首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peripheral benzodiazepine receptor (PBR) is expressed by microglial cells in many neuropathologies involving neuroinflammation. PK11195, the reference compound for PBR, is used for positron emission tomography (PET) imaging but has a limited capacity to quantify PBR expression. Here we describe the new PBR ligand CLINME as an alternative to PK11195. In vitro and in vivo imaging properties of [(11)C]CLINME were studied in a rat model of local acute neuroinflammation, and compared with the reference compound [(11)C]PK11195, using autoradiography and PET imaging. Immunohistochemistry study was performed to validate the imaging data. [(11)C]CLINME exhibited a higher contrast between the PBR-expressing lesion site and the intact side of the same rat brain than [(11)C]PK11195 (2.14 +/- 0.09 vs. 1.62 +/- 0.05 fold increase, respectively). The difference was due to a lower uptake for [(11)C]CLINME than for [(11)C]PK11195 in the non-inflammatory part of the brain in which PBR was not expressed, while uptake levels in the lesion were similar for both tracers. Tracer localization correlated well with that of activated microglial cells, demonstrated by immunohistochemistry and PBR expression detected by autoradiography. Modeling using the simplified tissue reference model showed that R(1) was similar for both ligands (R(1) approximately 1), with [(11)C]CLINME exhibiting a higher binding potential than [(11)C]PK11195 (1.07 +/- 0.30 vs. 0.66 +/- 0.15). The results show that [(11)C]CLINME performs better than [(11)C]PK11195 in this model. Further studies of this new compound should be carried out to better define its capacity to overcome the limitations of [(11)C]PK11195 for PBR PET imaging.  相似文献   

2.
[(11)C]PK11195 is used in positron emission tomography (PET) studies for imaging brain inflammation in vivo as it binds to the peripheral-type benzodiazepine receptor (PBR) expressed by reactive glia and macrophages. However, features of the cellular reaction required to induce a positive [(11)C]PK11195 signal are not well characterized. We performed [(11)C]PK11195 PET and autoradiography in rats after transient focal cerebral ischemia. We determined [(3)H]PK11195 binding and PBR expression in brain tissue and examined the lesion with several markers. [(11)C]PK11195 standard uptake value increased at day 4 and grew further at day 7 within the ischemic core. Accordingly, ex vivo [(3)H]PK11195 binding increased at day 4, and increases further at day 7. The PET signal also augmented in peripheral regions, but to a lesser extent than in the core. Binding in the region surrounding infarction was supported by [(11)C]PK11195 autoradiography at day 7 showing that the radioactive signal extended beyond the infarcted core. Enhanced binding was preceded by increases in PBR mRNA expression in the ipsilateral hemisphere, and a 18-kDa band corresponding to PBR protein was detected. Peripheral-type benzodiazepine receptor immunohistochemistry showed subsets of ameboid microglia/macrophages within the infarcted core showing a distinctive strong PBR expression from day 4. These cells were often located surrounding microhemorrhages. Reactive astrocytes forming a rim surrounding infarction at day 7 also showed some PBR immunostaining. These results show cellular heterogeneity in the level of PBR expression, supporting that PBR is not a simple marker of inflammation, and that the extent of [(11)C]PK11195 binding depends on intrinsic features of the inflammatory cells.  相似文献   

3.
Peripheral benzodiazepine receptor (PBR) is expressed in most organs and its expression is reported to be increased in activated microglia in the brain. [(11)C]PK11195 has been widely used for the in vivo imaging of PBRs, but its signal in the brain was not high enough for stable quantitative analysis. We synthesized a novel positron emission tomography (PET) ligand, [(11)C]DAA1106, for PBR and investigated its in vivo properties in rat and monkey brain. High uptake of [(11)C]DAA1106 was observed in the olfactory bulb and choroid plexus area, followed by the pons/medulla and cerebellum by in vivo autoradiography of rat brain, correlating with the binding in vitro. [(11)C]DAA1106 binding was increased in the dorsal hippocampus with neural destruction, suggesting glial reaction. [(11)C]DAA1106 binding was both inhibited and displaced by 1.0 mg/kg of DAA1106 and 5 mg/kg of PK11195 by 80% and 70%, respectively. Specific binding was estimated as 80% of total binding. [(11)C]DAA1106 binding was four times higher compared to the binding of [(11)C]PK11195 in the monkey occipital cortex. These results indicated that [(11)C]DAA1106 might be a good ligand for in vivo imaging of PBR.  相似文献   

4.
Positron emission tomography (PET) using [(11)C]PK 11195, a ligand for peripheral benzodiazepine receptor binding sites, offers the opportunity to image activated microglia in vivo. This tool may therefore be used to display the occurrence of microglial activation in the course of neurodegeneration. A patient with the clinical diagnosis of corticobasal degeneration (CBD) and left-sided symptoms was studied using fluorodeoxyglucose (FDG) and [(11)C]PK 11195 PET. We found a marked right hemispheric hypometabolism and asymmetric microglial activation in corresponding areas of the basal ganglia and right temporal and parietal cortex. [(11)C]PK 11195 PET suggests involvement of microglial activation in the pathogenesis of CBD.  相似文献   

5.
Activated microglia can be visualised using (R)-[(11)C]PK11195 (1-[2-chlorophenyl]-N-methyl-N-[1-methyl-propyl]-3-isoquinoline carboxamide) and positron emission tomography (PET). In previous studies, various methods have been used to quantify (R)-[(11)C]PK11195 binding. The purpose of this study was to determine which parametric method would be best suited for quantifying (R)-[(11)C]PK11195 binding at the voxel level. Dynamic (R)-[(11)C]PK11195 scans with arterial blood sampling were performed in 20 healthy and 9 Alzheimer's disease subjects. Parametric images of both volume of distribution (V(d)) and binding potential (BP) were obtained using Logan graphical analysis with plasma input. In addition, BP images were generated using two versions of the basis function implementation of the simplified reference tissue model, two versions of Ichise linearisations, and Logan graphical analysis with reference tissue input. Results of the parametric methods were compared with results of full compartmental analysis using nonlinear regression. Simulations were performed to assess accuracy and precision of each method. It was concluded that Logan graphical analysis with arterial input function is an accurate method for generating parametric images of V(d). Basis function methods, one of the Ichise linearisations and Logan graphical analysis with reference tissue input provided reasonably accurate and precise estimates of BP. In pathological conditions with reduced flow rates or large variations in blood volume, the basis function method is preferred because it produces less bias and is more precise.  相似文献   

6.
Intrauterine inflammation is known to be a risk factor for the development of periventricular leukomalacia (PVL) and cerebral palsy. In recent years, activated microglial cells have been implicated in the pathogenesis of PVL and in the development of white matter injury. Clinical studies have shown the increased presence of activated microglial cells diffusely throughout the white matter in brains of patients with PVL. In vitro studies have reported that activated microglial cells induce oligodendrocyte damage and white matter injury by release of inflammatory cytokines, reactive nitrogen and oxygen species and the production of excitotoxic metabolites. PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] is a ligand that is selective for the 18-kDa translocator protein expressed on the outer mitochondrial membrane of activated microglia and macrophages. When labeled with carbon-11, [(11)C]PK11195 can effectively be used as a ligand in positron emission tomography (PET) studies for the detection of activated microglial cells in various neuroinflammatory and neurodegenerative conditions. In this study, we hypothesized that the magnitude of [(11)C]-(R)-PK11195 uptake in the newborn rabbit brain, as measured using a small-animal PET scanner, would match the severity of motor deficits resulting from intrauterine inflammation-induced perinatal brain injury. Pregnant New Zealand white rabbits were intrauterinely injected with endotoxin or saline at 28 days of gestation. Kits were born spontaneously at 31 days and underwent neurobehavioral testing and PET imaging following intravenous injection of the tracer [(11)C]-(R)-PK11195 on the day of birth. The neurobehavioral scores were compared with the change in [(11)C]PK11195 uptake over the time of scanning, for each of the kits. Upon analysis using receiver operating characteristic curves, an optimal combined sensitivity and specificity for detecting abnormal neurobehavioral scores suggestive of cerebral palsy in the neonatal rabbit was noted for a positive change in [(11)C]PK11195 uptake in the brain over time on PET imaging (sensitivity of 100% and area under the curve of >0.82 for all parameters tested). The strongest agreements were noted between a positive uptake slope - indicating increased [(11)C]PK11195 uptake over time - and worsening scores for measures of locomotion (indicated by hindlimb movement, forelimb movement, circular motion and straight- line motion; Cohen's κ >0.75 for each) and feeding (indicated by ability to suck and swallow and turn the head during feeding; Cohen's κ >0.85 for each). This was also associated with increased numbers of activated microglia (mean ratio ± SD of activated to total microglia: 0.96 ± 0.16 in the endotoxin group vs. 0.13 ± 0.08 in controls; p < 0.001) in the internal capsule and corona radiata. Our findings indicate that the magnitude of [(11)C]PK11195 binding measured in vivo by PET imaging matches the severity of motor deficits in the neonatal rabbit. Molecular imaging of ongoing neuroinflammation in the neonatal period may be helpful as a screening biomarker for detecting patients at risk of developing cerebral palsy due to a perinatal insult.  相似文献   

7.
Corticobasal degeneration (CBD) is a neurodegenerative parkinsonian disorder of unknown cause that shows considerable clinical heterogeneity. In CBD, activated microglia have been shown to be associated closely with the extensive tau pathology found in the affected basal ganglia, brainstem nuclei, and cortical regions. We report on the use of [(11)C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) (PK11195) positron emission tomography (PET), a marker of peripheral benzodiazepine binding sites (PBBS) that are expressed by activated microglia, to demonstrate in vivo the degree and distribution of glial response to the degenerative process in 4 patients with CBD. Compared with normal age-matched controls, the CBD patient group showed significantly increased mean [(11)C](R)-PK11195 binding in the caudate nucleus, putamen, substantia nigra, pons, pre- and postcentral gyrus, and the frontal lobe. [11C](R)-PK11195 PET reveals a pattern of increased microglial activation in CBD patients involving cortical regions and the basal ganglia that corresponds well with the known distribution of neuropathological changes, which may therefore help to characterize in vivo the underlying disease activity in CBD.  相似文献   

8.
(R)-[(11)C]PK11195 ([1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl]-3-isoquinoline carboxamide) is a ligand for the peripheral benzodiazepine receptor, which, in the brain, is mainly expressed on activated microglia. Using both clinical studies and Monte Carlo simulations, the aim of this study was to determine which tracer kinetic plasma input model best describes (R)-[(11)C]PK11195 kinetics. Dynamic positron emission tomography (PET) scans were performed on 13 subjects while radioactivity in arterial blood was monitored online. Discrete blood samples were taken to generate a metabolite corrected plasma input function. One-tissue, two-tissue irreversible, and two-tissue reversible compartment models, with and without fixing K(1)/k(2) ratio, k(4) or blood volume to whole cortex values, were fitted to the data. The effects of fixing parameters to incorrect values were investigated by varying them over a physiologic range and determining accuracy and reproducibility of binding potential and volume of distribution using Monte Carlo simulations. Clinical data showed that a two-tissue reversible compartment model was optimal for analyzing (R)-[(11)C]PK11195 PET brain studies. Simulations showed that fixing the K(1)/k(2) ratio of this model provided the optimal trade-off between accuracy and reproducibility. It was concluded that a two-tissue reversible compartment model with K(1)/k(2) fixed to whole cortex value is optimal for analyzing (R)-[(11)C]PK11195 PET brain studies.  相似文献   

9.
Using quantitative PET, the authors studied the binding of [11C]PK11195, a marker of activated microglia, in the thalamus of patients with chronic middle cerebral artery infarcts. All patients showed increased [11C]PK11195 binding in the ipsilateral thalamus, indicating the activation of microglia in degenerating projection areas remote from the primary lesion. A persistent increase in [11C]PK11195 binding suggests active, long-term thalamic microstructural changes after corticothalamic connection damage.  相似文献   

10.
We developed PET ligands (+)N-[(11)C]ethyl-3-piperidyl benzilate ([(11)C](+)3-EPB) and (+)N-[(11)C]propyl-3-piperidyl benzilate ([(11)C](+)3-PPB) for cerebral muscarinic cholinergic receptors. The distribution and kinetics of the novel ligands were evaluated for comparison with the previously reported ligand (+)N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB) in the monkey brain (Macaca mulatta) in the conscious state using high-resolution positron emission tomography (PET). At 60-91 min postinjection, regional distribution patterns of these three ligands were almost identical, and were consistent with the muscarinic receptor density in the brain as previously reported in vitro. However, the time-activity curves of [(11)C](+)3-EPB and [(11)C](+)3-PPB showed earlier peak times of radioactivity and a faster clearance rate than [(11)C](+)3-MPB in cortical regions rich in the receptors. Kinetic analysis using the three-compartment model with time-activity curves of radioactivity in metabolite-corrected arterial plasma as input functions revealed that labeling with longer [(11)C]alkyl chain length induced lower binding potential (BP = k(3)/k(4)), consistent with the rank order of affinity of these ligands obtained by an in vitro assay using rat brain slices and [(3)H]QNB. The cholinesterase inhibitor Aricept administered at doses of 50 and 250 microg/kg increased acetylcholine level in extracellular fluid of the frontal cortex and the binding of [(11)C](+)3-PPB with the lowest affinity to the receptors was displaced by the endogenous acetylcholine induced by cholinesterase inhibition, while [(11)C](+)3-MPB with the highest affinity was not significantly affected. Taken together, these observations indicate that the increase in [(11)C]alkyl chain length could alter the kinetic properties of conventional receptor ligands for PET by reducing the affinity to receptors, which might make it possible to assess the interaction between endogenous neurotransmitters and ligand-receptor binding in vivo as measured by PET.  相似文献   

11.
The cerebral distribution of peripheral-type benzodiazepine binding sites (PBBS) in human brain has been investigated by positron emission tomography (PET) with the specific radioligand [11C]PK11195 in diverse neuropathological conditions. However, little is known about the pattern of PK11195 binding sites in healthy brain. Therefore, we used quantitative autoradiography to measure the saturation binding parameters for [3H]PK11195 in cryostat sections from young Landrace pigs. Specific binding was lowest in the cerebellar white matter (85 fmol mg(-1)) and highest in the caudate nucleus (370 fmol mg(-1)), superior colliculus (400 fmol mg(-1)), and anterior thalamic nucleus (588 fmol mg(-1)). The apparent affinity was in the range of 2-6 nM in vitro, predicting high specific binding in PET studies of living brain. However, the distribution volume (V(d), ml g(-1)) of high specific activity [11C]PK11195 was nearly homogeneous (3 ml g(-1)) throughout brain of healthy Landrace pigs, and was nearly identical in studies with lower specific activity, suggesting that factors in vivo disfavor the detection of PBBS in Landrace pigs with this radioligand. In young, adult G?ttingen minipig brain, the magnitude of V(d) for [11C]PK11195 was in the range 5-10 ml g(-1), and had a heterogeneous distribution resembling the in vitro findings in Landrace pigs. There was a trend toward globally increased V(d) in a group of minipigs with acute MPTP-induced parkinsonism, but no increase in V(d) was evident in the same pigs rescanned at 2 weeks after grafting of fetal mesencephalon to the partially denervated striatum. Thus, [11C]PK11195 binding was not highly sensitive to constituitively expressed PBBS in brain of young Landrace pigs, and did not clearly demonstrate the expected microglial activation in the MPTP/xenograft model of minipigs.  相似文献   

12.
Traumatic brain injury (TBI) is a significant cause of mortality, morbidity, and disability. Microglial activation is commonly observed in response to neuronal injury which, when prolonged, is thought to be detrimental to neuronal survival. Activated microglia can be labeled using PK11195, a ligand that binds the peripheral benzodiazepine receptor (PBR), receptors which are increased in activated microglia and sparse in the resting brain. We compared the binding properties of two PBR ligands PK11195 and DAA1106 in rats using the controlled cortical impact (CCI) model of experimental TBI. While both ligands showed relative increases with specific binding in the cortex ipsilateral to injury compared to the contralateral side, [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195. Combined immunohistochemistry and autoradiography in brain tissues near the injury site showed that [(3)H]DAA1106 binding co-registered with activated microglia more than astrocytes. Further, increased [(3)H]DAA1106-specific binding positively correlated with the degree of microglial activation, and to a lesser degree with reactive astrocytosis. Finally, in vivo administration of each ligand in rats with TBI showed greater retention of [(11)C]DAA1106 compared to [(11)C](R)-PK11195 at the site of the contusion as assessed by ex vivo autoradiography. These results in a rat model of TBI indicate that [(11)C]DAA1106 binds with higher affinity to microglia when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a better ligand than [(11)C](R)-PK11195 for in vivo PET imaging of activated microglia in TBI.  相似文献   

13.
Increased binding of the peripheral benzodiazepine binding site (PBBS) ligand [(3)H]PK11195 in the central nervous system of patients suffering from acute and chronic neuropathology has been associated with reactive microgliosis. However, it remains uncertain which stages of microglial activation occur in conjunction with the increased [(3)H]PK11195 binding. We used quantitative autoradiography for [(3)H]PK11195 and quantitative polymerase chain reaction for PBBS mRNA and markers of early and late microglial activation to investigate the time-course of cellular responses in the hippocampus of mice with degeneration of the entorhinal-hippocampal perforant path. The axonal lesion evoked an increase in the B(max) for [(3)H]PK11195 in hippocampus which peaked at 2 days post-lesion, remained elevated at day 5 and began to decline at 10 days post-lesion. These changes occurred in the absence of significant changes in affinity in vitro. Quantitative polymerase chain reaction analysis of isolated hippocampi using exon-specific primers indicated the presence of several splice variants of PBBS mRNA, which appeared to be affected differentially by the lesion. The changes in PBBS mRNA and CD11b mRNA levels correlated with the B(max) for [(3)H]PK11195 during 10 days post-lesion, suggesting that microglial activation couples with increases in mRNA levels for these markers. In addition, the onset of changes in PBBS mRNA levels coincided with the significantly elevated tumor necrosis factor mRNA levels present during early microglial activation at 2 days post-lesion. We conclude that up-regulation of [(3)H]PK11195 binding and PBBS mRNA levels coincided with early microglial activation, characterized by concomitantly increased microglial tumor necrosis factor mRNA levels, and persisted throughout the period with reactive microgliosis.  相似文献   

14.
Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [(11)C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [(11)C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging of the brain at baseline and after 1 year of treatment with glatiramer acetate. Parametric maps of [(11)C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [(11)C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region-of-interest analysis was also applied to selected subregions. Whole brain [(11)C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: -0.74, -5.53%) between baseline and 1 year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [(11)C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load.  相似文献   

15.
Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder associated with akinesia, tremor and rigidity. While the characteristic Lewy body pathology targets pigmented and other brainstem nuclei at post-mortem, activated microglia are found in both subcortical and cortical areas. [11C](R)-PK11195 is a positron emission tomography (PET) marker of peripheral benzodiazepine sites (PBBS), which are selectively expressed by activated microglia. We examined 18 PD patients clinically and with [11C](R)-PK11195 and [18F]-dopa PET. Compared to 11 normal controls, the PD patients showed significantly increased mean levels of [11C](R)-PK11195 binding in the pons, basal ganglia and frontal and temporal cortical regions. Eight PD patients were examined longitudinally, and their [11C](R)-PK11195 signal remained stable over 2 years. Levels of microglial activation did not correlate with clinical severity or putamen [18F]-dopa uptake. Our in vivo findings confirm that widespread microglial activation is associated with the pathological process in PD. The absence of significant longitudinal changes suggests that microglia are activated early in the disease process, and levels then remain relatively static, possibly driving the disease via cytokine release.  相似文献   

16.
In vitro, the novel diazabicyclononane NS 4194 has several thousand-fold selectivity for blocking the transport into rat brain synaptosomes of [(3)H]-serotonin in comparison to [(3)H]-dopamine or [(3)H]-noradrenaline. We have prepared [(11)C]-NS 4194 in order to test its properties for PET imaging of brain serotonin transporters in comparison with the well-documented tracer [(11)C]-DASB. Both compounds had rapid clearance from blood to brain of living pigs. The apparent equilibrium distribution volumes in cerebellum were 35 ml g(-1) for [(11)C]-NS 4194 and 11 ml g(-1) for [(11)C]-DASB. Pretreatment of pigs with citalopram did not reduce the uptake of either tracer in cerebellum, validating the use of that tissue as a nonbinding reference tissue for kinetic analysis of specific binding. The binding potential (pB) calculated for [(11)C]-NS 4194 using arterial input models was close to 0.5 in the telencephalon, and was 60% displaced by citalopram. However, the reference tissue method of Lammertsma was unsuited to calculate pB for this tracer, apparently due to its excessive nonspecific binding. In contrast to the relatively homogeneous binding of [(11)C]-NS 4194, the pB of [(11)C]-DASB ranged from 0.6 in frontal cortex to 2 in the mesencephalon when calculated by the method of Lammertsma. Parametric maps of the pB of [(11)C]-DASB showed a pattern consistent with the known distribution of serotonin transporters in pig brain in vitro, and there was a uniform displacement of 80% of the specific binding after citalopram treatment in vivo. In conclusion, [(11)C]-DASB is in several respects superior to [(11)C]-NS 4194 for the detection of serotonin uptake sites by PET.  相似文献   

17.
Vinpocetine, a vinca alkaloid, is a widely used therapeutic agent in patients with acute and chronic stroke. To reveal the mechanisms of vinpocetine action in the brain, vinpocetine was labeled with 11C. Positron emission tomography (PET) was used to determine the uptake and distribution of [11C]vinpocetine in brain regions and the trunk of a cynomolgous monkey in two independent measurements. The concentration of vinpocetine and its labeled metabolites was determined in blood and plasma using high-performance liquid chromatography (HPLC). Almost identical measurements were obtained in the two independent studies. After intravenous administration, following an initial peak, the total concentration of radioactivity in blood was relatively stable with time, whereas the concentration of the unchanged compound decreased with time in an exponential manner. The uptake of [11C]vinpocetine in brain was rapid, and 5% of the radioactivity totally injected was present in the brain 2 minutes after drug administration, indicating that the compound entered the brain readily. The radioactivity uptake was heterogeneously distributed among brain regions and was highest in the thalamus, the basal ganglia, and certain neocortical regions. The high brain uptake and the heterogeneous regional distribution indicate that direct central nervous system (CNS) effects of vinpocetine must be considered as explanation for the therapeutic effects. The detailed exploration of this suggestion requires further studies.  相似文献   

18.
Human gliomas were imaged in vivo using ligands for the peripheral-type benzodiazepine binding site (or omega 3 binding site) and positron emission tomography (PET). Although gliomas have a high density of the peripheral-type benzodiazepine binding site, PET scans with a selective ligand for this site, [11C] Ro5-4864, failed to demonstrate higher radioactivity levels in human gliomas than in brain. In vitro studies of surgically removed specimens of human glioma demonstrated little binding of Ro5-4864 but high levels of binding of another selective ligand, PK 11195. Scans with [11C]PK 11195 demonstrated increased radioactivity in glioma compared to brain in 8 of 10 patients. Radioactivity in tumor and the ratios of radioactivity in tumor to that in remote gray and in white matter correlated significantly with the specific activity of [11C]PK 11195, suggesting that accumulation represents saturable high-affinity binding. We conclude that the PK 11195 manifests greater binding than Ro5-4864 to the peripheral-type benzodiazepine binding site on human gliomas and that human gliomas can be successfully imaged using [11C]PK 11195 and PET.  相似文献   

19.
Microglial activation is implicated in the pathogenesis of ALS and can be detected in animal models of the disease that demonstrate increased survival when treated with anti-inflammatory drugs. PK11195 is a ligand for the "peripheral benzodiazepine binding site" expressed by activated microglia. Ten ALS patients and 14 healthy controls underwent [(11)C](R)-PK11195 PET of the brain. Volumes of interest were defined to obtain [(11)C](R)-PK11195 regional binding potential values for motor and "extra-motor" regions. Significantly increased binding was found in motor cortex (P = 0.003), pons (P = 0.004), dorsolateral prefrontal cortex (P = 0.010) and thalamus (P = 0.005) in the ALS patients, with significant correlation between binding in the motor cortex and the burden of upper motor neuron signs clinically (r = 0.73, P = 0.009). These findings indicate that cerebral microglial activation can be detected in vivo during the evolution of ALS, and support the previous observations that cerebral pathology is widespread. They also argue for the development of therapeutic strategies aimed at inflammatory pathways.  相似文献   

20.
OBJECTIVES: [11C]PK11195 is a peripheral-benzodiazepine-receptor radioligand used for detection of microglial inflammation. Normal uptake by means of semiquantification was measured in order to establish reference data. The applicability of this semiquantitative approach was tested in three multiple sclerosis patients. MATERIALS AND METHODS: Seven controls and three patients underwent MR and PET scanning. Coregistered static scans 40 minutes postinjection of [11C]PK11195 were used for assessment of relative ligand uptake by comparison to whole-brain uptake. RESULTS: For static scans acquired in near steady-state, the relative ligand uptake was significantly higher in gray matter structures as compared to the whole brain (ratio: 1.041 +/- 0.06, p = 0.036) whereas it was comparable in white matter (1.010 +/- 0.035). Intersubject reproducibility was 11.4% and 12.9% for white and grey matter. Intrasubject reproducibility was of the same order: 14.0% and 14.5% respectively. In two clinically active patients with Gadolinium-positive T1-weighted lesions on MRI the focal ligand uptake was significantly increased (1.36 and 1.14, p = 0.001). In one clinically stable patient, the uptake value corresponding with a T2-weighted MR lesion was not different from normal brain measurements. CONCLUSION: The current investigations show that normal brain uptake of [11C]PK11195 is very low and shows the feasibility of a semiquantitative method which can be applied to larger cohorts of patients subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号