首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drugs that selectively inhibit the serotonin transporter (SERT) are widely prescribed for treatment of depression and a range of anxiety disorders. We studied the time course of changes in tryptophan hydroxylase (TPH) in four raphe nuclei after initiation of two different SERT inhibitors, citalopram and fluoxetine. In the first experiment, groups of Sprague–Dawley rats received daily meals of rice pudding either alone (n=9) or mixed with citalopram 5 mg/kg/day (n=27). Rats were sacrificed after 24 h, 7 days or 28 days of treatment. Sections of dorsal raphe nucleus (DRN), median raphe nucleus (MRN), raphe magnus nucleus (RMN) and caudal linear nucleus (CLN) were processed for TPH immunohistochemistry. Citalopram induced a significant reduction in DRN TPH-positive cell counts at 24 h (41%), 7 days (38%) and 28 days (52%). Similar reductions in TPH-positive cell counts were also observed at each timepoint in the MRN and in the RMN. In the MRN, citalopram resulted in significant reductions at 24 h (26%), 7 days (16%) and 28 days (23%). In the RMN, citalopram induced significant reductions of TPH-positive cell counts at 24 h (45%), 7 days (34%) and 28 days (43%). By contrast, no significant differences between control and treatment groups were observed in the CLN at any of the time points that we studied. To investigate whether these changes would occur with other SERT inhibitors, we conducted a second experiment, this time with a 28-day course of fluoxetine. As was observed with citalopram, fluoxetine induced significant reductions of TPH cell counts in the DRN (39%), MRN (38%) and RMN (41%), with no significant differences in the CLN. These results indicate that SERT inhibition can alter the regulation of TPH, the rate limiting enzyme for serotonin biosynthesis. This persistent and regionally specific downregulation of serotonin biosynthesis may account for some of the clinical withdrawal symptoms associated with drugs that inhibit SERT.  相似文献   

2.
Orexin (hypocretin)-containing neurons in the perifornical hypothalamus project to widespread regions of the brain, including the dorsal and median raphe nuclei [Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996-10015; Wang QP, Koyama Y, Guan JL, Takahashi K, Kayama Y, Shioda S (2005) The orexinergic synaptic innervation of serotonin- and orexin 1-receptor-containing neurons in the dorsal raphe nucleus. Regul Pept 126:35-42]. Orexin-A or orexin-B was infused by reverse microdialysis into the dorsal raphe nucleus or median raphe nucleus of freely behaving rats, and extracellular serotonin was simultaneously collected by microdialysis and analyzed by high-performance liquid chromatography. We have found that orexin-A produced a dose-dependent increase of serotonin in the dorsal raphe nucleus, but not in the median raphe nucleus. However, orexin-B elicited a small but significant effect in both the dorsal raphe nucleus and median raphe nucleus. Orexins may have regionally selective effects on serotonin release in the CNS, implying a unique interaction between orexins and serotonin in the regulation of activities including sleep-wakefulness.  相似文献   

3.
Extracellular single unit recordings were made in the median raphe nucleus from rats anaesthetized with urethane. Spontaneous firing as well as orthodromic and antidromic responses to stimulation of the fornix and the medial septum were studied. One hundred and twelve units (out of a total of 355) with a regular spontaneous firing rate of 0.2-3 spikes/s were classified as serotonin-containing neurons. Fifty nine of them were antidromically invaded from either the fornix or the medial septum (conduction velocity, 0.8 m/s) and 7 additional neurones from both the fornix and the medial septum. Antidromic action potentials were followed by a period of decreased probability of firing, that was already present below threshold for antidromic invasion, were proportional to the stimulation intensity and had a latency similar to orthodromic inhibition. No preferential topographical distribution within the median raphe nucleus was observed for the serotonin neurones, even those invaded antidromically. Twenty six neurones with a clear-cut anatomical location around the borders of the median raphe nucleus showed a spontaneous rhythmic activity (4-20 spikes/s) characterized by the presence of extremely prolonged silent periods (up to 5 min). Only one of these neurones was invaded antidromically from the medial septum and none from the fornix. Of the remaining non-serotonin neurones, 28 showed a very low firing rate consisting of single action potentials every 10-60 s while 189 had a spontaneous activity of 6-30 spikes/s. Regardless of their firing rate they were all antidromically invaded from the fornix and/or the medial septum and had a conduction velocity of 5 m/s. These experiments demonstrate the electrophysiological heterogeneity of the neuronal population of the median raphe nucleus, the presence of strong projections of both putative serotonin and non-serotonin neurones to the medial septum and, via the fornix, to the hippocampus, and the existence of axonal branching in both types of neurones.  相似文献   

4.
We have studied the localization of serotonin- and non-serotonin-containing cell bodies in the midbrain raphe nuclei that project to the entorhinal area and the hippocampal formation in the rat brain, using the technique of combined retrograde fluorescent tracing and immunohistochemistry on the same tissue section. The branching properties of these neurons were studied by retrograde double labelling using two fluorochromes which emit fluorescence with different spectral characteristics. After injections of granular blue or propidium iodide into the medial entorhinal area, retrogradely-labelled cells were found situated bilaterally in the caudal half of the dorsal raphe nucleus, the medial part of the median raphe and throughout the rostrocaudal extension of the nucleus reticularis tegmentipontis. Injections placed successively more laterally in the entorhinal area labelled progressively less cells contralaterally in the dorsal raphe and the reticular tegmental nucleus of the pons. After fluorochrome injections into the dorsal part of the hippocampal formation, retrogradely-labelled cells were found in the caudal part of the dorsal raphe, in the peripheral part of the median raphe and to a minor extent in the medial part of this nucleus, but not in the nucleus reticularis tegmentipontis. The experiments with double retrograde fluorescent tracing showed that the raphe nuclei do not send bilateral projections to the entorhinal area in spite of the fact that many of these cells are located contralateral to the injected hemisphere in single labelling experiments. Injections of the fluorochromes into the entorhinal area and hippocampal formation showed that at least 10% of the raphe cells project to both areas simultaneously. Analysis of sections incubated with antiserum to serotonin showed that a majority of the retrogradelylabelled versus serotonin-immunoreactive cells was found to vary within different parts of the individual raphe nuclei: the ventromedial part of the dorsal, the medial part of the median and the nucleus reticularis tegmentipontis being the highest.The findings indicate that both serotonin- and non-serotonin-containing neurons in the raphe innervate the hippocampal region, that these projections may be crossed but not bilateral, and that the same neuron in the raphe may influence the neural activity in the entorhinal area and the hippocampus simultaneously.  相似文献   

5.
K. Elekes 《Neuroscience》1978,3(1):49-58
Uptake of [3H]serotonin and [3H]dopamine has been investigated in the central nervous system of the marine mussel, Mactra stultorum L. by means of light and electron microscopic autoradiography. It was established that among the axon profiles of the neuropil of the ganglia, axons containing dense-core vesicles with 700–1500Ådiameter play the primary role in the uptake of both serotonin and dopamine. Although the nerve cell bodies in the cortical layer were not extensively labelled, glial cells and processes in this layer took up large amounts of the labelled amines.This autoradiographic study shows that transmitter re-uptake is a possible means of transmitter inactivation in the central nervous system of marine mussels and that glial elements might also participate in the uptake and inactivation of transmitter.  相似文献   

6.
The effect of the equimolar doses (6, 20 and 60 nmol) of either adrenaline (AD) or noradrenaline (NA) microinjected into the median raphe nucleus (MR) on feeding behavior of food-restricted rats (15 g/day/rat) was investigated. The data indicated that 20 nmol AD microinjection, but not NA, into the MR decreased the animal food intake. This hypophagic effect induced by AD may be ascribed to a feeding bout conclusion (satiation process) and not to any changes in non-ingestive behaviors induced by drug microinjection. Since equimolar doses of NA failed to change the animal feeding behavior, it is possible to say that AD-induced hypophagia may be due to either changes in tonic stimulatory control exerted by endogenous noradrenaline on MR or to AD-β2 receptor activation in the MR. We claim that such activation may be much more importantly exerted by adrenaline-containing afferents to MR neurons involved with ingestive behavior than by noradrenergic inputs.  相似文献   

7.
Serotonin neurons in the dorsal raphe nucleus were identified using an antibody to a serotonin-bovine serum albumin conjugate and the peroxidase anti-peroxidase method. Nerve cell bodies showing serotonin-like immunoreactivity ranged in size from 15 to 22 micron in diameter; their dendrites were also immunoreactive. Immunostaining was present in the cytoplasmic matrix, outer membranes of mitochondria, rough endoplasmic reticulum, multivesicular bodies and dense-cored vesicles. Heavily immunoreactive axonal varicosities contained small round vesicles (18-35 nm) and larger dense-cored vesicles (50-90 nm). Both unmyelinated (0.2-0.5 micron) and myelinated (0.8-1.1 micron) serotonin-like immunoreactive axons were found, often interspersed within bundles of similar caliber unlabeled axons. Serotonin-like immunoreactive somata and dendrites were postsynaptic to numerous unlabeled terminals that contained either (a) clear round vesicles (18-25 nm) with many small dense-cored vesicles (30-50 nm), (b) clear round vesicles (18-25 nm) with large dense-cored vesicles (90-110 nm) or (c) clear round vesicles (18-25 nm) with or without flat vesicles. In addition pairs of unlabeled terminals formed crest synapses onto serotonin-like immunoreactive dendritic spines. This variety of unlabeled terminals making contact with serotonin-like immunoreactive elements suggests that several neuronal systems with possibly different transmitters may regulate serotonin raphe neurons. We occasionally observed serotonin-like immunoreactive dendrites and terminals in apposition to other serotonin-like immunoreactive dendrites with membrane specializations at the site of contact. This might represent a possible site for the self inhibition of serotoninergic neurons reported in physiological studies of the serotonin system in the dorsal raphe nucleus.  相似文献   

8.
The distribution of serotonin-containing nerve cell bodies, fibers and terminals in the lizard Varanus exanthematicus was studied with the indirect immunofluorescence technique, using antibodies to serotonin. Most of the serotonin-containing cell bodies were found in the midline, in both of the raphe nuclei, i.e. the nuclei raphes superior and inferior. A considerable number of more laterally shifted serotonergic neurons was found particularly at three levels of the brain stem, viz. in the caudal mesencephalic tegmentum, at the isthmic level, and over a long distance in the medulla oblongata. These laterally situated serotonin-positive neurons were partly found within the confines of the substantia nigra, the nucleus reticularis superior and the lateral part of the nucleus reticularis medius and ventrolateral part of the nucleus reticularis inferior, respectively. No serotonergic cell bodies were found in the spinal cord. In the brain stem a dense serotonergic innervation was observed in all of the motor nuclei of the cranial nerves, in two layers of the tectum mesencephali, in the nucleus interpeduncularis pars ventralis, the nucleus profundus mesencephali pars rostralis, the periventricular grey, the nucleus parabrachialis, the vestibular nuclear complex, the nucleus descendens nervi trigemini, the nucleus raphes inferior, and parts of the nucleus tractus solitarii. Descending serotonergic pathways could be traced into the spinal cord via the dorsolateral, ventral and ventromedial funiculi, and were found to innervate mainly three parts of the spinal grey throughout the spinal cord, i.e. the dorsal part of the dorsal horn, the motoneuron area in the ventral horn, and the intermediate zone just lateral to the central canal. The results obtained in the present study suggest a close resemblance of the organization of the serotonergic system in reptiles and mammals, especially as to the serotonergic innervation of the spinal cord.  相似文献   

9.
C. Köhler 《Neuroscience》1984,13(3):667-680
The distribution of serotonin binding sites was studied in the rat hippocampal region by using contact-film autoradiography after in vitro incubations of brain sections with 5-[3H]hydroxytryptamine, [3H]spiperone, and [3H]ketanserin, respectively. Biochemical studies of the 5-[3H]hydroxytryptamine binding to sections cut through the hippocampal region showed that at saturating concentrations of 5-[3H]hydroxytryptamine (2-2.5 nM) the specific binding was at least 50% of the total. The 5-[3H]hydroxytryptamine binding sites were found to be heterogeneously distributed within the hippocampal region with the highest densities present in the following parts: layers I and II and layers IV through VI of the entorhinal area, the radial layer of the subiculum and subfield CA1 of the Ammon's horn and the molecular layer of the area dentata. Moderate to low densities of binding was observed in layer III of the entorhinal area, the pre- and parasubiculum, the stratum pyramidale of the Ammon's horn, and the granular cell layer of the area dentata. Removal of the 5-hydroxytryptamine nerve terminals by systemic injections of the 5-hydroxytryptamine neurotoxin parachloroamphetamine resulted in no detectable reductions of 5-[3H]hydroxytryptamine binding in any brain region. Lesions of hippocampal cell bodies by intrahippocampal injections of ibotenic acid prevented the binding of 5-[3H]hydroxytryptamine within the area of the cell loss. Comparisons between the distribution of 5-hydroxytryptamine immunoreactive nerve terminals and the 5-[3H]hydroxytryptamine binding sites showed that in some areas of sparse 5-hydroxytryptamine innervation the 5-[3H]hydroxytryptamine binding was close to background (e.g. the pyramidal cell layer, the stratum lucidum) whereas in areas with little 5-[3H]hydroxytryptamine binding (e.g. layer III of the lateral entorhinal area, the presubiculum) a very dense 5-hydroxytryptamine innervation was found. The hippocampal 5-[3H]hydroxytryptamine binding was displaced neither by ketanserin (1 microM) nor by spiperone (1 microM), two drugs that bind to cortical 5-hydroxytryptamine2 receptors in the rat brain. Furthermore, the pattern of hippocampal [3H]spiperone binding differed considerably from that of 5-[3H]hydroxytryptamine. The [3H]ketanserin binding in the hippocampal region did not exceed background levels, except in the hilus of area dentata in the ventral hippocampus and entorhinal layer VI at the same level, where moderate binding was found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Evidence for a projection from the dorsal raphe nucleus to the substantia nigra was obtained by the demonstration of reactive perikarya in the dorsal raphe nucleus after injections of horseradish peroxidase into the substantia nigra of the rat. No labelled cells were observed in the median raphe nucleus. Stereotaxic injections of [3H]leucine into the dorsal raphe nucleus resulted in the appearance of autoradiographic grains over both the zona compacta and zona reticulate of the substantia nigra, although the concentration of grains was higher over the zona compacta. Electrolytic lesions of the dorsal raphe nucleus reduced nigral and striatal 5-hydroxytryptamine content by 61.5 and 70% respectively. Stimulation of the dorsal raphe nucleus was found to inhibit the unit activity of cells in both the zona compacta and zona reticulate of the substantia nigra and this inhibition could be blocked by 60–72 h pretreatment with p-chlorophenylalanine. Stimulation of the median raphe nucleus produced no consistent effects upon nigral unit activity. para-Chlorophenylalanine pretreatment did not significantly affect the rate of striatal dopamine depletion produced by injections of α-methyl-para-tyrosine, suggesting that the serotonergic raphe-nigral projection exerts a phasic rather than a tonic inhibitory influence over the dopaminergic neurons of the nigro-striatal projection.The results are discussed with reference to the possibility that the projections of the dorsal raphe nucleus to the substantia nigra and the striatum may mediate some of the interactions between central serotonergic and dopaminergic mechanisms.  相似文献   

11.
Several studies have shown that the 5-hydroxytryptamine (serotonin, 5-HT) system is severely affected after degeneration of nigrostriatal dopaminergic neurons. In the present study, we examined the changes in the firing rate and firing pattern of the dorsal and median raphe nuclei (DRN and MRN) 5-HT neurons, and the effect of the selective 5-HT1A receptor agonist (R)-(+)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) and antagonist (N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-2-pyridylcyclohexane carboxamide maleate salt (WAY-100635) on the neuronal firing in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta by using extracellular recording. The unilateral lesion of the nigrostriatal pathway significantly increased the mean firing rate of DRN and MRN 5-HT neurons compared with normal rats, and the firing pattern of these neurons also changed significantly towards a more bursty one. The lower dose of 8-OH-DPAT, 4 μg/kg (cumulative doses, i.v.), completely inhibited the firing activity of all DRN and MRN 5-HT neurons examined in normal and sham rats. In contrast to normal and sham rats, only the higher doses of 8-OH-DPAT, 128 and 64 μg/kg, completely inhibited the firing rate of DRN and MRN 5-HT neurons in 6-OHDA-lesioned rats, respectively. Furthermore, the local application of 8-OH-DPAT, 1.5 μg, in the DRN completely inhibited the firing rate of 5-HT neurons in normal and sham rats, while having no effect on firing rate in the lesioned rats. Altogether, these results indicate that lesion of the nigrostriatal pathway leads to hyperactivity of DRN and MRN 5-HT neurons, suggesting the implication of the DRN and MRN in the pathophysiology of Parkinson's disease, and the decreased response of these 5-HT neurons to 5-HT1A receptor stimulation, reflecting 5-HT1A receptor dysfunction in 6-OHDA-lesioned rats.  相似文献   

12.
In chronically implanted awake rats, microinjections of chlordiazepoxide (5 × 10?7M) into the dorsal raphésignificantly attenuated the inhibition of lever-pressing for food elicited by a signal of punishment. This effect is abolished by prior application of 5,7-dihydroxytryptamine into the dorsal raphé(3 weeks after the infusion of the neurotoxin, dorsal raphétryptophan hydroxylase activity was reduced to 25% of control values). Furthermore, the disinhibitory effect of intra raphéchlordiazepoxide can be mimicked or potentiated by intra raphédorsalis application of serotonin (10?7 or 10?8 M, respectively). Further evidence for a crucial interaction between benzodiazepines and serotoninergic processes are provided by in vitro experiments showing that chlordiazepoxide or diazepam (10?5 M) are able to facilitate the K+ -evoked [3H]serotonin release from rat midbrain slices. Finally, a high density of [3H]flunitrazepam binding sites was found in the dorsal (and the median) raphénucleus, the Kd and Bmax values being not altered by prior infusion of 5,7-dihydroxytryptamine.These in vitro data suggest possible means by which intra raphé(and perhaps peripherally administered) benzodiazepines may affect the activity of serotoninergic neurons and thereby produce their effects on experimental anxiety.  相似文献   

13.
Fathers play a substantial role in infant care in a small but significant number of mammalian species, including humans. However, the neural circuitry controlling paternal behavior is much less understood than its female counterpart. In order to characterize brain areas activated by paternal care, male California mice were separated from their female mate and litter for 3 h and then exposed to a pup or a control object (a glass pebble with the approximate size and oblong shape of a newborn pup) for 10 min. All males receiving a pup showed a strong paternal response towards it, whereas males receiving a pebble interacted with it only occasionally. Despite the clear behavioral differences, exposure to a pup did not increase Fos-like immunoreactivity (Fos-LIR) compared to a pebble in brain areas previously found to be associated with parental care, including the medial preoptic nucleus and medial bed nucleus of the stria terminalis. Pup exposure did, however, significantly increase Fos-LIR in the lateral habenula (LHb) and in predominantly serotonergic neurons in the caudal dorsal raphe nucleus (DRC), as compared to pebble exposure. Both the LHb and DRC are known to be involved in the behavioral responses to strong emotional stimuli; therefore, these areas might play a role in controlling parental behavior in male California mice.  相似文献   

14.
Approximately 5 segments of lumbo-thoracic spinal cord together with connected dorsal root ganglia were removed from 1-11-day-old rats and maintained in vitro. Dorsal root afferents, recorded from the ganglion and stimulated at the root entry zone, had conduction velocities typical of unmyelinated fibers (less than 2 m/s). The spinal terminals of individual afferents showed increased excitability with bath application of substance P and serotonin and decreased excitability with morphine sulfate, [D-ala2]methionine-enkephalinamide, manganese ions and magnesium ions. Naloxone by itself elicited no change in excitability, although it appeared to reduce the ongoing effect of opiates. Neurons recorded extracellularly in the dorsal horn responded to afferent volleys with one or more of 3 distinct phases: an excitation roughly coincident with the volley's arrival, a 50-300 ms period of inhibition, and a late excitation of 150-300 ms latency. The excitability results are accounted for by a model in which substance P, gamma-aminobutyric acid and possibly other depolarizing agents are contained in interneurons which synapse on afferent terminals. These interneurons could receive inhibitory enkephalinergic input, and, in the neonate but not the adult, excitatory serotoninergic input. An alternate scheme would have enkephalin and serotonin acting directly on afferent terminals, although perhaps by non-synaptic diffusion since the appropriate synapses have not been seen in histochemical studies. Such an action for enkephalin might explain the existence of opiate receptor on afferent terminals. The interneuronal responses to afferent volleys are parallel in most aspects to those found in the dorsal horns of adult mammals in vivo.  相似文献   

15.
With serotonin immunocytochemistry we have demonstrated an extensive plexus of immunoreactive varicose fibres in the neural sheath of the nervous system of the blowfly, Calliphora. These fibres are located in the neural sheath of the following regions: the maxillary-labial and labrofrontal nerves of the cerebral ganglia, the cervical connective, the dorsal surface of the thoracicoabdominal ganglia, two pairs of prothoracic nerves and the median abdominal nerve. We identified the serotonin-immunoreactive neural processes in the electron microscope by means of the peroxidase-antiperoxidase method. Immunoreactivity was seen in large granular vesicles (ca 100 nm), on membranes of smaller (ca 60 nm) and larger (ca 100 nm) agranular vesicles, along the inner surface of the axolemma, along neurotubules and outer membranes of mitochondria. By conventional electron microscopy we found numerous varicose neural processes in the neural sheath of some of the above regions. These varicosities are of at least two types. One type corresponds to the serotonin-immunoreactive profiles. A second type contains large granular vesicles (ca 200 nm) of variable electron density. 5,7-Dihydroxytryptamine injected into the head capsule labelled varicosities in the neural sheath, corresponding to the ones identified with serotonin immunocytochemistry. The electron-dense labelling was seen in flattened vesicles within these varicosities. We propose that the serotonin-immunoreactive fibers in the neural sheath constitute neurohemal regions for the release of serotonin into the circulation. The finding of another morphological type of varicose fibers in the neural sheath suggests the presence of further putative neurohormones in these regions.  相似文献   

16.
A fluorometric procedure is described which allows the measurement of nanogram amounts of serotonin, horepinephrine, and dopamine in small brain areas (20–350 mg) from individual rats. The amines are separated from their precursor amino acids and acid metabolites by a single-column chromotography step using a weak cation exchange resin. It is possible quantitatively to determine 10–30 ng of each amine when all three are measured simultaneously. When either serotonin or the catecholamines are assayed in a tissue sample, as little as 5–15 ng may be detected. Recoveries of the amines range from 85 to 93% as measured by addition of14C-labeled amines to tissue supernatants.  相似文献   

17.
Paraventricular and paracisternal regions of adult rat central nervous system were investigated by light- and electron-microscope radioautography after intraventricular administration of tritiated adrenaline. In tissue primarily fixed by glutaraldehyde perfusion and post-fixed by immersion in osmium tetroxide, there were no aggregates of silver grains indicative of intraneuronal accumulation of the tracer, except over perivascular nerve terminals at the base of the brain. In contrast, when both fixation and postfixation were carried out by rapid vascular perfusion, preferentially labeled nerve cell bodies and axonal varicosities (i.e. terminals) were detected in various anatomical areas known to contain dopaminergic and/or noradrenergic neurons. Serotoninergic axonal varicosities in the supraependymal plexus and subcommissural organ, as well as a small group of nerve cell bodies of undetermined chemical identity in the n. paraventricularis thalami were also found to be labeled. Addition of a ten-fold higher concentration of non-radioactive serotonin to the solution of [3H]adrenaline suppressed the reactivity in the subcommissural organ and the supraependymal plexus but had no such effect elsewhere in brain. Lesioning of the nigrostriatal dopaminergic system with 6-hydroxydopamine prior to [3H]adrenaline injection eradicated axon terminal labeling in the ipsilateral neostriatum. Electron-microscopic examination of [3H]adrenaline-labeled varicosities in the neostriatum, lateral septum, arcuate nucleus and median eminence extended earlier observations on the ultrastructure of the catecholaminergic innervation of these regions. It was concluded that both dopaminergic and noradrenergic neurons as well as certain serotonin-containing axon terminals can take up and retain [3H]adrenaline, although they probably have lesser affinity for this amine than for their own transmitter. Due to the fact that presumptive adrenergic neurons are intermingled with dopaminergic and noradrenergic elements, further work will be needed to determine to which extent they also contributed to [3H]adrenaline uptake in the present experimental conditions.  相似文献   

18.
Search for a physiological role of substance P in gastrointestinal motility   总被引:25,自引:0,他引:25  
  相似文献   

19.
The spinal projections from the raphe-associated brainstem areas containing serotonergic neurons were studied with aldehyde-induced fluorescence in combination with the retrograde fluorescent tracer True Blue in the rat. This technique makes it possible to determine simultaneously the projections of individual neurons and to detect whether serotonin is present in the same neurons. After tracer injections into the spinal cord retrogradely labeled serotonergic and non-serotonergic neurons were found in the medullary raphe nuclei and adjacent regions and to a lesser extent in association with the dorsal and median raphe nuclei in the mesencephalon. Large True Blue injections that covered one side of the spinal cord at mid-cervical level labeled about 60% of the ipsilaterally situated serotonergic neurons in the medullary raphe regions while the corresponding figure contralaterally was about 25%. On both sides a larger number of labeled non-serotonergic neurons were found; these were sometimes located dorsal to, but often intermingled with, the serotonergic cells. While the serotonergic projection from the mesencephalon could not be labeled from injections below cervical levels, the labeling in more caudal brainstem regions exhibited only minor variations depending on the rostrocaudal level of the spinal segment injected. Furthermore, quantitative data from injections at different levels indicate that the majority of the spinal-projecting neurons traverse most of the length of the cord. Summarizing the results obtained from small injections restricted to subregions of the cord we feel that it is possible to distinguish three fairly distinct pathways for spinal projections from the medullary raphe and adjacent regions: The dorsal pathway originates mainly from cells in the caudal pons and rostral medulla oblongata (rostral part of nucleus raphe magnus, nucleus raphe magnus proper, nucleus reticularis gigantocellularis pars alpha and nucleus paragigantocellularis). This pathway, which contains a large non-serotonergic component, descends through the dorsal part of the lateral funiculus and terminates mainly in the dorsal horn at all spinal cord levels. The intermediate pathway is largely serotonergic with its cell bodies located within the arcuate cell group (situated just ventral and lateral to the pyramids very close to the ventral surface of the brainstem) and in the nucleus raphe obscurus and pallidus and terminates in the intermediate grey at thoracolumbar and upper sacral levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Summary In the present work, voltammetric method combined with polygraphic recordings were used in animals under long-term chronic conditions; the extracellular concentrations of 5-hydroxyindole compounds (5-OHles) and in particular 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hypothalamus and in the nucleus Raphe Dorsalis (n.RD). The hypothesis that extracellular detection of 5-HIAA, in animals under physiological conditions, might reflect serotonin (5-HT) release is suggested by the following observations: — serotoninergic neurons are reported to contain only monoamine oxidase type B (MAO-B); — an inhibitor of such an enzyme, MDL 72145 (1 mg/kg), fails to decrease the extracellular 5-HIAA peak 3 height; — MAO type A is contained in non-5-HT cells or neurons; — only the inhibitor of this last type of enzyme (Clorgyline 2.5 mg/kg) induces a complete disappearance of the voltammetric signal. The 5-HIAA measured in the extracellular space thus comes from the 5-HT released and metabolized outside the 5-HT neurons. Throughout the sleep-waking cycle, 5-OHles release occurs following two different modes: 1 — during sleep, in the vicinity of the 5-HT cellular bodies in the n.RD; this release might come from dendrites and be responsible for the 5-HT neuronal inhibition occurring during sleep; 2 — during waking, at the level of the axonal nerve endings impinging on the hypothalamus; this release might be related to the synthesis of hypnogenic factors. Finally, we have observed that in the hypothalamus, 30 min. of immobilization-stress (IS) induces a larger increase of the voltammetric signal (+ 80%) than a painful stimulation of the same duration (+ 30%); the possible link between the 5-OHles release occurring in this area during an IS and the subsequent paradoxical sleep rebound is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号