首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Investigations of the role of CD4 T lymphocytes in allograft rejection and tolerance have relied on the use of mouse models with a deficiency in CD4 cells. However, in mice treated with depleting monoclonal antibody (mAb) and in MHC class II knockout (KO) mice, there are residual populations of CD4 cells. CD4 KO mice had increased CD4- CD8-TCRalphabeta+ helper T cells, and both strains of KO mice could reject skin allografts at the normal rate. In this study, transgenic mice with no peripheral CD4 cells were the recipients of skin and heart allografts. Results were compared with allograft survival in CD4 and MHC class II KO mice. METHODS: GK5 (C57BL/6 bml mice transgenic for a chimeric anti-CD4 antibody) had no peripheral CD4 cells. These mice, and CD4 and class II KO mice, received BALB/c or CBA skin or cardiac allografts. Some GK5 mice were treated with anti-CD8 mAb to investigate the role of CD8 cells in rejection. CD4 and CD8 cells were assessed by FACS and immunohistochemistry. RESULTS: BALB/c skin on GK5 mice had a mean survival time +/- SD of 24+/-6 days, compared with 9+/-2 days in wild-type mice. Anti-CD8 mAb prolonged this to 66+/-7 days. BALB/c skin survived 10+/-2 days on class II KO and 14+/-2 days on CD4 KO, both significantly less than the survival seen on GK5 recipients (P<0.001). BALB/c hearts survived >100 days in GK5 recipients and in wild-type recipients treated with anti-CD4 mAb at the time of grafting, in contrast to a mean survival time of 10+/-2 days in untreated wild-type mice. Immunohistochemistry revealed that long-term surviving heart allografts from the GK5 recipients had CD8 but no CD4 cellular infiltrate. These hearts showed evidence of transplant vasculopathy. CONCLUSIONS: The GK5 mice, with a complete absence of peripheral CD4 cells, provide the cleanest available model for investigating the role of CD4 lymphocytes in allograft rejection. Prolonged skin allograft survival in these mice compared with CD4 and MHC class II KO recipients was clearly the result of improved CD4 depletion. Nevertheless, skin allograft rejection, heart allograft infiltration, and vascular disease, mediated by CD8 cells, developed in the absence of peripheral CD4 T cells.  相似文献   

2.
A major obstacle to successful organ transplantation in sensitized recipients is antibody-mediated hyperacute rejection. We hypothesized that human recombinant soluble complement receptor type 1 (sCR1), which inhibits activation of the complement cascade at multiple stages, would delay this process. Using a well-established model of hyperacute rejection, 21 Lewis rats each received three successive ACI rat skin grafts which resulted in high serum titers of ACI-specific antibodies. These hypersensitized Lewis rats then received heterotopic ACI cardiac allografts. Immediately prior to allograft reperfusion, sCR1 at 3 mg/kg (n = 11) or an equivalent volume of phosphate-buffered saline (PBS) (n = 10) was administered intravenously. Five minutes following allograft reperfusion, hemolytic complement activity was reduced by 63 +/- 2% (SEM) in the sCR1 group vs 25 +/- 3% in the PBS group (P less than 0.0001, Wilcoxon rank sum test (WRST)). Graft survival in the sCR1 group was prolonged to 32.0 +/- 4.47 hr vs 3.25 +/- 0.81 hr in the PBS group (P less than 0.0001, WRST). Serial histologic examination of allografts showed that sCR1 therapy prevented the early development of luminal platelet thrombi in the allograft coronary vessels. This study demonstrates that a single 3 mg/kg dose of sCR1 significantly prolongs ACI cardiac allograft survival in the hypersensitized Lewis rat recipient. Complement inactivation, mediated by sCR1, may prove useful for transplantation in sensitized recipients.  相似文献   

3.
BACKGROUND: Liver grafts transplanted across a major histocompatibility barrier are accepted spontaneously and induce donor specific tolerance in some species. Here, we investigated whether liver allograft acceptance is characterized by, and depends upon, the presence of donor reactive CD25CD4 regulatory T cells. METHODS: CD25 and CD25CD4 T cells, isolated from CBA. Ca (H2) recipients of C57BL/10 (B10; H2) liver and heart allografts 10 days after transplantation, were transferred into CBA. Rag1 mice to investigate their influence on skin allograft rejection mediated by CD45RBCD4 effector T Cells. RESULTS: Fully allogeneic B10 liver allografts were spontaneously accepted by naive CBA.Ca recipient mice, whereas B10 cardiac allografts were acutely rejected (mean survival time=7 days). Strikingly, however, CD25CD4 T cells isolated from both liver and cardiac allograft recipients were able to prevent skin allograft rejection in this adoptive transfer model. Interestingly, CD25CD4 T cells isolated from liver graft recipients also showed suppressive potency upon adoptive transfer. Furthermore, depletion of CD25CD4 T cells in primary liver allograft recipients did not prevent the acceptance of a secondary donor-specific skin graft. CONCLUSIONS: Our data provide evidence that the presence of CD25CD4 regulatory T cells is not a unique feature of allograft acceptance and is more likely the result of sustained exposure to donor alloantigens in vivo.  相似文献   

4.
CD4+ T-cell-independent rejection of corneal allografts   总被引:3,自引:0,他引:3  
BACKGROUND: Several studies suggest that a significant number of corneal allografts undergo rejection in the absence of CD4 T cells. This study examined the role of CD4 T cell-independent mechanisms of corneal allograft rejection. METHODS: BALB/c corneal allografts were transplanted to C57BL/6 beige nude mice that received either CD8 or CD8 T cells from C57BL/6 CD4 knockout (KO) mice that had rejected BALB/c corneal allografts. Immune effector functions of CD8 or CD8 T cells from C57BL/6 CD4 KO mice were assessed using delayed-type hypersensitivity assays and Annexin V apoptosis assays respectively. RESULTS.: Both CD8 and CD8 T cells from CD4 KO corneal allograft rejector mice mediated corneal allograft rejection following adoptive transfer to nude mice. CD8 T cells, but not CD8 T cells, from CD4 KO mice adoptively transferred donor-specific DTH and induced apoptosis of BALB/c corneal endothelial cells in vitro. Apoptosis of BALB/c corneal endothelial cells was mediated by double negative (DN) T cells, as treatment of CD8 cells from CD4 KO mice with anti-Thy 1.2 plus complement abolished their effector function. CONCLUSION: The results support the proposition that CD4 T cell-independent rejection of corneal allografts can be mediated by either CD8 or CD8 T cells. The CD8 T cells represent a unique DN T cell population that might mediate rejection by either direct cytolysis or by inducing apoptosis of the donor corneal endothelium.  相似文献   

5.
BACKGROUND: Blockade of the CD40 and CD28 pathways is a powerful strategy to inhibit CD4-mediated alloimmune responses. In this study, we examine the relative roles of the CD40 and CD28 pathways on CD4-mediated allograft rejection responses, and further characterize the role of these pathways on CD4+ T-cell activation, priming for cytokine production, and cell proliferation in response to alloantigen in vivo. METHODS: BALB/c skin allografts were transplanted onto C57BL/6 Rag 1-/- recipients reconstituted with CD4 cells from CD28-/- or CD40L-/- donors. The popliteal lymph node assay was used to study the role of these pathways on CD4-cell activation and priming in vivo. To investigate the role of CD40 and CD28 blockade on CD4-cell proliferation, the fluorescein dye carboxyfluorescein diacetate succinimidyl ester was used. We performed heterotopic cardiac transplantation using CD40-/- mice to evaluate the role of CD40 on donor versus recipient cells in CD4-mediated rejection. RESULTS: B6 Rag 1-/- recipients reconstituted with CD28-/- CD4+ T cells acutely rejected allografts (median survival time 15 days), whereas recipients reconstituted with CD40L-/- CD4+ T cells had significantly prolonged survival of BALB/c skin grafts (MST 71 days). CD40L blockade was equivalent to or inferior to CD28 blockade in inhibition of in vivo CD4-cell activation, priming for cytokine production, and proliferation responses to alloantigen. BALB/c recipients depleted of CD8 cells promptly rejected donor B6 CD40-/- cardiac allografts, whereas B6 CD40-/- recipients depleted of CD8 cells had significantly prolonged survival of BALB/c wild-type cardiac allografts. CONCLUSIONS: The CD40/CD40L pathway, but not the CD28/B7 pathway, is critical for CD4-mediated rejection responses, however, the responsible mechanisms remain unclear.  相似文献   

6.
CD8+ memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T‐cell costimulatory pathway in alloreactive CD8+/CD4+ T‐cell activation. CD27‐deficient (CD27?/?) and wild‐type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4+ or CD8+ T cells, suggesting that CD27 is not essential during primary T‐cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27?/? or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor‐type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40‐ but not day 10‐sensitized CD27?/? recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8+ T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27?/? recipients of class I‐ but not class II‐mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8+ memory T cells in acute and chronic allograft rejection.  相似文献   

7.
A series of experiments is presented which compares the survival of cardiac allografts placed in AgB-compatible rats and in AgB-incompatible animals whose immunological capacities were diminished by thymectomy, total body irradiation, or by thymectomy, irradiation, and bone marrow replacement. Cardiac allografts transplanted between rat strains differing at minor AgB loci survived indefinitely, despite immunological challenge by serial-test skin allografts or the adoptive transfer of sensitized lymphoid cells. In animals with major AgB differences, cardiac allografts were rejected acutely within 7 days. Graft survival was increased significantly in animals undergoing neonatal thymectomy, although no effect occurred with adult thymectomy. Grafts transplanted to recipients receiving sublethal doses of irradiation survived for prolonged periods before ultimate rejection, although the cardiac grafts of B rats survived indefinitely. While primary test skin grafts did not affect heart function, second grafts or the adoptive transfer of sensitized lymphocytes caused allograft destruction. Serum from irradiated animals bearing well-functioning cardiac transplants, adoptively transferred into syngeneic recipients of heart grafts, caused slight prolongation of graft survival. These studies emphasized the complexities of both cellular and humoral host responses against organ allografts.  相似文献   

8.
Although CD4-targeted therapy markedly prolongs survival of organ allografts in naive rodents, its effects in primed hosts have not been studied. In our model of accelerated rejection (ACCR) of cardiac Tx in rats, treatment with BWH-4, a CD4 mAb (IgG2a), in the sensitization (between skin and heart Tx) but not in the effector (after cardiac Tx) phase, abrogated fulminant less than 36 hr rejection response and prolonged Tx survival to ca. 11 days. This effect correlated with decreased frequency of circulating CD4+ cells, but it did not depend upon their total depletion. It was also related to BWH-4 mAb-mediated elimination/depression of strong anti-donor humoral responses and cellular responses as determined by lymphocyte-mediated cytotoxicity and mixed lymphocyte reaction and mounted otherwise at the time of engraftment by untreated sensitized hosts. Immunoperoxidase studies of cardiac Tx from BWH-4-conditioned recipients revealed reduced T and B cell activities, reflected in abolition/reduction in deposition of humoral mediators, infiltrating cells, intra-Tx elaboration of interleukin-2 and interferon-gamma, and cell activation. This first report of the successful use of CD4 mAb in sensitized recipients of vascularized organ Tx, stresses the role of CD4+ cells as potential targets for immunosuppression in the sensitization phase of accelerated Tx injury. The beneficial therapeutic effect, probably due to both depletion and functional inhibition of CD4+ T cells, has been achieved by using relatively low doses of BWH-4 mAb.  相似文献   

9.
Recent studies have shown an increased expression of several matrix metalloproteinases (MMP) during cardiac, renal and pulmonary allograft rejection. To further define the roles of MMP-2 and MMP-9 in the pathogenesis of cardiac allograft rejection, BALB/c cardiac allografts were transplanted into MMP-2-deficient (-/-) and MMP-9-/- mice. Allografts rejected by wild-type mice revealed a significant increase in MMP-2 and MMP-9 expression. MMP-2-deficiency significantly prolonged allograft survival time. Functioning allografts harvested from MMP-2-/- mice showed lower cellular infiltration and fibrosis than rejected allografts harvested from MMP-2+/+ mice at the same time. In contrast, MMP-9-deficiency significantly decreased allograft survival time. Functioning allografts harvested from MMP-9+/+ mice showed lower cellular infiltration and fibrosis than rejected allografts harvested from MMP-9-/- mice at the same time. MMP-2-/- recipients showed decreased T-cell alloreactivity mediated by a defect in dendritic cell stimulatory and T-cell responsive capacities. In contrast, MMP-9-/- recipients showed increased T-cell alloreactivity mediated by a significant increased in dendritic cell stimulatory and T-cell responsive capacities. These results indicate that MMP2 and MMP-9 play significantly different roles in the process of cardiac allograft rejection.  相似文献   

10.
The role of humoral immunity in graft rejection in the rat model remains controversial. Passive transfer of cytotoxic alloantibody (CAA) has resulted either in hyperacute rejection or in graft enhancement. This study examines the effect of transfer of CAA on cardiac allograft survival in three rat strain combinations that are fully mismatched at the major histocompatibility (MHC) loci. Strain-specific immune responsiveness in donor-recipient pairs varied from low (Lewis-to-ACI) to high (ACI-to-Lewis) as measured by mixed lymphocyte reactions. CAA was obtained from rats sensitized by three successive skin grafts at weekly intervals. Group 1 (high responder recipients), which consisted of Lewis rats presensitized to ACI and had a lymphocytotoxicity titer of 1:512 to 1:2048, rejected ACI cardiac allografts in 10.8 +/- 7.2 hr compared with 6.5 +/- 0.5 days in naive controls (p less than 0.001). Injection of 1 ml of high-titer CAA into naive Lewis rats immediately after ACI cardiac grafting led to hyperacute rejection of ACI hears in 2.1 +/- 0.8 hr while 1 ml of CAA followed by 2 ml of guinea pig complement (GPC) resulted in even faster rejection (mean survival time (MST) of 23.8 +/- 4.7 min). Injection of 2 ml GPC alone or in combination with 1 ml naive Lewis serum had no effect on graft survival. Multiple pretransplant injections of 1 ml of CAA on days -3, -2,-1, and 0 relative to transplantation resulted in significant prolongation of allograft survival (MST of 10.3 +/- 0.3 days; P less than 0.01). In group 2 (intermediate responder recipients), where Lewis rats were presensitized to WF strain and where cytotoxicity titer was 1:16 to 1:256, the recipients rejected WF hearts in 23.8 +/- 5.8 hr compared with 6.8 +/- 0.8 days in unsensitized control recipients (P less than 0.001). Injection of 1 ml of Lewis anti-WF CAA resulted in prolonged graft survival of 9.7 +/- 3.5 days, while injection of 1 ml of CAA followed by 2 ml of GPC caused hyperacute rejection in 104 +/- 61.7 min. Pretransplant injections of CAA on days -3, -2, -1, and 0 resulted in enhancement, with an MST of 16.3 +/- 1.3 days (P less than 0.001). In group 3 (low responder recipients), ACI presensitized to Lewis developed a cytotoxicity titer of 1:2 to 1:32 and rejected Lewis hearts in 5.3 +/- 0.4 days compared with 10.6 +/- 1.0 days in naive recipients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Islet transplantation is becoming an accepted therapy to cure type I diabetes mellitus. The exact mechanisms of islet allograft rejection remain unclear, however. In vivo CD4(+) and CD8(+) T cell-depleting strategies and genetically altered mice that did not express MHC class I or class II antigens were used to study the allorecognition and effector pathways of islet allograft rejection in different strains of mice, including autoimmunity-prone nonobese diabetic (NOD) mice. In BALB/c mice, islet rejection depended on both CD4(+) and CD8(+) T cells. In C57BL/6 mice, CD8(+) T cells could eventually mediate islet rejection by themselves, but they produced rejection more efficiently with help from CD4(+) T cells stimulated through either the direct or indirect pathway. In C57BL/6 mice, CD4(+) T cells alone caused islet rejection when only the direct pathway was available but not when only the indirect pathway was available. In contrast, in NOD mice, CD4(+) T cells alone, with only the indirect pathway, could mediate islet and cardiac allograft rejection. These findings indicate that different mouse strains can make use of different pathways for T cell-mediated rejection of islet allografts. In addition, they demonstrate that NOD mice, which develop autoimmunity and are known to be resistant to tolerance induction, have an unusually powerful CD4(+) cell indirect mechanism that can cause rejection of both islet and cardiac allografts. These data shed light on the mechanisms of islet allograft rejection in different responder strains, including those with autoimmunity.  相似文献   

12.
BACKGROUND: The relative contributions of the "direct" and "indirect" pathways of CD4 T cell allorecognition in providing help for generating effective humoral and CD8 T cell alloimmunity remain unclear. Here, the generation of alloantibody and cytotoxic CD8 T cell responses to a vascularized allograft were examined in a murine adoptive-transfer model in which help could only be provided by transferred CD4 T cells recognizing alloantigen exclusively through the direct pathway. METHODS: Rejection kinetics and the development of alloantibody and cytotoxic CD8 T cell responses to MHC-mismatched H-2d heart grafts were compared when CD4 T cell help was present (wild-type H-2d recipients), or absent (CD4 T cell deficient, MHC class II-/- H-2b recipients [B6CII-/-]), or available only through the direct pathway (B6CII-/- mice reconstituted with wild-type CD4 T cells). RESULTS: BALB/c allografts were rejected by B6 mice rapidly (median survival time [MST] 7 days) with strong CD8 T cell effector and alloantibody responses, but were rejected by B6CII-/- mice more slowly (MST 23 days), with markedly reduced CD8 T cell responses and no detectable alloantibody. CD4 T cell reconstitution of B6CII-/- recipients accelerated heart graft rejection to near that of wild-type recipients (MST 13 days), with complete restoration of cytotoxic CD8 T cell responses but without detectable IgM or IgG alloantibody. CONCLUSIONS: Different pathways of helper T cell allorecognition are responsible for generating humoral and CD8 T cell alloimmunity. CD4 T cell help provided exclusively through the direct pathway generates strong cytotoxic CD8 T cell responses that effect rapid heart graft rejection.  相似文献   

13.
To further define the role of indirect allorecognition, cardiac allografts from HLA-A2-transgenic (HLA-A2+) C57BL/6 mice were heterotopically transplanted into normal C57BL/6, CD4 T cell-knockout (KO) C57BL/6 mice, CD8 T cell-KO C57BL/6 mice, fully MHC-discordant BALB/c mice (allogeneic control), and HLA-A2+ C57BL/6 mice (syngeneic control). HLA-A2+ grafts were acutely rejected when transplanted into BALB/c mice (mean survival time: 10+/-0.8 days), normal C57BL/6 mice (mean survival time: 16.5+/-2.1 days) as well as CD8-KO mice (mean survival time: 12.8+/-1.3 days). Histopathological analysis revealed classical acute cellular rejection with moderate to severe diffuse interstitial CD4+ and CD8+ cellular infiltrates and significant intra-graft deposition of IgG and complement. In contrast, HLA-A2+ grafts were not rejected when transplanted into CD4-KO mice or HLA-A2+ mice. CD8-KO recipients treated with an anti-CD4 monoclonal antibody, but not with an anti-NK monoclonal antibody, failed to reject their allografts with prolonged administration of antibody (30 days). Spleen cells from mice rejecting HLA-A2+ allografts failed to lyse HLA-A2+ target cells indicating a lack of involvement of CD8+ T cells in the rejection process. In contrast, spleen cells from rejecting animals proliferated significantly to both HLA-A2+ cells and to a peptide derived from the HLA-A2 molecule. Development of anti-HLA-A2 antibodies was observed in all animals rejecting HLA-A2+ allografts. These results suggest that indirect allorecognition of donor MHC class I molecules leads to rejection of cardiac allografts and development of alloantibodies in this unique transplant model in which there is a single MHC discordance between donor and recipient.  相似文献   

14.
The effects of oral administration of major histocompatibility antigens on the alloimmune response have not been investigated. Lymphocytes from inbred LEW (RT1u) rats that were pre-fed allogeneic WF (RT1l) splenocytes exhibited significant antigen specific reduction of the mixed lymphocyte response in vitro and delayed-type hypersensitivity response in vivo, when compared with unfed controls. In an accelerated allograft rejection model, LEW rats were presensitized with BN (RT1n) skin allografts 7 days before challenging them with (LEW x BN)F1 or BN vascularized cardiac allografts. While sensitized control animals hyperacutely reject their cardiac allografts within 2 days, animals prefed with BN splenocytes maintained cardiac allograft survival to 7 days, a time similar to that observed in unsensitized control recipients. This phenomenon was antigen-specific, as third-party WF grafts were rejected within 2 days. Immunohistologic examination of cardiac allografts harvested on day 2 from the fed animals had markedly reduced deposition of IgG, IgM, C3, and fibrin. In addition, there were significantly fewer cellular infiltrates of total white blood cells, neutrophils, macrophages, T cells, IL-2 receptor-positive T cells, and mononuclear cells with positive staining for the activation cytokines IL-2 and IFN-g. On day 6 posttransplant, the grafts from fed animals showed immunohistologic changes typical of acute cellular rejection usually seen in unsensitized rejecting controls. Feeding allogeneic splenocytes prevents sensitization by skin grafts and transforms accelerated rejection of vascularized cardiac allografts to an acute form typical of unsensitized recipients. Oral administration of alloantigen provides a novel approach to down-regulate the specific systemic alloimmune response against histocompatibility antigens.  相似文献   

15.
The contribution of sensitized B lymphocytes to second-set allograft rejection has been relatively ignored despite their regular appearance in rejecting allografts. This study presents evidence that adoptively transferred sensitized B lymphocytes accelerate the rate of acute allograft rejection in a sublethally irradiated rat cardiac allograft model. Donors of reconstituting B lymphocytes were sensitized with three consecutive ACI skin grafts. Transplantation of a heart from an ACI strain donor into a Lewis strain recipient (complete RT1 mismatch) results in rejection in 6.8 +/- 0.3 days. When the allograft donor and recipient are irradiated with 650 cGy prior to transplantation, rejection occurs at 31.5 +/- 3.0 days. Irradiated recipients reconstituted with 10(6) syngeneic sensitized splenic B cells reject their grafts in 20.1 +/- 2.0 days, while reconstitution with 10(6) unsensitized syngeneic B cells has no effect on the rate of rejection (P = 0.0007). These data strongly suggest that sensitized B lymphocytes have a marked accelerating effect on the tempo of allograft rejection.  相似文献   

16.
LBNF1 cardiac allografts are rejected within 36 hr in LEW rats sensitized with BN skin grafts 7 days earlier (acute rejection in unmodified hosts = 8 days). We have studied and compared the function and migration patterns of thymocytes one day after engraftment in sensitized recipients, unmodified hosts, and normal naive rats. Thymocytes from animals experiencing accelerated rejection were more mature and functionally active, as shown by a significant elevation in percentage of OX-44+ (CD37+) cells, increased alloreactivity to BN and WF antigens, and proliferative responses to Con A and exogenous IL-2. However, the cells could neither lyse BN targets in vitro nor trigger rejection of otherwise indefinitely functioning test cardiac allografts in immunologically unresponsive T cell-deficient (B) rats after adoptive transfer. The traffic of 111In-labeled thymocytes was then evaluated. The migration index increased significantly during accelerated graft rejection, with thymocytes preferentially circulating in the blood, penetrating peripheral lymph nodes--and, interestingly, migrating back to the thymus. Thus, immunoresponsive and functionally active thymocytes, which lack the ability to recognize primed specific antigen, appear during accelerated rejection of cardiac allografts in sensitized rats. These cells migrate to the periphery, and then return in large numbers to their site of origin, the thymus. Hence, this study describes a novel behavior of thymocytes in the state of host alloreactivity that is distinct from the physiological one in otherwise normal thymus.  相似文献   

17.
Fan K  Wang H  Wei H  Zhou Q  Kou G  Hou S  Qian W  Dai J  Li B  Zhang Y  Zhu T  Guo Y 《Transplantation》2007,84(6):746-754
BACKGROUND: Previous studies have shown that blockade of LIGHT, a T-cell costimulatory molecule belonging to the tumor necrosis factor (TNF) superfamily, by soluble lymphotoxin beta receptor-Ig (LTbetaR-Ig) inhibited the development of graft-versus-host disease. The cardiac allografts were significantly prolonged in LIGHT deficient mice. No data are yet available regarding the role of the LIGHT/HVEM pathway in more stringent fully allogeneic models such as skin and islet transplantation models. METHODS: Streptozotocin-induced chemical diabetic BALB/C mice underwent transplantation with allogeneic C57BL/6 islets and were treated with LTbetaR-Ig, CTLA4-Ig or a combination of both in the early peritransplant period. RESULTS: Administration of CTLA4-Ig or LTbeta R-Ig alone only increased graft survival to 55 days and 27 days respectively, whereas simultaneous blockade of both pathways significantly prolonged the islet allograft survival for more than 100 days. Long-term survivors were retransplanted with donor-specific (C57BL/6) islets and the grafted islets remained functional for more than 100 days. All of islet allografts were protected against rejection when the mixtures of 1x10(6) CD4+ T cells from tolerant mice and islet allografts were cotransplanted under the renal capsule of the na?ve BALB/c recipients. CONCLUSIONS: These data indicate that: 1) a synergistic effect for prolonged graft survival can be obtained by simultaneously blocking LIGHT and CD28 signaling in the stringent model of islet allotransplantation; 2) development of donor-specific immunological tolerance is associated with the presence of regulatory T-cell activity; and 3) local cotransplantation of the allografts with the regulatory T cells can effectively prevent allograft rejection and induce donor-specific tolerance in lymphocytes-sufficient recipients.  相似文献   

18.
The role of B7 family members CD80 and CD86 in providing costimulatory signals to T cells is well established. Interestingly, previous studies show that host CD80/CD86 expression is required for cardiac allograft rejection. However, the role for host costimulation by CD80/CD86 molecules for the rejection of neovascularized islet allografts and xenografts is unknown. The purpose of this study was to determine whether islet allografts and/or rat islet xenografts required host CD80/CD86 molecules for acute rejection. Streptozotocin-induced diabetic C57Bl/6 (B6, H-2(b)) or B6 CD80/CD86 double-deficient mice were grafted with allogeneic BALB/c (H-2(d)) islet allografts or with WF (RT1(u)) islet xenografts. Nondiabetic B6 mice were grafted with BALB/c heterotopic cardiac allografts. Consistent with previous reports, BALB/c islet allografts were acutely rejected in wild-type B6 mice could survive long-term (>100 days) in B6 CD80/CD86-deficient animals. In stark contrast, both islet allografts and WF rat islet xenografts demonstrated acute rejection in both control B6 and in B6 CD80/CD86 deficient hosts. In conclusion, varied studies imply that the inherent pathways for rejecting primarily vascularized versus cellular allografts or xenografts may be distinct. The present study illustrates this concept by showing a marked difference in the role of host-derived CD80/CD86 costimulatory molecules for cardiac allograft versus islet allograft/xenograft rejection in vivo. Although such costimulation is rate limiting for cardiac allograft rejection, these same molecules are not necessary for acute rejection of either islet allografts or xenografts.  相似文献   

19.
Otomo N  Motoyama K  Yu S  Shimizu Y  Margenthaler J  Tu F  Flye MW 《Surgery》2000,128(2):206-212
BACKGROUND: Tolerance to cardiac allografts can be induced in mice and rats by the injection of donor alloantigen into the thymus in combination with a CD4 T-cell-depleting antibody. CD8(+) cells in these animals are hyporesponsive to graft-specific alloantigens. Most of the CD8(+) T cells in the transgenic 2C mouse express a T-cell receptor specific for the class I major histocompatibility complex L(d+) locus. This study was designed to determine whether the adoptive transfer of these 2C T cells could precipitate rejection of a tolerant, completely major histocompatibility complex-mismatched L(d+) or L(d-) heart. METHODS: C57BL/6 mice (L(d-)) were given 10 x 10(6) cells of BALB/c (L(d+)) or dm2 (BALB/c background lacking L(d) [L(d-)]) splenocytes intrathymically and GK1. 5 (10 mg/kg) intraperitoneally. Twenty-one days later, BALB/c or dm2 hearts were transplanted. On the day of transplantation or after long-term allograft acceptance, recipients received naive 2C cells or 2C cells sensitized by in vitro mixed lymphocyte culture with BALB/c (L(d+)). RESULTS: Mean survival time of BALB/c cardiac allografts in untreated C57BL/6 mice was 7.3 days, although 73% of the mice that were pretreated with BALB/c splenocytes IT plus GK1.5 accepted the donor antigen-specific heart allografts indefinitely. All recipients that were pretreated with the intrathymic plus GK1.5 and that were injected with naive 2C cells at the time of heart transplantation experienced rejection of the BALB/c (L(d+)), but not the dm2 (L(d-)) hearts. In contrast, naive 2C cells could not reject tolerant (>30 days acceptance) BALB/c (L(d+)) hearts. 2C cells sensitized in vitro against L(d) were able to reject established BALB/c hearts but could not reject the L(d-) dm2 hearts. CONCLUSIONS: L(d)-specific 2C T-cell receptor transgenic T cells that are adoptively transferred to recipients will precipitate the rejection of accepted hearts that express class I L(d+) in mice rendered tolerant by an intrathymic injection of alloantigen plus anti-CD4 monoclonal antibodies.  相似文献   

20.
Protection against humoral injury mediated by donor‐specific antibodies (DSA), also known as accommodation, may allow for long‐term allograft survival in presensitized recipients. In the present study, we determined the role of complement in renal allograft accommodation in donor skin‐presensitized nonhuman primates under conventional immunosuppression. Donor skin allografts were transplanted to presensitized recipients 14 days prior to renal transplantation. Renal allografts not receiving any immunosuppressive treatment developed accelerated rejection with predominantly humoral injury, which was not prevented using conventional cyclosporine (CsA) triple therapy. Inhibition of complement activation with the Yunnan‐cobra venom factor (Y‐CVF) successfully prevented accelerated antibody‐mediated rejection and resulted in successful accommodation and long‐term renal allograft survival in most presensitized recipients. Accommodation in this model was associated with the prevention of the early antibody responses induced against donor antigens by complement inhibition. Some antiapoptotic proteins and complement regulatory proteins, including Bcl‐2, CD59, CD46 and clusterin, were upregulated in the surviving renal allografts. These results suggest that the complement inhibition‐based strategy may be valuable alternative in future clinical cross‐match positive or ABO‐incompatible transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号