首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation, we have evaluated the antileishmanial and antitrypanosomal activity of methanolic crude extracts obtained from eight species of cnidarians and of a modified steroid isolated from the octocoral Carijoa riisei. The antileishmanial activity of cnidarians crude extracts showed 50% inhibitory concentration (IC50) values in the concentration range between 2.8 and 93.3 μg/mL. Trypomastigotes of Trypanosoma cruzi were less susceptible to the crude extracts, with IC50 values in the concentration range between 40.9 and 117.9 μg/mL. The steroid (18-acetoxipregna-1,4,20-trien-3-one) displayed a strong antileishmanial activity, with an IC50 value of 5.5 μg/mL against promastigotes and 16.88 μg/mL against intracellular amastigotes. The steroid also displayed mammalian cytotoxicity (IC50 of 10.6 μg/mL), but no hemolytic activity was observed at the highest concentration of 12.5 μg/mL. The antileishmanial effect of the steroid in macrophages suggested other mechanism than macrophage activation, as no upregulation of nitric oxide was observed. The antitrypanosomal activity of the steroid resulted in an IC50 value of 50.5 μg/mL. These results indicate the potential of cnidarian natural compounds as antileishmanial drug candidates.  相似文献   

2.
Infections by protozoans of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The drugs of choice for the treatment of leishmaniasis are the pentavalent antimonials, which show renal and cardiac toxicity. As part of a search for new drugs against leishmaniasis, we evaluated the in vitro leishmanicidal activity of the (−) mammea A/BB. The compound (−) mammea A/BB is a coumarin-type mammea purified from a dichloromethane crude extract of leaves of Calophyllum brasiliense Cambess (Clusiaceae). The isolated compound was characterized using spectral analyses by UV, infrared, nuclear magnetic resonance of 1H, 13C, distortionless enhancement by polarization transfer, correlation spectroscopy, heteronuclear multiple bond correlation, and heteronuclear multiple quantum coherence. The compound (−) mammea A/BB showed significant activity against promastigote and amastigote forms of L. amazonensis, with IC50 (50% inhibition concentration of cell growth) at a concentration of 3.0 and 0.88 μg/ml and IC90 (90% inhibition concentration of cell growth) of 5.0 and 2.3 μg/ml, respectively. The coumarin (−) mammea A/BB showed no cytotoxicity against J774G8 macrophages in culture, when it was tested at high concentrations that inhibited promastigote forms. Electron microscopy studies revealed considerable ultrastructural changes when promastigote forms of L. amazonensis were treated with 3.0 μg/ml of the coumarin (−) mammea A/BB for 72 h. We observed significant changes such as mitochondrial swelling with concentric membranes in the mitochondrial matrix and intense exocytic activity in the region of the flagellar pocket. Other alterations included the appearance of binucleate cells and multiple cytoplasmic vacuolization. These results showed that (−) mammea A/BB is a potent growth inhibitor of L. amazonensis and caused important changes in the parasite’s ultrastructure. This study provided new perspectives on the development of novel drugs with leishmanicidal activity obtained from natural products.  相似文献   

3.
In this study, we compared the anti-leishmanial activity of three crotalic venoms (Crotalus durissus terrificusCdt, Crotalus durissus cascavellaCdca, and Crotalus durissus collilineatusCdcol). Different concentrations of each venom incubated with Leishmania (Leishmania) amazonensis promastigotes were used. Cdt venom exhibited a higher anti-leishmanial activity (Inhibitory concentration-IC50-value of 4.70 ± 1.72 μg/ml) in comparison with that of Cdca venom (IC50 value of 9.41 ± 1.21 μg/ml), while Cdcol venom increased parasite numbers in 50% at a concentration of 44.30 ± 2.18 μg/ml. In addition, this venom showed a low anti-leishmanial activity in higher concentrations (IC50 value of 281.00 ± 9.50 μg/ml). The main fractions of Cdca venom were isolated and assayed under similar conditions used for assessing crude venom. The most active fractions were gyroxin and crotamine that had IC50 values of 3.80 ± 0.52 μg/ml and 19.95 ± 4.21 μg/ml, respectively. Convulxin also inhibited parasite growth rate, although this effect was not dose-dependent. Crotoxin was the least effective fraction with an IC50 value of 99.80 ± 2.21 μg/ml. None of the protein fractions presented cytotoxic effects against J774 cells in culture. In vivo assays using BALB/c mice revealed that crotoxin and crotamine were the main toxic fractions. In conclusion, C. durissus cascavella venom has three main fractions with anti-leishmanial activity. These results open new possibilities to find proteins that might be used as possible agents against cutaneous leishmaniasis.  相似文献   

4.
The fractionation through bioguided antileishmanial activity of the dichloromethane extract of Cassia fistula fruits (Leguminosae) led to the isolation of the active isoflavone biochanin A, identified by spectroscopic methods. This compound showed 50% effective concentration (EC50) value of 18.96 μg/mL against promastigotes of Leishmania (L.) chagasi. The cytotoxicity of this substance against peritoneal macrophages resulted in an EC50 value of 42.58 μg/mL. Additionally, biochanin A presented an anti-Trypanosoma-cruzi activity, resulting in an EC50 value of 18.32 μg/mL and a 2.4-fold more effectiveness than benznidazole. These results contribute with novel antiprotozoal compounds for future drug design studies.  相似文献   

5.
In vitro antiplasmodial activity of methanolic extracts of 16 medicinal plants was evaluated by fluorometric assay using PicoGreen. The IC50s, as determined by parasite DNA concentration, ranged from <11 to >200 and <13 to >200 μg/ml for Plasmodium falciparum 3D7 and K1, respectively; and the most active extracts were those from Anogeissus leiocarpus and Terminalia avicennoides (<11–≥14 μg/ml). Aqueous, butanolic, ethyl acetate, and methanolic fractions of these two extracts revealed butanolic fraction to have a relatively better activity (IC50, 10–12 μg/ml). Activity-guided chromatographic separation of the butanolic fraction on Sephadex LH-20 followed by nuclear magnetic resonance and correlation high-performance liquid chromatography revealed the presence of known hydrolysable tannins and some related compounds—castalagin, ellagic acid, flavogallonic acid, punicalagin, terchebulin, and two other fractions. The IC50s of all these compounds ranged between 8–21 μg/ml (8–40 μM) against both the strains. Toxicity assay with mouse fibroblasts showed all the extracts and isolated compounds to have IC50 ≥ 1500 μg/ml, except for Momordica balsamina with <1500 μg/l. All the extracts and isolated compounds did not affect the integrity of human erythrocyte membrane at the observed IC50s. However, adverse effects manifest in a concentration-dependent fashion (from IC50 ≥ 500 μg/ml).  相似文献   

6.
In the present work, we have investigated the effect of essential oils obtained from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) on growth and ultrastructure of diverse evolutive forms of Trypanosoma cruzi. Culture epimastigotes and bloodstream trypomastigotes were incubated for 24 h with different concentrations of oregano or thyme essential oils and with thymol (the main constituent of thyme), and the inhibitory concentration (IC)50 was determined by cell counting. Crude extract of oregano essential oil inhibited epimastigote growth (IC50/24 h = 175 μg/ml) and also induced trypomastigote lysis (IC50/24 h = 115 μg/ml). Thyme essential oil presented IC50/24 h values of 77 μg/ml for epimastigotes and 38 μg/ml for trypomastigotes, while treatment with thymol resulted in an IC50/24 h of 62 μg/ml for epimastigotes and 53 μg/ml for trypomastigotes. Scanning electron microscopy of treated cells showed few morphological alterations at the plasma membrane. Observation by transmission electron microscopy showed cytoplasmic swelling with occasional morphological alterations in plasma and flagellar membrane. Our data indicate that oregano and thyme essential oils are effective against T. cruzi, with higher activity of thyme, and that thymol may be the main component responsible for the trypanocidal activity.  相似文献   

7.
Stem barks of Anogeissus leiocarpus and Terminalia avicennoides widely used in Africa for treatment of some parasitic diseases were collected and made into methanolic extracts. The extracts were tested on four strains of promastigote forms of Leishmania in vitro. Solvent fractionation in aqueous, butanolic, and ethyl acetate layer indicated butanol and aqueous fractions to have a superior leishmanicidal activity. Chromatographic separation of the butanolic fraction on Sephadex LH-20 followed by nuclear magnetic resonance and correlation high-performance liquid chromatography revealed the presence of known hydrolyzable tannins and some related compounds—with castalagin as the major compound. The observed activity ranged from 62.5 to ≥150, 112.5 to ≥500, and 55 to >150 μg/ml for the crude methanolic extract, different solvent fractions, and the isolated compounds, respectively, on the four different Leishmania strains.  相似文献   

8.
In this study, we are reporting antileishmanial activity of a marine sponge Haliclona exigua, belonging to phylum Porifera. The crude methanol extract and its three fractions were tested both in vitro and in vivo. The crude extract exerted almost complete inhibition of promastigotes at 50 μg/ml and 76.4 ± 6.5% inhibition of intracellular amastigotes at 100 μg/ml concentration with IC50 values of 18.6 μg/ml and 47.2 μg/ml, respectively. When administered to Leishmania donovani infected hamsters at a dose of 500 mg/kg × 5, p.o., it resulted in 72.2 ± 10.4% inhibition of intracellular amastigotes. At a lower dose (250 mg/kg), it exhibited 43.9 ± 5.1% inhibition. Among the fractions, highest antileishmanial activity both in vitro (>90%) and in vivo (60.9 ± 18.3%) was observed in n-butanol (soluble) fraction with IC50 values of 8.2 μg/ml and 31.2 μg/ml against promastigotes and intracellular amastigotes, respectively. Hexane fraction also showed comparatively good activity against both the stages of parasites in vitro but was moderately active in leishmania-infected hamsters. Chloroform fraction resulted in 45 ± 10.2% inhibition in vivo at a dose of 500 mg/kg × 5, p.o., whereas it was inactive in vitro. n-Butanol (insoluble) fraction was inactive both in vitro and in vivo. Araguspongin C, an alkaloid isolated from n-butanol (soluble) fraction exhibited moderate inhibition of promastigotes and intracellular amastigotes at 100 μg/ml but showed weak antileishmanial action in vivo. Our findings indicate that this marine sponge has the potential to provide new lead toward development of an effective antileishmanial agent and, hence, calls for more exhaustive studies for exploiting the vast world of marine resources to combat the scourge of several parasitic diseases.  相似文献   

9.
The need for new anthelmintic with no chemical residues is becoming urgent. In a program aiming at the evaluation of plant as sources of new active molecules, the anthelmintic activities of the essential oils (EOs) obtained from either Zanthoxylum zanthoxyloides seeds or Newbouldia laevis leaves were evaluated against Strongyloides ratti by analyzing the results of two in vitro bioassays. These two plants and their tested parts were retained after an ethnopharmacology survey that confirmed their use by small-scale farmers for treatment of small ruminants affected by digestive helminths. The plants were harvested in Benin, and their EO were obtained by hydrodistillation. The EO yield of extraction was 0.65% (w/w) of for Z. zanthoxyloides seeds and 0.05% (w/w) for N. laevis. The chemical compositions of the two EOs were analyzed by gas chromatography coupled with mass spectrometry. The major constituents of the EO from Z. zanthoxyloides consisted of the following compounds: γ-terpinene (18 %), undecane (15 %), valencene (8.3 %), decanal (8.3 %), and 3-carene (6.7 %). In contrast, the major constituents of the EO from N. laevis leaves consisted of the following compounds: β-caryophyllene (36 %) and eugenol (5.8 %). An egg-hatching inhibition (EHI) assay was developed and a larval migration inhibition assay was used on S. ratti to examine the effects of the EOs and to evidence their inhibitory concentrations (IC50 and IC90) values on this nematode. Furthermore, the toxicity of the two EOs on Vero cell line was evaluated. When tested on S. ratti egg hatching, the two EOs resulted in similar IC50 values (19.5 and 18.2 μg/ml for Z. zanthoxyloides and N. laevis, respectively), which were about sevenfold higher than that of the control (thiabendazole, IC50 = 2.5 μg/ml). Larval migration was inhibited at similar concentrations for: Z. zanthoxyloides (IC50 = 46 μg/ml), N. laevis (IC50 = 51 μg/ml), and the control [levamisole (IC50 = 36 μg/ml)]. No cytotoxicity was found on Vero cells because both EOs had IC50 values higher than 50 μg/ml. Therefore, we have concluded that the EOs from two plants, used in folk medicine, may contain compounds with anthelmintic activity and could be used as improved traditional medicines or, at least, as food additives in a combined treatment for the control of helminth infections.  相似文献   

10.
The anti-amoebic activities of chloroform, methanol and water extracts from 12 Thai medicinal plants (39 extracts) commonly used by AIDS patients in southern Thailand were screened, at a concentration of 1,000 μg/ml, against Entamoeba histolytica strain HTH-56:MUTM and strain HM1:IMSS growing in vitro. The extracts were incubated with 2×105 E. histolytica trophozoites/ml of medium at 37°C under anaerobic conditions for 24 h. The cultures were examined with an inverted microscope and scored (1–4) according to the appearance and numbers of the trophozoites. The extracts that caused inhibition were selected and retested using the same conditions but with concentrations that ranged from 31.25 to 1,000 μg/ml using E. histolytica strain HM1:IMSS, and the IC50 values for each extract were calculated. The chloroform extracts from Alpinia galanga (IC50 55.2 μg/ml), Barleria lupulina (IC50 78.5 μg/ml), Boesenbergia pandurata (IC50 45.8 μg/ml), Piper betle (IC50 91.1 μg/ml) and Piper chaba (IC50 71.4 μg/ml) and the methanol extract from B. pandurata (IC50 57.6 μg/ml) were all classified as “active”, i.e. with an IC50 of less than 100 μg/ml, whereas those from Murraya paniculata (IC50 116.5 μg/ml) and Zingiber zerumbet (IC50 196.9 μg/ml) were classified as being “moderately active”. The IC50 of a standard drug, metronidazole, was 1.1 μg/ml.  相似文献   

11.
In order to assess the potential of the stem bark of Kigelia africana (Lam.) Benth as source of new anti-malarial leads, n-hexane and ethyl acetate (EtOAc) extracts and four compounds isolated from the stem bark were screened in vitro against the chloroquine-resistant W-2 and two field isolates of Plasmodium falciparum using lactate dehydrogenase assay. The products were also tested for their cytotoxicity on LLC/MK2 monkey kidney cells. The EtOAc extract exhibited a significant antiplasmodial activity (IC50 = 11.15 μg/mL on W-2; 3.91 and 4.74 μg/mL on field CAM10 and SHF4 isolates, respectively), whereas the n-hexane fraction showed a weak activity (IC50 = 73.78 μg/mL on W-2 and 21.85 μg/mL on SHF4). Three out of the four compounds showed good activity against all the three different parasite strains (IC50 < 5 μM). Specicoside exhibited the highest activity on W-2 (IC50 = 1.54 μM) followed by 2β, 3β, 19α-trihydroxy-urs-12-en-28-oic acid (IC50 = 1.60 μM) and atranorin (IC50 = 4.41 μM), while p-hydroxycinnamic acid was the least active (IC50 = 53.84 μM). The EtOAc extract and its isolated compounds (specicoside and p-hydroxycinnamic acid) were non-cytotoxic (CC50 > 30 μg/mL), whereas the n-hexane extract and two of its products, atranorin and 2β, 3β, 19α-trihydroxy-urs-12-en-28-oic acid showed cytotoxicity at high concentrations, with the last one being the most toxic (CC50 = 9.37 μg/mL). These findings justify the use of K. africana stem bark as antimalaria by traditional healers of Western Cameroon, and could constitute a good basis for further studies towards development of new leads or natural drugs for malaria.  相似文献   

12.
Ethanol extracts of Senna villosa, Serjania yucatanensis, Byrsonima bucidaefolia, and Bourreria pulchra were evaluated for their in vitro activity against epimastigotes and trypomastigotes of Trypanosoma cruzi. Results showed that the leaf extracts of S. yucatanensis and B. pulchra were the most active against epimastigotes (IC100 = 100 μg/mL) and trypomastigotes of T. cruzi (95% or more reduction in the number of parasites at 100 and 50 μg/mL). However, only the leaf extract of S. yucatanensis showed significant trypanocidal activity when tested in vivo, reducing 75% of the parasitemia in infected mice at 100 mg/kg. This same extract inhibited the egress of trypomastigotes from infected cells and proved not to be cytotoxic (IC50 = 318.8 ± 2.3 μg/mL).  相似文献   

13.
The problems of resistant lines of Plasmodium falciparum are escalating. Twelve seaweeds species belong to five different families (Sargassaceae, Gracilariaceae, Hypneaceae, Corallinaceae and Halimedaceae) were collected from Mandapam coastal area, and the seaweeds extracts were tested for in vitro antiplasmodial activity against P. falciparum. Among the tested seaweeds, Gracilaria verrucosa (IC50 5.55 μg.ml−1) and Hypnea espera (IC50 8.94 μg.ml−1) showed good antiplasmodial activity, and these results are comparable with positive controls such as artemether (IC50 4.09 μg.ml−1) and chloroquine (IC50 19.59 μg.ml−1), respectively. Turbinaria conoides, Sargassum myriocystem, Hypnea valentiae and Jania rubens extracts showed IC50 values between 5 to 50 μg.ml−1. Sargassum sp., Turbinaria decurrens and Halimeda gracilis extracts showed IC50 values between 50 to 100 μg.ml−1. Gracilaria corticata, Jania adherens and Halimeda opuntia extracts showed IC50 value of more than 100 μg.ml−1. Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out, and it shows that no morphological changes in erythrocytes by the ethanolic extract of seaweeds extracts after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of sugars, proteins, phenols and carboxylic acid in the ethanolic extracts of seaweeds. It is concluded from the present study that the ethanolic extracts of seaweeds of G. verrucosa and Hypnea espera possess lead compounds for development of antiplasmodial drugs.  相似文献   

14.
Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum drug resistance. There is an urgent need to investigate new sources of antimalarial drugs which are more effective against Plasmodium falciparum. One of the potential sources of antimalarial drugs is traditional medicinal plants. In this work, we studied the in vitro antiplasmodial activity of chloromethylenic, methanolic, and MeOH/H2O (1/1) crude extracts and decoction obtained from eight medicinal plants collected in Burkina Faso and of total alkaloids for five plants. Extracts were evaluated in vitro for efficacy against Plasmodium falciparum strain K1, which is resistant to chloroquine, pyrimethamine and proguanil using the fluorescence-based SYBR Green I assay. The antiproliferative activity on human-derived hepatoma cell line HepG2 and Chinese hamster ovary (CHO) cells was evaluated using the 3-[4,5-dimethylthyazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test in order to determine the selectivity index. Among the plant extracts tested for in vitro antiplasmodial activity, 16 were considered to be inactive (with IC50?>?10 μg/ml), six showed a moderate activity (5?<?IC50?≤?10 μg/ml), and six were found to have a good in vitro activity with IC50 value?≤?5 μg/ml. The highest antiplasmodial activity was found for extracts from: the alkaloid leaf extract and the chloromethylenic extracts of Combretum fragrans (IC50?=?3 μg/ml, IC50?=?5 μg/ml), the total alkaloids and the chloromethylenic leaf extracts of Combretum collinum (IC50?=?4 μg/ml), the MeOH/H2O leaf extract of Terminalia avicennioides (IC50?=?3.5 μg/ml), and the alkaloid leaf extract of Pavetta crassipes (IC50?=?5 μg/ml). Three other extracts showed moderate antiplasmodial activity (5?<?IC50?≤?10 μg/ml): Terminalia avicennioides and Combretum fragrans methanolic extracts and Acacia kirkii alkaloid leaf extract (IC50?=?6.5, 9 and 10 μg/ml respectively). The Terminalia avicennioides crude MeOH/H2O (80:20 v/v) extract of the leaves was submitted to a successive liquid/liquid extraction with ethylacetate and n-butanol respectively. The extracts were investigated for in vitro antiplasmodial activity and antioxidant properties using DPPH, ABTS+ and FRAP methods. The ethylacetate extract showed the best antiplasmodial activity (7 μg/ml) and the active constituent was isolated as ellagic acid by bioguided fractionation with an IC50?=?0.2 μM on Plasmodium falciparum and SI?=?152. Besides, Terminalia avicennioides leaf extract and ellagic acid showed a good antioxidant activity. Our finding confirms the importance of investigating the antimalarial activity of plant species used in traditional medicine. Overall, two plants belonging to the Combretaceae family, Combretum fragrans and Combretum collinum appeared to be the best candidates and will be further investigated for their antiplasmodial properties, in order to isolate the molecules responsible for the antiplasmodial activity.  相似文献   

15.
The present study is aimed to evaluate antifilarial activity of Xylocarpus granatum (fruit from Andaman) against human lymphatic filarial parasite Brugia malayi in vivo. The in vitro antifilarial activity has already been reported earlier for this mangrove plant which has traditionally been used against several ailments. Aqueous ethanolic crude extract, four fractions (ethyl acetate fraction, n-butanol fraction, water-soluble fraction and water-insoluble fraction) and pure molecule/s of X. granatum (fruit) were tested in vitro on adult worms and microfilariae (mf) of B. malayi and the active samples were further evaluated in vivo in B. malayi (intraperitoneally) i.p. transplanted in the jird model (Meriones unguiculatus) and Mastomys coucha subcutaneously infected with infective larvae (L3). The crude aqueous ethanolic extract was active in vitro (IC50: adult = 15.46 μg/ml; mf = 13.17 μg/ml) and demonstrated 52.8% and 62.7% adulticidal and embryostatic effect on B. malayi, respectively, in Mastomys at a dose of 5 × 50 mg/kg by oral route. The antifilarial activity was primarily localized in the ethyl acetate-soluble fraction which revealed IC50 of 8.5 and 6.9 μg/ml in adult and mf, respectively. This fraction possessed moderate adulticidal and embryostatic action in vivo in Mastomys. Out of eight pure molecules isolated from the active fraction, two compounds gedunin (IC50 = 0.239 μg/ml, CC50 = 212.5 μg/ml, SI = 889.1) and photogedunin (IC50 = 0.213 μg/ml, CC50 = 262.3 μg/ml, SI = 1231.4) at 5 × 100 mg/kg by subcutaneous route revealed excellent adulticidal efficacy resulting in to the death of 80% and 70% transplanted adult B. malayi in the peritoneal cavity of jirds respectively in addition to noticeable microfilaricidalo action on the day of autopsy. The findings reveal that the extract from the fruit X. granatum contains promising in vitro and in vivo antifilarial activity against human lymphatic filarial parasite B. malayi which could be attributed to the presence of two pure compounds gedunin and photogedunin.  相似文献   

16.
Moon HI 《Parasitology research》2007,100(5):1147-1149
Samples of Carpesium genus used as traditional remedies for the treatment of parasite infections were collected, and methanol extracts were obtained by sonication. The ethylacetate-, n-butanol- and H2O-soluble fractions exhibited weak antiplasmodial activity (IC50 > 100 μg/ml; IC50, 50% inhibitory concentration). However, the chloroform fraction exhibited more impressive antiplasmodial activity (IC50 = 8.2 μg/ml). The antiplasmodial activity of the chloroform fractions was evaluated in vitro against the chloroquine-resistant D10 strain of Plasmodium falciparum. Bioactivity-guided isolation of the chloroform fractions of the whole plants of Carpesium rosulatum has led to the isolation of a sesquiterpene lactone, ineupatorolides A, displaying high antiplasmodial activity (IC50 = 0.007 μg/ml). This is the first report of the isolation of ineupatorolides A from this species and of its remarkable antiplasmodial activity.  相似文献   

17.
Malaria is a major global public health problem, and the alarming spread of drug resistance and limited number of effective drugs now available underline how important it is to discover new antimalarial compounds. In the present study, ten plants were extracted with ethyl acetate and methanol and tested for their antimalarial activity against chloroquine (CQ)-sensitive (3D7) and CQ-resistant (Dd2 and INDO) strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green assay. Plant extracts showed moderate to good antiparasitic effects. Promising antiplasmodial activity was found in the extracts from two plants, Phyllanthus emblica leaf 50% inhibitory concentration (IC50) 3D7: 7.25 μg/mL (ethyl acetate extract), 3.125 μg/mL (methanol extract), and Syzygium aromaticum flower bud, IC50 3D7:13 μg/mL, (ethyl acetate extract) and 6.25 μg/mL (methanol extract). Moderate activity (30–75 μg/mL) was found in the ethyl acetate and methanol extracts of Abrus precatorius (seed) and Gloriosa superba (leaf); leaf ethyl acetate extracts of Annona squamosa and flower of Musa paradisiaca. The above mentioned plant extracts were also found to be active against CQ-resistant strains (Dd2 and INDO). Cytotoxicity study with P. emblica leaf and S. aromaticum flower bud, extracts showed good therapeutic indices. These results demonstrate that leaf ethyl acetate and methanol extracts of P. emblica and flower bud extract of S. aromaticum may serve as antimalarial agents even in their crude form. The isolation of compounds from P. emblica and S. aromaticum seems to be of special interest for further antimalarial studies.  相似文献   

18.
Malaria is a major health problem in many developing countries. The drugs resistant Plasmodium falciparum causes the most virulent form of malaria in humans and it is described as a public health disaster causing increased morbidity and mortality. Thirteen seaweeds species which belong to four different families (Rhodomelaceae, Cladophoraceae, Ulvaceae, and Caulerpaceae) were collected from Mandapam coastal area and the seaweeds extracts were tested for in vitro antiplasmodial activity against P. falciparum. Among them, Caulerpa toxifolia (IC50 5.06 μg·ml−1) showed potential antiplasmodial activity than other seaweeds extracts and it can be comparable with the positive control artemether (IC50 4.09 μg·ml−1). Caulerpa peltata (IC50 16.69 μg·ml−1) also exhibited good antiplasmodial activity and the IC50 value is lesser than the positive control chloroquine (IC50 19.59 μg·ml−1). Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out and it shows that no morphological changes in erythrocytes by the ethanolic extract of seaweeds extracts after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of sugars, proteins, and phenols in the ethanolic extracts of seaweeds. It is concluded from the present study that, the ethanolic extracts of seaweeds of C. toxifolia and C. peltata possesses lead compounds for development of antiplasmodial drugs.  相似文献   

19.
The chemotherapeutic interventions against visceral leishmaniasis (VL) are limited and facing serious concerns of toxicity, high cost, and emerging drug resistance. There is a greater interest in new drug developments from traditionally used medicinal plants which offers unprecedented diversity in structures and bioactivity. With this rationale, ethanolic extract of Tinospora sinensis Linn and its four fractions were tested in vitro against promastigotes and intracellular amastigotes and in vivo in Leishmania donovani infected hamsters. Ethanolic extract exhibited an appreciable activity against promastigotes (IC50 37.6 ± 6.2 μg/ml) and intracellular amastigotes (IC50 29.8 ± 3.4 μg/ml). In hamsters, it resulted in 76.2 ± 9.2% inhibition at 500 mg/kg/day × 5 oral dose level. Among fractions, n-butanol imparted highest in vitro and in vivo activities. Ethanolic extract and butanol fraction also enhances reactive oxygen species (ROS) and nitric oxide (NO) release. The results indicate that T. sinensis may provide new lead molecules for the development of alternative drugs against VL.  相似文献   

20.
The aim of this study was to investigate in vitro antioxidant, anti-inflammatory and cytotoxic activities of the petroleum ether, ethyl acetate, methanol and aqueous extracts obtained from leaves of Drypetes sepiaria (Euphorbiaceae). Total phenolic and flavonoid contents of these crude extracts were determined as gallic acid and quercetin equivalents, respectively. In in vitro antioxidant method, methanol extract exhibited higher free radical scavenging activity compared to standard compound, ascorbic acid with IC50 of 95.43µg/ml (DPPH) and 67.05µg/ml (ABTS). Methanol extract was able to inhibit inflammation by in vitro about 85–90% (HRBC stabilization method) and in vivo about 40–45% (Paw oedema method) anti-inflammatory assays compared to standard produced 50.04% at 6h period. In cytotoxicity assay (MTT assay) methanolic extract exhibited IC50 of 10µg/ml. In apoptosis (flow cytometric assay), the control group showed normal caspase 3 activity in the SiHa cells which was 0.24%, and increased up to 40% after treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号