibody induced by recombinant Bo44-15 protein recognized native 44-kDa protein. Also, these sera reacted with the surface of live merozoites as evidenced by indirect immunofluorescence assay. Serum antibody titers determined by this assay had a wide range.  相似文献   

4.
A cDNA clone expressing an antigen of Plasmodium falciparum, selected by screening an expression library cloned in Escherichia coli, encodes a portion of the protein identified as a glycophorin-binding protein [Kochan et al. (1986) Cell 44, 689-696]. Human antibodies affinity-purified on extracts from this clone were used to characterize the antigen by immunoblotting. This protein was present in all isolates tested, restricted to mature trophozoites and schizonts. It was abundant in culture supernatants at the time of merozoite release but present in minor amounts if at all in merozoites. The pattern of antigen distribution over schizont-infected cells observed by immunoelectron microscopy differed from that of the precursor of the major merozoite surface antigens in that most of the antigen appeared to be located over the erythrocyte cytoplasm without any obvious association with organelles. It thus appears unlikely that this antigen is present on the merozoite surface prior to schizont rupture.  相似文献   

5.
MSA2 is a strain variable blood-stage merozoite surface antigen of Plasmodium falciparum. We have derived the MSA2 nucleotide sequence for four cloned parasite isolates. Comparison with three other published sequences suggests that variation may be limited, and that the architecture of the gene can be conveniently described by segregation into four distinct regions. The N and C terminal regions (Regions 1 and 4) are highly conserved in all seven genes. Six of these seven MSA2 genes can be grouped in a single family, within which variation is largely limited to a region characterized by the presence of tandem repeats (Region 2). We have observed two new forms of repeat in a Gly, Ser, Ala-rich block, and noted the absence of repeat in this block of the CAMP strain. The region downstream of the repeat region (Region 3) is highly conserved within this family. Immunochemical analysis reveals that MSA2 is one of the antigens recognized by immune antibodies eluted from intact merozoites. Regions 2 and 3, expressed as recombinant proteins, are recognized by these antibodies, suggesting that these regions are exposed at the surface of the intact merozoite.  相似文献   

6.
Four monoclonal antibodies produced against Plasmodium falciparum recognize an antigen in merozoites that is localized in rhoptries, as judged by a punctate, double dot fluorescence pattern. All four antibodies bound to the same affinity purified antigen in a two site immunoradiometric assay. Immunoprecipitation of antigen by monoclonal antibody followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis yielded protein bands of 80, 66 and 42 kDa. Western blotting gave bands of 80 and 66 kDa only with three of the antibodies: the fourth did not blot. Based on protease inhibitor data the 66 kDa band is considered to be a cleavage product of the 80 kDa band, but the 42 kDa band does not appear to derive from the latter and may be a coprecipitation product. This group of antigens labels with both [35S]methionine and [3H]histidine. Two of the monoclonal antibodies inhibited merozoite invasion of erythrocytes. One of these inhibitors recognizes a variable epitope, whereas the second recognizes a highly conserved epitope present in all 106 primary isolates of P. falciparum tested from Brazil, Thailand and Papua New Guinea.  相似文献   

7.
The antibody response to an epitope on gamete antigens of Plasmodium falciparum in persons naturally exposed to malaria has been investigated by competitive enzyme-linked immunosorbent assay. The assay detects antibodies to an epitope on the 48/45-kilodalton (kDa) gamete surface antigen by competition with horseradish peroxidase-labeled monoclonal antibody IIC5-B10. Five sera previously shown to immunoprecipitate the 230- and 48/45-kDa antigens significantly inhibited IIC5-B10 binding to an average of 24.2% of control. The one serum which precipitated only the 48/45-kDa antigen did not inhibit IIC5-B10 binding. For 26 sera which were negative by immunoprecipitation, mean binding in the assay was 112.7% of control (pooled London nonimmune sera). Recognition of both 230-kDa and 48/45-kDa antigens was associated with a titer of 1:9 or greater (reciprocal geometric mean titer, 27.6) for inhibition to more than 2 standard deviations from the mean of the negative sera. The results show that the IIC5-B10 binding site is a naturally immunogenic epitope recognized by the majority of persons who had antibodies to the 48/45-kDa protein. An additional finding was enhancement of binding of IIC5-B10 to an average of 154.4% of control by five sera which recognized only the 230-kDa antigen, presumably due to conformational alteration of the gamete antigen complex.  相似文献   

8.
Immunodominant surface antigens of Eimeria acervulina sporozoites and merozoites were identified by 125I-labeling and immunoblotting studies. Using these methodologies 60% of the immunodominant sporozoite antigens and 90% of the immunodominant merozoite antigens were observed to be 125I-surface labeled. However, several major 125I-labeled sporozoite and merozoite proteins did not represent prominent antigens as measured by immunoblotting. Immunodominant surface antigens were found over a wide size range for sporozoites (21-110 kDa) and for merozoites (20-250 kDa). In order to relate these findings to a 'natural' infection, two groups of 3-week old chickens were inoculated 5 times over a 2.5 week period with either a low or high dose of E. acervulina oocysts. The serum response to sporozoites and merozoites, indicated by enzyme-linked immunosorbent assay titers, was rapid; less than or equal to 7 days post-infection with 10(4) oocysts and less than or equal to 3 days with 10(5) oocysts. Many of the antigens identified by immunoblotting of sera from sporozoite- and merozoite-immunized animals were recognized by sera from both high dose and low dose E. acervulina-infected chickens. Furthermore, the sporozoite and merozoite antigens could be grouped into those constituents which induced a serum response early or late in the infection.  相似文献   

9.
We affinity purified, from malaria-immune serum, antibody to the ring-infected erythrocyte surface antigen (RESA), using petri dishes containing a monolayer of Plasmodium falciparum ring-infected erythrocytes. Except for one out of eight samples, the purified antibody positive by RESA-immunofluorescent assay was not inhibitory to the in vitro invasion of merozoites into erythrocytes in three geographically distinct strains of P. falciparum. However, the initial high level of merozoite-inhibiting antibodies of the intact serum samples remained in the immunoglobulin G fraction from which the RESA antibodies had been removed by affinity chromatography. These results suggest that, although in some cases RESA-immunofluorescent assay-positive antibodies may be inhibitory to merozoite invasion, there are more important antibodies capable of merozoite invasion inhibition.  相似文献   

10.
The highly attenuated NYVAC vaccinia virus strain has been utilized to develop a multiantigen, multistage vaccine candidate for malaria, a disease that remains a serious global health problem and for which no highly effective vaccine exists. Genes encoding seven Plasmodium falciparum antigens derived from the sporozoite (circumsporozoite protein and sporozoite surface protein 2), liver (liver stage antigen 1), blood (merozoite surface protein 1, serine repeat antigen, and apical membrane antigen 1), and sexual (25-kDa sexual-stage antigen) stages of the parasite life cycle were inserted into a single NYVAC genome to generate NYVAC-Pf7. Each of the seven antigens was expressed in NYVAC-Pf7-infected culture cells, and the genotypic and phenotypic stability of the recombinant virus was demonstrated. When inoculated into rhesus monkeys, NYVAC-Pf7 was safe and well tolerated. Antibodies that recognize sporozoites, liver, blood, and sexual stages of P. falciparum were elicited. Specific antibody responses against four of the P.falciparum antigens (circumsporozoite protein, sporozoite surface protein 2, merozoite surface protein 1, and 25-kDa sexual-stage antigen) were characterized. The results demonstrate that NYVAC-Pf7 is an appropriate candidate vaccine for further evaluation in human clinical trials.  相似文献   

11.
Monoclonal antibodies binding to the surface of live Mexico isolate Babesia bigemina merozoites have defined 4 parasite-encoded surface antigens (36, 45, 55, and 58 kDa) that are potential targets for immune-mediated neutralization of merozoites. In this study, we have characterized the post-translational modification, antigenic polymorphism, and immunogenicity of these 4 proteins. Monoclonal antibody immunoaffinity-purified 36- and 55-kDa polypeptides were identical in gel electrophoresis to immunoprecipitated radiolabeled proteins, while the purified 45-kDa protein consisted of 2 closely spaced polypeptides with relative molecular weights of 45 and 43 kDa. The 36-, 45-, and 55-kDa proteins were post-translationally modified by incorporation of [3H]glucosamine and [3H]myristic acid, suggesting they are integral membrane proteins secured by a phosphatidylinositol anchor. Cross-reactivity studies with monoclonal and monospecific polyclonal antibodies revealed marked antigenic polymorphism of these 3 glycoproteins among diverse geographic isolates. In contrast, none of the polypeptides bound by anti-p58 monoclonal antibody were glycosylated or myristilated. Both monoclonal and monospecific polyclonal antibodies recognizing p58 bound to similar molecular weight proteins in 4 additional isolates of B. bigemina from Mexico, Puerto Rico, St. Croix, and Kenya, suggesting widespread conservation of p58 immunogenic epitopes among geographic isolates. Calves immunized with immunoaffinity purified gp45, gp55, or p58 antigens were able to neutralize the infectivity of merozoites as indicated by significant reductions in the peak parasitemia after experimental challenge. Precise definition and appropriate presentation of neutralization sensitive epitopes on gp45, gp55, or p58 may enhance the merozoite neutralizing immune response in immunized cattle.  相似文献   

12.
Antibodies against apical membrane antigen 1 (AMA-1) of Plasmodium falciparum inhibit merozoite invasion into erythrocytes. Invasion-inhibitory polyclonal AMA-1 antibodies inhibit secondary proteolytic processing and surface redistribution of AMA-1 on merozoites. We present evidence supporting inhibition of processing and redistribution as probable causes of inhibition of invasion by polyclonal antibodies. Polyclonal anti-AMA-1 was much more inhibitory than monoclonal antibody (MAb) 4G2dc1 in an invasion assay. Although both polyclonal and monoclonal immunoglobulin G (IgG) inhibited secondary processing of the 66-kDa form of AMA-1, only polyclonal IgG caused its anomalous processing, inhibited its redistribution, and cross-linked soluble forms of AMA-1 on merozoites. Moreover, Fab fragments of polyclonal IgG that fail to cross-link did not show the enhancement of inhibitory effect over intact IgG, as observed in the case of Fab fragments of MAb 4G2dc1. We propose that although blocking of biologically important sites is a common direct mode of action of anti-AMA-1 antibodies, blocking of AMA-1 secondary processing and redistribution are additional indirect inhibitory mechanisms by which polyclonal IgG inhibits invasion. We also report a processing inhibition assay that uses a C-terminal AMA-1-specific MAb, 28G2dc1, to detect merozoite-bound remnants of processing (approximately 20 kDa from normal processing to 48 and 44 kDa and approximately 10 kDa from anomalous processing to a 52-kDa soluble form of AMA-1). The ratio of intensity of 10-kDa bands to the sum of 10- and 20-kDa bands was positively correlated with inhibition of invasion by polyclonal antibodies. This assay may serve as an important immunochemical correlate for inhibition of invasion.  相似文献   

13.
To characterize Babesia bovis merozoite antigens that stimulate anamnestic T helper (Th)-cell responses from B. bovis-immune cattle, B. bovis-specific Th-cell lines and clones, previously assigned to different antigenic groups (W. C. Brown, S. Zhao, A. C. Rice-Ficht, K. S. Logan, and V. M. Woods, Infect. Immun. 60:4364-4372, 1992), were tested in proliferation assays against fractionated merozoite antigens. The antigenic groups were determined by the patterns of response of Th clones to different parasite isolates and soluble or membrane forms of merozoite antigen. Soluble antigen fractionated by anion-exchange chromatography or gel filtration by using fast-performance liquid chromatography resolved two or three antigenic peaks, respectively. To enable fractionation of membrane-associated proteins and to resolve more precisely the proteins present in homogenized merozoites, a novel technique of continuous-flow electrophoresis was employed. Merozoite membranes or whole merozoites were homogenized and solubilized in sodium dodecyl sulfate-sample buffer, electrophoresed under reducing conditions on 15% or 10% acrylamide gels, eluted, and collected as fractions. Individual fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tested for the ability to stimulate Babesia-specific CD4+ T-cell lines and clones. CD4+ Th-cell lines from two cattle displayed differential patterns of reactivity and detected numerous peaks of antigenic activity, ranging from < 14 to 76 kDa. Th-cell clones previously categorized into different antigenic groups detected antigenic peaks unique for clones representative of a given group. Antigens of 29, 51 to 52, and 85 to 95 kDa (group I), 40 kDa (group III), 20 kDa (group IV), 58 to 60 kDa (group VI), and 38, 45, and 83 kDa (group VII) were identified in the stimulatory fractions. Immunization of rabbits with selected fractions produced a panel of antisera that reacted specifically on Western blots (immunoblots) with merozoite antigens of similar sizes, leading to the tentative identification of candidate antigens of B. bovis merozoites with molecular masses of 20, 40, 44, 51 to 52 or 95, and 58 to 60 kDa that stimulate proliferation of Th clones representative of five different antigenic groups. These antisera may be useful for isolating recombinant proteins that are immunogenic for Th cells of immune cattle and therefore potentially useful for vaccine development.  相似文献   

14.
Naturally occurring antibody responses to Plasmodium falciparum rhoptry-associated proteins 1 and 2 (RAP-1 and RAP-2) were measured with recombinant and parasite-derived forms of the antigens. For comparative purposes, responses to multiple forms of three other malarial antigens were also examined. The sera of 100 Papua New Guineans were screened for antibodies. Eighty-six and 82% of individuals over 30 years of age had antibodies that recognized parasite-derived RAP-1 and RAP-2, respectively. Importantly, we found that recombinant and native antigens share linear epitopes seen by the human immune system; thus, the recombinant proteins may be adequate human immunogens. However, antibodies affinity purified on recombinant RAP-1 reacted with other antigens in addition to parasite-derived RAP-1. Thus, the antigenicity of RAP-1 may have been overestimated previously. The recognition of RAP-1 and RAP-2 correlated with age and with the recognition of recombinant forms of the ring-infected erythrocyte surface antigen, merozoite surface protein 1, and merozoite surface antigen 2 (MSA2) antigens. Antibodies to these antigens appear to be generated in response to the total exposure to malaria of the host. Antibodies to conserved regions of MSA2 had stronger correlations with both age and the recognition of other antigens than did the full-length recombinant MSA2 molecule. In contrast to results with the other antigens, there was no significant difference in the ages of individuals with a certain antibody titer to the full-length recombinant or parasite-derived MSA2 molecule, but antibodies to these two antigens did correlate with parasitemia. For all antigens tested, antibody levels after two infections can approach the peak levels of antibodies obtained in immune individuals.  相似文献   

15.
Plasmodium falciparum merozoite surface protein 1 (MSP1)(19), the C-terminal fragment of merozoite surface protein 1, is a leading candidate antigen for development of a vaccine against the blood stages of the malaria parasite. Many human and animal studies have indicated the importance of MSP1(19)-specific immune responses. Anti-MSP1(19) antibodies can prevent invasion of red blood cells by P. falciparum parasites in vitro. However, the fine specificity of anti-MSP1(19) antibodies is also important, as only a fraction of monoclonal antibodies (mAbs) have parasite-inhibitory activity in vitro. Human sera from malaria-endemic locations show strong MSP1(19) reactivity, but individual serum samples vary greatly in inhibitory activity. NMR is an excellent method for studying protein-protein interactions, and has been used widely to study binding of peptides representing known epitopes (as well as non-protein antigens) to antibodies and antibody fragments. The recent development of transverse relaxation optimized spectroscopy (TROSY) and related methods has significantly extended the maximum size limit of molecules that can be studied by NMR. TROSY NMR experiments produce high quality spectra of Fab complexes that allow the mapping of epitopes by the chemical shift perturbation technique on a complete, folded protein antigen such as MSP1(19). We studied the complexes of P. falciparum MSP1(19) with Fab fragments from three monoclonal antibodies. Two of these antibodies have parasite-inhibitory activity in vitro, while the third is non-inhibitory. NMR epitope mapping showed a close relationship between binding sites for the two inhibitory antibodies, distinct from the location of the non-inhibitory antibody. Together with a previously published crystal structure of the P. falciparum MSP1(19) complex with the Fab fragment of another non-inhibitory antibody, these results revealed a surface on MSP1(19) where inhibitory antibodies bind. This information will be useful in evaluating the anti-MSP1(19) immune response in natural populations from endemic areas, as well as in vaccine trials. It will also be valuable for optimizing the MSP1(19) antigen by rational vaccine design. This work also shows that TROSY NMR techniques are very effective for mapping conformational epitopes at the level of individual residues on small- to medium-sized proteins, provided that the antigen can be expressed in a system amenable to stable isotope labelling, such as bacteria or yeast.  相似文献   

16.
An integral membrane protein associated with the merozoite surface of Plasmodium falciparum termed merozoite surface antigen 2 (the 45-kDa merozoite surface antigen), occurs in antigenically diverse forms. Here we report the sequences of the MSA 2 gene from two other isolates of P. falciparum. The 43 N-terminal residues and the 74 C-terminal residues of all three MSA 2 sequences are highly conserved, but between these conserved regions there are dramatic differences among the alleles. Instead of the two copies of a 32-amino-acid repeat present in the MSA 2 of isolate FC27, MSA 2 from clone 3D7 and isolate Indochina 1 contain 5 and 12 copies respectively of the four amino acid sequence Gly Gly Ser Ala. The sequences flanking the repeats also differ among the three antigens. The repeats in MSA 2 appear to be immunodominant during natural infection, and antibodies to the repeat regions of different alleles react with a restricted number of parasite isolates.  相似文献   

17.
The erythrocyte binding antigen EBA-175 is a 175-kDa Plasmodium falciparum protein which mediates merozoite invasion of erythrocytes in a sialic acid-dependent manner. The purpose of this study was to produce recombinant EBA-175 polypeptide domains which have previously been identified as being involved in the interaction of EBA-175 with erythrocytes and to determine whether these polypeptides are recognized by malaria-specific antibodies. The eba-175 gene was cloned by PCR from genomic DNA isolated from the 3D7 strain of P. falciparum. The predicted protein sequence was highly conserved with that predicted from the published eba-175 gene sequences from the Camp and FCR-3 strains of P. falciparum and contained the F segment divergent region. Purified recombinant EBA-175 polypeptide fragments, expressed as glutathione S-transferase fusion proteins in insect cells by using the baculovirus system, were recognized by antibodies present in serum from a drug-cured, malaria-immune Aotus nancymai monkey. The fusion proteins were also recognized by antibodies present in sera from individuals residing in areas where malaria is endemic. In both cases the antibodies specifically recognized the EBA-175 polypeptide portion of the fusion proteins. Antibodies raised in rabbits immunized with the recombinant fusion proteins recognized parasite proteins present in schizont-infected erythrocytes. Our results suggest that these regions of the EBA-175 protein are targets for the immune response against malaria and support their further study as possible vaccine components.  相似文献   

18.
To date, the following seven glycosylphosphatidylinositol (GPI)-anchored merozoite antigens have been described in Plasmodium falciparum: merozoite-associated surface protein 1 (MSP-1), MSP-2, MSP-4, MSP-5, MSP-8, MSP-10, and the rhoptry-associated membrane antigen. Of these, MSP-1, MSP-8, and MSP-10 possess a double epidermal growth factor (EGF)-like domain at the C terminus, and these modules are considered potential targets of protective immunity. In this study, we found that surprisingly, P. falciparum MSP-8 is transcribed and translated in the ring stage and is absent from the surface of merozoites. MSP-8 is the only GPI-anchored protein known to be expressed at this time. It is synthesized as a mature 80-kDa protein which is rapidly processed to a C-terminal 17-kDa species that contains the double EGF module. As determined by a combination of immunofluorescence and membrane purification approaches, it appears likely that MSP-8 initially localizes to the parasite plasma membrane in the ring stage. Although the C-terminal 17-kDa fragment is present in more mature stages, at these times it is found in the food vacuole. We successfully disrupted the MSP-8 gene in P. falciparum, a process that validated the specificity of the antibodies used in this study and also demonstrated that MSP-8 does not play a role essential to maintenance of the erythrocyte cycle. This finding, together with the observation that MSP-8 is exclusively intracellular, casts doubt over the viability of this antigen as a vaccine. However, it is still possible that MSP-8 is involved in an early parasitophorous vacuole function that is significant for pathogenesis in the human host.  相似文献   

19.
Monoclonal antibodies prepared against a 50 kDa antigen found in Plasmodium falciparum culture supernatants identify a 126 kDa polypeptide which can be localized by immunofluorescence and immunoelectronmicroscopy at the periphery of the schizonts. This polypeptide is released from the infected erythrocytes by mild saponin lysis and is probably a component of the parasitophorous vacuole. Pulse chase kinetic analysis demonstrated its disappearance from the parasitized red blood cell from 6 to 10 h after being synthesized and the concomitant appearance of the 50 kDa molecule in the culture supernatant. Purification of metabolically labeled, schizont infected cells demonstrated that spontaneous release of merozoites is needed for the processing of the 126 to the 50 kDa whereas reinvasion is not. Polyclonal antibodies were raised in rabbit against affinity purified 126 kDa protein. These antibodies, together with another 126 kDa specific monoclonal antibody have enabled us to characterize two other cleavage products of the 126 kDa antigen in culture supernatants, namely 47 and 18 kDa polypeptides. We believe that the processing of the 126 kDa protein into low molecular weight fragments reflects a proteolytic event which may participate in merozoite release.  相似文献   

20.
The acidic basic repeat antigen (ABRA) of Plasmodium falciparum has been localised on the merozoite surface and in the parasitophorous vacuole. It is one of the antigens enriched in the clusters of merozoites formed with growth inhibitory immune serum and possesses chymotrypsin-like activity. Chymostatin, an inhibitor of chymotrypsin, inhibits malaria invasion as well as autoproteolysis of ABRA. Based on these characteristics of ABRA, it seems important for invasion and should be investigated as a target for vaccine and drug design. For the functional characterisation of this protein, the full-length mature ABRA protein and its fragments with/without the putative protease active site were cloned, expressed and purified from Escherichia coli. The polyclonal serum raised against recombinant ABRA fragment recognised a parasite protein with a mobility of 101 kDa in an immunoblot assay and showed immunofluorescence activity with a schizont-rich preparation of P. falciparum. Using a partially purified fragment containing the putative active site and fluorogenic and chromogenic substrates, we established that the protease activity of ABRA resides in the N-terminal portion of the protein and the highly charged C-terminal part of the protein is not required for this activity. The protease activity of ABRA was inhibited with serine protease inhibitors like chymostatin and phenyl methyl sulfonyl fluoride (PMSF) whereas leupeptin was not able to inhibit this enzyme activity. These results clearly indicated that ABRA is a protease with chymotrypsin-like specificity. This is the first report describing the expression and characterisation of recombinant ABRA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号