首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the efferent connections of the septal area in the cat   总被引:1,自引:0,他引:1  
The neuroanatomical organization of the efferent connections of the septal area in the cat was analyzed by the use of anterograde ([3H]leucine radioautography) and retrograde (horseradish peroxidase histochemistry) tracing techniques. The results indicate that the lateral septal nucleus projects to the nuclei of the diagonal band, preoptic area, lateral hypothalamus, and supramammillary region. The projections of the septofimbrial nucleus supply the nuclei of the diagonal band and the medial habenular nucleus. Projection targets of the vertical limb of the diagonal band are widespread and include the preoptic area, lateral hypothalamus, anterior limbic cortex, amygdala, medial habenular nucleus, interpeduncular nucleus and hippocampal formation. The projection from the vertical limb to the hippocampal formation is organized in a topographical manner in such a fashion that cells positioned near the midline project to the dorsal hippocampus and adjoining subicular cortex while fibers originating from cells situated more laterally project to more ventral parts of the hippocampal formation. In general, the projections from the horizontal limb were similar to those from the vertical limb, but several differences were noted. Fibers arising from the horizontal limb are distributed to the ventral tegmental area and interpeduncular nucleus but this region seems to lack a projection to either the habenular complex or to the ventral aspect of the hippocampal formation. Fibers arising from the bed nucleus of the anterior commissure are distributed to the preoptic region, lateral hypothalamus, supramammillary region, posterior aspect of the medial mammillary nucleus and lateral habenular nucleus.  相似文献   

2.
Efferent projections from the medial and periventricular preoptic area, bed nucleus of the stria terminalis and nuclei of the diagonal band were traced using tritiated amino acid autoradiography in albino rats. Medial and periventricular preoptic area efferents were not restricted to short-axon projections. Ascending projections from the medial preoptic area (mPOA) were traced through the diagonal band into the septum. Descending mPOA axons coursed in the medial parts of the medial forebrain bundle. Projections to most hypothalamic nuclei, including the arcuate nucleus and median eminence, were observed. In the midbrain, mPOA efferents were distributed in the central grey, raphe nuclei, ventral tegmental area and reticular formation. Projections from the mPOA were also observed to the amygdala through the stria terminalis, to the lateral habenula through the stria medullaris, and to the periventricular thalamus. Axons of the most medial and periventricular preoptic area (pvPOA) neurons had a distribution similar to more lateral mPOA neurons but their longest-axoned projections were weaker. The pvPOA did not send axons through the stria medullaris but did project more heavily than the more lateral mPOA to the arcuate nucleus and median eminence. Projections from the bed nucleus of the stria terminalis (nST) were in most respects similar to those from the medial preoptic area, with the major addition of a projection to the accessory olfactory bulb. The nuclei of the diagonal band of Broca (nDBB) gave a different pattern of projections than mPOA or nST, projecting, for instance, to the medial septum and hippocampus. Descending nDBB efferents ran in the ventral portion of the medial forebrain bundle. Among hypothalamic cell groups, only the medial mammillary nuclei received nDBB projections. nDBB efferents also distributed in the medial and lateral habenular nuclei and the mediodorsal thalamic nucleus.  相似文献   

3.
The efferent connections of the lateral hypothalamic area (LHA) have been analyzed in a series of 30 rat brains with injections of 3H-amino acids into different parts of the area and the surrounding regions. Our findings indicate that all parts of the LHA contribute ascending and descending fibers to the medial forebrain bundle, and also project medially to certain of the adjoining hypothalamic nuclei. All levels of the LHA appear to send some fibers to a continuous group of structures that extends from the medial septal-diagonal band complex rostrally, through the lateral preoptic and lateral hypothalamic areas to the mammillary complex and the ventral tegmental area caudally. In addition, it is evident that cells at different levels within the LHA may have differential projections. Thus, the anterior and lateral parts of the LHA also appear to project substantially to the anterior hypothalamic area, the ventromedial and dorsomedial hypothalamic nuclei, the parataenial and paraventricular nuclei of the thalamus, and the medial part of the lateral habenular nucleus. Similarly, cells in the tuberal and posterior parts of the LHA project to the central gray, the longest projections from the posterior region reaching as far caudally as the central tegmental field, the parabrachial nucleus, the locus coeruleus, and the superior central and dorsal nuclei of the raphe. Viewed as a whole, the LHA is therefore well-suited to integrate inputs from the limbic system and brainstem and to relay them on the one hand to the medial zone of the hypothalamus and on the other to virtually every structure closely associated with the medial forebrain bundle and to the nuclei of origin of the major ascending monoaminergic systems.  相似文献   

4.
Afferents to the habenular complex were studied by means of in vitro horseradish peroxidase retrograde labeling and anterograde control experiments in the lizard Gallotia galloti. The medial habenular nucleus was found to receive abundant afferent fibers from the nucleus of the posterior pallial commissure and the nucleus septalis impar. More restricted input comes from the nucleus eminentiae thalami and the nucleus of the stria medullaris. The lateral habenular nucleus is innervated by various fiber groups originating from the bed nucleus of the anterior commissure, the diagonal band nucleus, the lateral preoptic area, the anterior entopeduncular nucleus, the lateral hypothalamic and mammillary areas, the nucleus of the stria medullaris, the area tegmentalis ventralis and a scattered neuronal subpopulation in the large-celled dorsolateral nucleus of the dorsal thalamus. Habenulopetal fibers generally follow the stria medullaris, but hypothalamic, entopeduncular and dorsal thalamic afferents course through the dorsal peduncle of the lateral forebrain bundle in a transthalamic route. Mesencephalic ventral tegmental afferents ascend through the tractus retroflexus.  相似文献   

5.
Autoradiography was employed to investigate the efferent projections from the lateral hypothalamus in the guinea pig. Lateral hypothalamic axons were traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced to the lateral preoptic area, diagonal band of Broca, and septal nuclei. Posterior projections included the ventral tegmental area of Tsai, central gray matter and the reticular formation throughout the brain stem. Laterally, the lateral hypothalamic efferents were found in the stria terminalis, amygdala and globus pallidus. Dorsally, the lateral hypothalamic axons projected to the midline nuclei of the thalamus and bilaterally to the lateral habenular nuclei. Projections to the medial hypothalamus included a labeled fiber bundle to the internal layer of the median eminence and to the posterior lobe of the pituitary gland. Labeled fibers and diffuse label were also found in some areas contralateral to the injection site.  相似文献   

6.
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in different subregions of the septum of domestic chicks. The main targets of septal projections comprised the ipsi- and contralateral septal nuclei, including the nucleus of the diagonal band, basal ganglia, including the ventral paleostriatum, lobus parolfactorius, nucleus accumbens, and olfactory tubercle, archistriatum, piriform cortex, and anterior neostriatum. Further diencephalic and mesencephalic septal projections were observed in the ipsilateral preoptic region, hypothalamus (the main regions of afferentation comprising the lateral hypothalamic nuclei, ventromedial, paraventricular and periventricular nuclei, and the mammillary region), dorsal thalamus, medial habenular and subhabenular nuclei, midbrain central gray, and ventral tegmental area. Contralateral projections were also encountered in the septal nuclei, ventral paleostriatum, periventricular and anteromedial hypothalamic nuclei, suprachiasmatic nucleus, and the lateral hypothalamic area. Avian septal efferents are largely similar to those of mammals, the main differences being a relatively modest hippocampal projection arising mainly from the nucleus of the diagonal band (as confirmed by a specific experiment with the retrograde pathway tracer True blue), the lack of interpeduncular projection, and a greater contingent of amygdalar efferents arising from the lateral septum rather than the nucleus of the diagonal band. This pattern of connectivity is likely to reflect an important role of the avian septal nuclei in the coordination of limbic circuits and the integration of a wide variety of information sources modulating the appropriate behavioral responses: attention and arousal level, memory formation, hormonally mediated behaviors, and their affective components (such as ingestive, reproductive, and parental behaviors), social interaction, locomotor modulation, and circadian rhythm.  相似文献   

7.
The efferent projections from the medial and lateral mammillary nuclei of the guinea pig were traced after injecting tritiated amino acid. The major efferent started as the principal mammillary tract, but soon divided into mammillothalamic and mammillotegmental tracts. The mammillothalamic tract projected anterodorsally and terminated in the anterior dorsal, anterior ventral and anterior medial thalamic nuclei. The mammillotegmental tract projected caudally and terminated in the dorsal tegmental nucleus and central gray. The mammillary efferents in the mammillary peduncle ran via the tegmentum of the midbrain and pons. It terminated in the dorsal and ventral tegmental nuclei, basal pontine nucleus and pontine tegmental reticular nucleus. A diffuse mammillary projection had fibers directed dorsally which distributed in the midline thalamic nuclei and in central gray. Rostral projections via the medial forebrain bundle from the medial mammillary nucleus were found in the septal area and diagonal band of Broca. The lateral mammillary nucleus sent fibers which also joined the mammillothalamic and mammillotegmental tracts. These terminated bilaterally mainly in the anterior dorsal and anterior ventral nuclei of the thalamus, and caudally in the dorsal and ventral tegmental nuclei and basal pontine nucleus.  相似文献   

8.
Horseradish peroxidase, 13% Sigma Type VI, was administered iontophoretically to the mid lateral hypothalamus (LH) of male hooded rats. Animals were perfused intracardially on the following day and brains were removed and sliced in the coronal or sagittal planes into 30–50 μm sections. Sections were processed with DAB and BDH for the brown and blue reaction products and later examined by bright and dark field microscopy for the presence and location of retrogradely labeled neurons. Results indicate that a significant number of afferent connections to the LH originate in the olfactory and accumbens nuclei, pyriform cortex, olfactory tracts, magnocellular and medial preoptic and anterior hypothalamic regions, stria terminalis, stria hypothalamic tract, diagonal tract of Broca, caudate-putamen and globus pallidus, internal capsule, lateral septal nuclei, lateral preoptic area and anterior medial forebrain bundle, the various amygdaloid nuclei, zona incerta, perifornical region, dorsal and ventral medial hypothalamic areas, supraoptic, paraventricular and periventricular nuclei, posterior hypothalamus and medial forebrain bundle, ventral thalamic nuclei, the fields of Forel, arcuate and mammillary nuclei, adjacent to the fasciculus retroflexus, in the ventral tegmental area of Tsai, interpeduncular nucleus, substantia nigra, mesencephalic reticular formation, periaqueductal gray, locus coeruleus and parabrachial region. Results are discussed in terms of previous anatomical and neurophysiological data, probable pathways, and the function of LH neurons.  相似文献   

9.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

10.
The distribution of neurons in the basal telencephalon, the diencephalon, and the brainstem that project to the hippocampal formation has been analyzed in mature cynomolgus monkeys (Macaca fascicularis) by the injection of horseradish peroxidase into different rostro-caudal levels of the hippocampal formation. After injections which involve Ammon's horn, the dentate gyrus, and the subicular complex, retrogradely labeled neurons are found in the following regions: in the amygdala (specifically in the anterior amygdaloid area, the basolateral nucleus, and the periamygdaloid cortex); in the medial septal nucleus and the nucleus of the diagonal band; in the ventral part of the claustrum; in the substantia innominata and the basal nucleus of Meynert; in the rostral thalamus (specifically in the anterior nuclear complex, the laterodorsal nucleus, the paraventricular and parataenial nuclei, the nucleus reuniens, and the nucleus centralis medialis); in the lateral preoptic and lateral hypothalamic areas, and especially in the supramammillary and retromammillary regions; in the ventral tegmental area, the tegmental reticular fields, the raphé nuclei (specifically in nucleus centralis superior and the dorsal raphé nucleus), in the nucleus reticularis tegmenti pontis, the central gray, the dorsal tegmental nucleus, and in the locus coeruleus.  相似文献   

11.
The ascending projections of the locus coeruleus were studied using an autoradiographic method. The major projection of locus coeruleus neurons ascends in a dorsal pathway traversing the midbrain tegmentum in a position ventrolateral to the periaqueductal gray. At the caudal diencephalon the locus coeruleus axons descend to enter the medial forebrain bundle at a caudal tuberal hypothalamic level. They are jointed in the medial forebrain bundle by a much smaller locus coeruleus projection which takes a ventral course through the midbrain tegmentum and enters the medial forebrain bundle via the mammillary peduncle and ventral tegmental area. Terminal projections are evident in the midbrain to the periaqueductal gray, tegmentum and raphe nuclei. There are widespread projections to the dorsal thalamus. The heaviest of these are to the intralaminar nuclei, the anteroventral and anteromedial nuclei, the dorsal lateral geniculate and the paraventricular nucleus. In the hypothalamus the largest projections are to the lateral hypothalamic area, periventricular nucleus, supraoptic nucleus and paraventricular nucleus. As the locus coeruleus projection ascends in the medial forebrain bundle, fibers leave it to traverse the lateral hypothalamus and zona incerta and enter the internal capsule, the ventral amygdaloid bundle and ansa peduncularis. These appear to terminate in the amygdaloid complex and, via the external capsule, in the lateral and dorsal neocortex. At the level of the septum 4 projections are evident. One group of fibers enters the stria medullaris to terminate in the paraventricular nucleus and habenular nuclei. A second group joins the stria terminalis to terminate in the anygdaloid complex. The third group turns into the diagonal band and medial septum; some fibers terminate in the septal nuclei and others continue into the fornix to termimate in hippocampus. A large component continues around the corpus callosum into the cingulum to terminate in the cingulate and adjacent neocortex, the subiculum and hippocampus. The remaining fibers continue rostrally in the medial forebrain bundle to terminate in olfactory forebrain and frontal neocortex. Commissural projections arise at 4 locations. The first decussation occurs in the dorsal tegmentum just below the central gray rostral to the locus coeruleus. The crossing fibers enter the contralateral dorsal bundle. A second group of fibers leaves the ipsilateral dorsal pathway, crosses in the posterior commissure and enters the contralateral dorsal pathway at the level. The third commissural projection arises more rostrally and crosses in the dorsal supraoptic commissure to enter the contralateral medial forebrain bundle. The fourth commissural projection is through the anterior commissure. The termination of the contralateral projection appears similar to that of the ipsilateral projection.  相似文献   

12.
The ascending projections of cholinergic neurons in the laterodorsal tegmental nucleus (TLD) were investigated in the rat by using Phaseolus vulgaris leucoagglutinin (PHA-L) and wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) anterograde tracing techniques. Two ascending pathways were identified after iontophoretic injections of PHA-L into the TLD. A long projection system courses through the dorsomedial tegmentum, caudal diencephalon, medial forebrain bundle, and diagonal band. Different branches of this system innervate the midbrain (superior colliculus, interstitial magnocellular nucleus of the posterior commissure, and anterior pretectal nucleus), the diencephalon (lateral habenular nucleus, parafascicular, anteroventral, anterodorsal, mediodorsal, and intralaminar thalamic nuclei), and the telencephalon (lateral septum and medial prefrontal cortex). The second system is shorter and more diffuse and innervates the median raphe, interpeduncular, and lateral mammillary nuclei. Retrograde tracing with WGA-HRP, combined with choline acetyltransferase immunohistochemistry, revealed that most of the TLD projections to the tectum, pretectum, thalamus, lateral septum, and medial prefrontal cortex are cholinergic. Afferents to the TLD were studied by anterograde and retrograde tracing techniques. Injection of tracers into the TLD retrogradely labelled neurons bilaterally in the midbrain reticular formation, the periaqueductal gray, the medial preoptic nucleus, the anterior hypothalamic nucleus, and the perifornical and lateral hypothalamic areas. Retrogradely labelled cells were also located bilaterally in the premammillary nucleus, paraventricular hypothalamic nucleus, zona incerta, and lateral habenular nucleus. In the telencephalon, the nucleus of the diagonal band and the medial prefrontal cortex contained retrogradely labelled neurons ipsilateral to the TLD injection site. The projections of the medial prefrontal cortex, the bed nucleus of the stria terminalis, and the lateral habenular nucleus to the TLD were confirmed in anterograde tracing studies. These findings indicate that the TLD gives rise to several ascending cholinergic projections that innervate diverse regions of the forebrain. Afferents to the TLD arise in hypothalamic and limbic forebrain regions, some of which appear to have reciprocal connections with the TLD. The latter include the lateral habenular nucleus and medial prefrontal cortex.  相似文献   

13.
The afferent and efferent connections of the dorsal tegmental nucleus (DTN) were studied in the rat using axoplasmic transport techniques. Horseradish peroxidase (HRP) and Fast Blue were injected stereotaxically into either pars centralis or pars ventromedialis of the DTN, two subdivisions of the nucleus with distinctive connected with the ipsilateral lateral mammillary and interpeduncular neclei; these projections constitute the major afferent and efferent systems of the DTN. Commissural fibers from the corresponding pars centralis and intrinsic fibers systems are massive and form a complex fiber meshwork within the subnucleus. The prepositus hypoglossi nuclei (bilateral) also project to the pars centralis. Smaller numbers of afferent fibers arise from the lateral habenular nucleus, the posterior hypothalamus and the brainstem reticular formation.The pars ventromedialis of the DTN receives diverse inputs which include the septal nuclei, diagonal band of Broca, preoptic area, anterior and lateral hypothalamus, lateral and medial habenular nuclei, medial mammillary nucleus and many nuclei of the brainstem reticular formation. Based on the differences of connections and cytoarchitecture between the pars and the pars ventromedialis, the pars ventromedialis may be an entity separate from the dorsal tegmental nucleus.  相似文献   

14.
In the guinea pig brain, LH-RH-containing cell bodies are located not only within the classical hypophysiotrophic area but also in the medial preoptic area, septum and olfactory tubercle. LH-RH fiber tracts project not only to the primary portal plexus in the median eminence but also throughout the limbic forebrain and limbic midbrain regions. Using radiofrequency lesions in different brain regions, the projections of LH-RH cell bodies were determined. Cells in the medial preoptic area project ot the organum vasculosum of the lamina terminalis (OVLT), the suprachiasmatic nucleus, the mammillary body complex and the ventral tegmental area. LH-RH neurons in both the medial septal nucleus and medial preoptic area project via the stria medullaris to the medial habenular nucleus and from there via the fasciculus retroflexus to the interpeduncular nucleus of the midbrain. Other LH-RH neurons in the medial septal nucleus, nucleus of the diagonal band of Broca and olfactory tubercle are congregated in small clusters around large blood vessels which penetrate into this area, and they do not appear to send axons outside their immediate vicinity. The types of LH-RH axonal terminations and the roles of these peptide-containing neurons are discussed.  相似文献   

15.
Afferent connections to the lateral hypothalamic region in the rat were studied using horseradish peroxidase (HRP). HRP was injected iontophoretically by a parapharyngeal approach. After HRP injections into the lateral hypothalamic area, labeled cells were found mainly in the medial prefrontal and infralimbic cortices, lateral and dorsal septal nuclei, nucleus accumbens, bed nucleus of the stria terminalis, medial and lateral amygdaloid nuclei, lateral habenular nucleus, peripeduncular nucleus, ventral tegmental area, mesencephalic and pontine central gray, ventral nucleus of the lateral lemniscus, lateral parabrachial area, raphe nuclei and the nucleus locus coeruleus. Labeled cells following HRP injections into the lateral preoptic area were found mainly in the lateral and dorsal septal nuclei, nucleus accumbens, diagonal band, ventral part of the globus pallidus, bed nucleus of the stria terminalis, central amygdaloid nucleus, mesencephalic and pontine central gray, dorsal raphe nucleus, parabrachial area and the nucleus locus coeruleus. The intrahypothalamic connections were also discussed.  相似文献   

16.
Horseradish peroxidase, 13% Sigma Type VI, was administered iontophoretically to the lateral preoptic area (LPA) of male hooded rats. Animals were perfused intracardially on the following day and brains were removed and sliced in the coronal plane into 50 microns sections. Alternate sections were processed with DAB and BDH for the brown and blue reaction products and later examined by bright and dark field microscopy for the presence and location of retrogradely labeled neurons. Results indicate that there are a significant number of limbic efferent connections to the LPA. Afferents to the LPA originate in the prefrontal corex, nucleus accumbens, diagonal band and olfactory structures, lateral and medial septum, stria hypothalamic tract and stria terminalis, the magnocellular and medial preoptic nuclei, along the extent of the medial forebrain bundle in the LPA and LH, anterior and basolateral amygdala, ventromedial caudate-putamen, stria medullaris and lateral habenula, the stellatocellular-periventricular, ventromedial, arcuate and anterior hypothalamic nuclei, the perifornical area, zona incerta, ventral medial thalamic area, ventral tegmental area of Tsai, interpeduncular nucleus, reticular zone of the substantia nigra, mesencephalic periaqueductal gray and reticular formation, all aspects of the raphe nuclei and the locus coeruleus. Results are discussed in terms of known anatomical and neurophysiological data and the similar limbic inputs observed for lateral hypothalamic neurons which are found along the extent of the medial forebrain bundle.  相似文献   

17.
Ascending projections from the dorsal raphe nucleus (DR) were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). The majority of labeled fibers from the DR ascended through the forebrain within the medial forebrain bundle. DR fibers were found to terminate heavily in several subcortical as well as cortical sites. The following subcortical nuclei receive dense projections from the DR: ventral regions of the midbrain central gray including the 'supraoculomotor central gray' region, the ventral tegmental area, the substantia nigra-pars compacta, midline and intralaminar nuclei of the thalamus including the posterior paraventricular, the parafascicular, reuniens, rhomboid, intermediodorsal/mediodorsal, and central medial thalamic nuclei, the central, lateral and basolateral nuclei of the amygdala, posteromedial regions of the striatum, the bed nucleus of the stria terminalis, the lateral septal nucleus, the lateral preoptic area, the substantia innominata, the magnocellular preoptic nucleus, the endopiriform nucleus, and the ventral pallidum. The following subcortical nuclei receive moderately dense projections from the DR: the median raphe nucleus, the midbrain reticular formation, the cuneiform/pedunculopontine tegmental area, the retrorubral nucleus, the supramammillary nucleus, the lateral hypothalamus, the paracentral and central lateral intralaminar nuclei of the thalamus, the globus pallidus, the medial preoptic area, the vertical and horizontal limbs of the diagonal band nuclei, the claustrum, the nucleus accumbens, and the olfactory tubercle. The piriform, insular and frontal cortices receive dense projections from the DR; the occipital, entorhinal, perirhinal, frontal orbital, anterior cingulate, and infralimbic cortices, as well as the hippocampal formation, receive moderately dense projections from the DR. Some notable differences were observed in projections from the caudal DR and the rostral DR. For example, the hippocampal formation receives moderately dense projections from the caudal DR and essentially none from the rostral DR. On the other hand, virtually all neocortical regions receive significantly denser projections from the rostral than from the caudal DR. The present results demonstrate that dorsal raphe fibers project significantly throughout widespread regions of the midbrain and forebrain.  相似文献   

18.
To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum.  相似文献   

19.
Afferent and efferent connections of the medial preoptic area including medial preoptic nucleus (MP) and periventricular area at the MP level were examined using WGA-HRP as a marker. Injections were performed by insertion of micropipette containing (1) small amount of HRP powder or (2) dryed HRP solution for 24 to 48 hr until the fixation or for 5 min respectively. Dorsal and ventral approaches of injection micropipettes were performed and the results were compared. Previously reported reciprocal connections with lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, lateral hypothalamic nucleus, paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, supramammillary nucleus, central gray at the mesencephalon, raphe dorsalis, raphe medianus, and lateral parabrachial nucleus have been confirmed. In addition, we found reciprocal connections with septo-hypothalamic nucleus, amygdalo-hipocampal nucleus, subiculum, parafascicular thalamic nucleus, posterior thalamic nucleus at the caudo-ventral subdivision, median preoptic nucleus, lateral preoptic nucleus, anterior hypothalamic nucleus, periventricular area at the caudal hypothalamic level, dorsomedial hypothalamic nucleus, posterior hypothalamic nucleus, dorsal and ventral premammillary nucleus, lateral mammillary nucleus, peripeduncular nucleus, periventricular gray, ventral tegmental area, interpeduncular nucleus, nucleus raphe pontis, nucleus raphe magnus, pedunculo-pontine tegmental nucleus, gigantocellular reticular nucleus and solitary tract nucleus. The areas which had only efferent connections from MP were accumbens, caudate putamen, ventral pallidum, substantia innominata, lateral habenular nucleus, paratenial thalamic nucleus, paraventricular thalamic nucleus, mediodorsal thalamic nucleus, reuniens thalamic nucleus, median eminence, medial mammillary nucleus, subthalamic nucleus, pars compacta of substantia nigra, oculomotor nucleus, red nucleus, laterodorsal tegmental nucleus, reticular tegmental nucleus, cuneiform nucleus, nucleus locus coeruleus, and dorsal motor nucleus of vagus among which substantia innominata and median eminence were previously reported. Efferent connections to the nucleus of Darkschewitsch, interstitial nucleus of Cajal, dorsal tegmental nucleus, ventral tegmental nucleus, vestibular nuclei, nucleus raphe obsculus were very weak or abscent in the ventral approach while they were observed in dorsal approach. Previously reported afferent connections from dorsal tegmental nucleus, cuneiform nucleus, and nucleus locus ceruleus were not detected in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain cental gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号