首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single Ca channel currents in mouse pancreatic B-cells   总被引:8,自引:0,他引:8  
Barium currents flowing through single Ca2+ channels were recorded from outside-out patches isolated from mouse pancreatic B-cells. Only one type of Ca2+ channel was observed. In 110 mM Ba2+, the single channel conductance was 24 pS (at negative membrane potentials) and the current amplitude at 0 mV was–0.7 pA. Channel openings were activated by depolarisations more positive than –30 mV and showed little inactivation during 200 ms pulses. Open times were increased by BAY K 8644 an decreased by micromolar Cd2+. Channel activity was subject to rundown in excised patches and little activity remained after 10 min. These properties resemble those of L-type Ca2+ channels in other tissues. It is suggested that this Ca2+ channel participates in the generation of the B-cell action potential and mediates the increase in Ca2+ influx required for insulin secretion.  相似文献   

2.
Pancreatic B-cells, kept in culture for 1–4 days, were studied in the whole-cell, cell-attached and outside-out modes of the patch clamp technique. B-cells were identified by the appearance of electrical activity in the cell-attached mode when the bath glucose was raised from 3 to 20 mM. In whole-cell, 80% of these cells showed a transient inward Na+ current, when depolarizing pulses were preceded by holding potentials, or prepulses to potentials more negative than –80 mV. The midpoint (E h) of the inactivation curve (h ) was at –109 mV in 2.6 mM Ca2+, 1.2 mM Mg2+ and –120 mV in 0.2 mM Ca2+, 3.6 mM Mg2+. In 2.6 mM Ca2+, inactivation was fully removed atE<–150 mV. Na+ currents activated atE>–60 mV and were largest at around –10 mV (120 mM Na+). The kinetic parameters of activation (t p) and inactivation ()h were similar to those of other mammalian Na+ channels. Unitary currents with an amplitude of approximately 1 pA at –30 mV (140 mM Na+) with a similar voltage-dependence and time-course of mean current were recorded from outside-out patches. The results show that B-cells have a voltage-dependent Na+ current which, owing to the voltage-dependence of inactivation, is unlikely to play a major role in glucose-induced electrical activity.  相似文献   

3.
 It has been reported previously that the β subunit increases both the ionic current and the gating charge movement of the human cardiac L-type Ca2+ channel α1 subunit, and that steady-state measurements reveal the presence of two distinct components of the charge movement [Josephson IR, Varadi G (1996) Biophys J 70:1285–1293]. The present work identifies and characterizes the kinetic properties of the components of the human cardiac L-type Ca channel gating currents (I g), and determines the relationship of these components to the activation of the Ca channel ionic current (I Ca). Cloned human cardiac L-type α123 subunits were transiently expressed in HEK293 cells and calcium channel gating currents were recorded following the addition of 5 mM Co2+. The steady-state charge integrals of the gating currents (Q ON-V m) were fit by a sum of two Boltzmann components: Q ON1, which ranged over more negative potentials, and Q ON2, which ranged over more positive potentials. The kinetic components of the ON and OFF gating currents were identified using bi-exponential curve fitting. Reconstruction of the two kinetic components of charge (Q ONfast and Q ONslow) yielded distributions that were similar in their voltage dependence and relative proportion to those measured directly by steady-state integration of Q ON1 and Q ON2. Changes in the initial conditions were found to affect Q ON1 and Q ON2 differently. The time constants of the ON gating current decays were similar to those of the activation of I Ca. The results suggest that: (1) the activation of the human cardiac L-type Ca channel involves the movements of at least two, functionally distinct gating structures; (2) a fast charge movement (≈1/4 of the total charge; Q ON1 or Q ONfast) precedes a slower charge movement (≈3/4 of the total charge; Q ON2 or Q ONslow); and (3) channel opening is associated with the conformational change(s) producing Q ONslow. Received: 7 June 1996 / Received after revision: 24 September 1996 / Accepted: 1 October 1996  相似文献   

4.
Mechanisms underlying suppression of T- and L-type Ca2+ currents (I(Ca,T) and I(Ca,L)) by odorants were investigated in newt olfactory receptor cells (ORCs) using the whole-cell version of the patch-clamp technique. Under voltage clamp, odorants (amyl acetate, limonene and acetophenone) reversibly suppressed I(Ca,T) and I(Ca, L). These currents disappeared completely within 150 ms following amyl acetate puffs, and recovered in approximately 1 s after the washout. Hyperpolarization of the membrane greatly relieved the odorant block of I(Ca,T) and I(Ca,L). The activation curves of both currents were not changed significantly by odorants, while their inactivation curves were shifted to negative voltages. Half-inactivation voltages of I(Ca,T) were - 66 mV (control), - 102 mV (amyl acetate), - 101 mV (limonene) and - 105 mV (acetophenone) (all 0.3 mM); those of I(Ca,L) were -33 mV (control), - 61 mV (amyl acetate), - 59 mV (limonene), and - 63 mV (acetophenone) (all 0.3 mM). These phenomena are similar to the effects of local anesthetics on I(Ca) in various preparations and also similar to the effects of odorants on I(Na) in ORCs, suggesting that these types of suppression are caused by the same mechanism.  相似文献   

5.
Voltage-dependent inward Ba++ and Ca++ currents were recorded in cultured neonatal rat pancreatic islet cells using the whole-cell voltage clamp technique. Outward current was suppressed by internal Cs+ and ATP and external TEA. Inward currents activated rapidly and decayed to a variable extent. The current decay was particularly marked when using long duration or large depolarizing pulses. Currents were due to Ca++ channel activation since they were abolished by omitting Ba++ and Ca++ or including Co++.  相似文献   

6.
7.
A readily releasable pool (RRP) of granules has been proposed to underlie the first phase of insulin secretion. In the present study we combined electron microscopy, insulin secretion measurements and recordings of cell capacitance in an attempt to define this pool ultrastructurally. Mouse pancreatic B-cells contain approximately 9,000 granules, of which 7% are docked below the plasma membrane. The number of docked granules was reduced by 30% (200 granules) during 10 min stimulation with high K+. This stimulus depolarized the cell to -10 mV, elevated cytosolic [Ca2+] ([Ca2+](i)) from a basal concentration of 130 nM to a peak of 1.3 microM and released 0.5 ng insulin/islet, corresponding to 200-300 granules/cell. The Ca2+ transient decayed towards the prestimulatory concentration within approximately 200 s, presumably reflecting Ca2+ channel inactivation. Renewed stimulation with high K+ failed to stimulate insulin secretion when applied in the absence of glucose. The size of the RRP, derived from the insulin measurements, is similar to that estimated from the increase in cell capacitance elicited by photolytic release of caged Ca2+. We propose that the RRP represents a subset of the docked pool of granules and that replenishment of RRP can be accounted for largely by chemical modification of granules already in place or situated close to the plasma membrane.  相似文献   

8.
Tonic neurotransmitter release at sensory cell ribbon synapses is mediated by calcium (Ca2+) influx through L-type voltage-gated Ca2+ channels. This tonic release requires the channels to inactivate slower than in other tissues. Ca(v)1.4 L-type voltage-gated Ca2+ channels (LTCCs) are found at high densities in photoreceptor terminals, and alpha1 subunit mutations cause human congenital stationary night blindness type-2 (CSNB2). Ca(v)1.4 voltage-dependent inactivation is slow and Ca2+-dependent inactivation (CDI) is absent. We show that removal of the last 55 or 122 (C122) C-terminal amino acid residues of the human alpha1 subunit restores calmodulin-dependent CDI and shifts voltage of half-maximal activation to more negative potentials. The C terminus must therefore form part of a mechanism that prevents calmodulin-dependent CDI of Ca(v)1.4 and controls voltage-dependent activation. Fluorescence resonance energy transfer experiments in living cells revealed binding of C122 to C-terminal motifs mediating CDI in other Ca2+ channels. The absence of this modulatory mechanism in the CSNB2 truncation mutant K1591X underlines its importance for normal retinal function in humans.  相似文献   

9.
The mitochondrial inhibitors NaN(3) and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) were used to study the role of mitochondria in pancreatic B-cell Ca2+ homeostasis. In glucose-stimulated B-cells NaN(3) and FCCP both increased the K(ATP) current and thus hyperpolarized the cell membrane potential, as expected for agents depleting cellular ATP. NaN(3) and FCCP stopped the glucose-induced oscillations in the cytosolic free Ca2+ concentration ([Ca2+](c)) and elicited a biphasic response. After a first rapid and transient increase, [Ca2+](c) rose in a second slow phase to a sustained level. In cells pretreated with thapsigargin the first inhibitor-induced rise in [Ca2+](c) was absent, suggesting that it may be due to Ca2+ mobilization from intracellular stores. The glucose-induced oscillations were terminated again by NaN(3) and FCCP, respectively, but the slow increase in [Ca2+](c)of the second phase was still present. A minute increase in [Ca2+](c)elicited by NaN(3) or FCCP was even visible after the removal of extracellular Ca2+, suggesting that the inhibitors also mobilize Ca2+ from mitochondria. NaN(3) and FCCP induced Ca2+ influx into B-cells treated with low glucose concentrations whose voltage-dependent Ca2+ channels are closed. Experiments with thapsigargin-preincubated cells indicate that disturbance of mitochondrial function stimulates Ca2+ influx through voltage-independent Ca2+ pathways. During the NaN(3)-induced increase in [Ca2+](c), K+-elicited depolarizations of the cells did not further augment [Ca2+](c). Evidently, this is due to a direct inhibitory effect of azide on L-type Ca2+ channels. The data demonstrate that disturbing the mitochondrial function affects cellular Ca2+ homeostasis in B-cells at several sites. Thus, it is concluded that intact mitochondrial function is a prerequisite for regular Ca2+ handling in B-cells.  相似文献   

10.
We sought to determine whether extracellular Ca2+ (Ca e 2+ ) and K+ (K e + ) play essential roles in the normal functioning of cardiac K+ channels. Reports by others have shown that removal of Ca e 2+ and K e + alters the gating properties of neural delayed rectifier (I K) and A-type K+ currents, resulting in a loss of normal cation selectivity and voltage-dependent gating. We found that removal of Ca e 2+ and K e + from the solution bathing guinea pig ventricular myocytes often induced a leak conductance, but did not affect the ionic selectivity or time-dependent activation and deactivation properties of I K. The effect of [K+]e on the magnitude of the two components of cardiac I K was also examined. I K in guinea pig myocytes is comprised of two distinct types of currents: I Kr (rapidly activating, rectifying) and I Ks (slowly activating). The differential effect of Ca e 2+ on the two components of I K (previously shown to shift the voltage dependence of activation of the two currents in opposite directions) was exploited to determine the role of K e + on the magnitude of I Ks and I Kr. Lowering [K+]e from 4 to 0 mM increased I Ks, as expected from the change in driving force for K+, but decreased I Kr. The differential effect of [K+]e on the two components of cardiac I K may explain the reported discrepancies regarding modulation of cardiac I K conductance by this cation.  相似文献   

11.
In skeletal muscle, there is bidirectional signalling between the L-type Ca2+ channel (1,4-dihydropyridine receptor; DHPR) and the type 1 ryanodine-sensitive Ca2+ release channel (RyR1) of the sarcoplasmic reticulum (SR). In the case of “orthograde signalling” (i.e., excitation-contraction coupling), the conformation of RyR1 is controlled by depolarization-induced conformational changes of the DHPR resulting in Ca2+ release from the SR. “Retrograde coupling” is manifested as enhanced L-type current. The nature of this retrograde signal, and its dependence on RyR1 conformation, are poorly understood. Here, we have examined L-type currents in normal myotubes after an exposure to ryanodine (200 μM, 1 h at 37°C) sufficient to lock RyR1 in a non-conducting, inactivated, conformational state. This treatment caused an increase in L-type current at less depolarized test potentials in comparison to myotubes similarly exposed to vehicle as a result of a ~5 mV hyperpolarizing shift in the voltage-dependence of activation. Charge movements of ryanodine-treated myotubes were also shifted to more hyperpolarizing potentials (~13 mV) relative to vehicle-treated myotubes. Enhancement of the L-type current by ryanodine was absent in dyspedic (RyR1 null) myotubes, indicating that ryanodine does not act directly on the DHPR. Our findings indicate that in retrograde signaling, the functional state of RyR1 influences conformational changes of the DHPR involved in activation of L-type current. This raises the possibility that physiological regulators of the conformational state of RyR1 (e.g., Ca2+, CaM, CaMK, redox potential) may also affect DHPR gating.  相似文献   

12.
 β-adrenergic receptor (β-AR) stimulation increases cardiac L-type Ca2+ channel (CaCh) currents via cAMP-dependent phosphorylation. We report here that the affinity and maximum response of CaCh to isoproterenol (Iso), in mouse ventricular myocytes were significantly higher when Ba2+ was used as the charge carrier (I Ba) instead of Ca2+ (I Ca). The EC50 and maximum increase of peak currents were 43.7 ± 7.9 nM and 1.8 ± 0.1-fold for I Ca and 23.3 ± 4.7 nM and 2.4 ± 0.1-fold for I Ba. When cells were dialyzed with the faster Ca2+ chelator, BAPTA, both sensitivity and maximum response of I Ca to Iso were significantly augmented compared to cells with EGTA (EC50 of 23.1 ± 5.2 nM and maximal increase of 2.2 ± 0.1-fold). Response of I Ca to forskolin was also significantly increased when cells were dialyzed with BAPTA or when currents were measured in Ba2+. In contrast, depletion of the sarcoplasmic reticulum (SR) Ca2+ stores by ryanodine did not alter sensitivity of I Ca to Iso or forskolin. These results suggest that the Ca2+ entering through CaCh regulates cAMP-dependent phosphorylation, and such negative feedback may play a significant role in cellular Ca2+ homeostasis and contraction in cardiac cells during β-AR stimulation. Received: 10 December 1997 / Received after revision: 19 January 1998 / Accepted: 21 January 1998  相似文献   

13.
14.
The most common cardiovascular side effects of antidepressants are cardiac arrhythmias and orthostatic hypotension. Little is known, however, about the mechanisms by which these adverse reactions may occur, especially with regard to newer drugs such as fluoxetine. We hypothesized that these side effects may have an electrophysiological basis at the level of the cardiac myocyte. Thus, we investigated the effects of fluoxetine and other antidepressants on action potentials and ionic currents of rat ventricular myocytes using the amphotericin B perforated patch clamp technique. Fluoxetine (10 microM) prolonged the action potential duration (APD50) to 146.7 +/- 12.9% of control value without altering resting membrane potential. Fluoxetine and sertraline potently inhibited the L-type Ca2+ current (IC50 = 2.82 and 2.31 microM, respectively), but did not significantly modify the steady-state inactivation. Amitriptyline and imipramine had similar, but slightly weaker, effects (IC50 = 3.75 and 4.05 microM, respectively). Fluoxetine attenuated the peak transient outward K+ current and also altered current kinetics, as shown by accelerated decay. Fluoxetine did not change the voltage-dependence of the steady-state inactivation. Sertraline, amitriptyline and imipramine inhibited the transient outward K+ current with potencies very similar to fluoxetine. In contrast to the other antidepressants tested, trazodone weakly inhibited the Ca2+ and K+ currents and moclobemide had no detectable effect. Our comparative pharmacology data suggest that selective serotonin reuptake inhibitors, such as fluoxetine, are as potent as tricyclic antidepressants in inhibiting L-type Ca2+ and transient outward K+ currents. These inhibitory effects may contribute to cardiovascular complications such as arrhythmias and orthostatic hypotension.  相似文献   

15.
We investigated the effects of cAMP-dependent phosphorylation on the voltage- and time-dependent gating properties of Ca2+ channel currents recorded from bovine adrenal chromaffin cells under whole-cell voltage clamp. Extracellular perfusion with the membrane-permeant activator of cAMP-dependent protein kinase, 8-bromo(8-Br)-cAMP (1 mM), caused a 49%, 29%, and 21% increase in Ca2+ current (I Ca) amplitudes evoked by voltage steps to 0, +10, and +20 mV respectively (mean values from eight cells, p0.05). Analysis of voltage-dependent steady-state activation (m ) curves revealed a 0.70±0.27 charge increase in the activation-gate valency (z m) following 8-Br-cAMP perfusion. Similar responses were observed when Ba2+ was the charge carrier, where z m was increased by 1.33±0.34 charges (n=8). The membrane potential for half activation (V 1/2) was also significantly shifted 6 mV more negative for I Ba (mean, n=8). The time course for I Ba (and I Ca) activation was well described by second-order m 2 kinetics. The derived time constant for activation (m) was voltage-dependent, and the m/V relation shifted negatively after 8-Br-cAMP treatment. Ca2+ channel gating rates were derived from the (m) and m 2 values according to a Hodgkin-Huxley type m 2 activation process. The forward rate ( m) for channel activation was increased by 8-Br-cAMP at membrane potentials 0 mV, and the backward rate (m) decreased at potentials +10 mV. Time-dependent inactivation of I Ca consisted of a slowly decaying component (h 300 ms) and a non-inactivating steady-state component. The currents contributed by the two inactivation processes displayed different voltage dependences, the effects of 8-Br-cAMP being exclusively on the slowly inactivating L-type component.  相似文献   

16.
Low concentrations of tetraethylammonium chloride (TEA), which inhibit voltage- and Ca2+-sensitive K+ channels (K+-VCa channels), were used to investigate whether these channels play a role in the control of glucose-induced electrical activity (slow waves with spikes) in mouse pancreatic B-cells. Addition of 2 mM TEA to a medium containing 0, 3 or 6 mM glucose had no effect on the membrane potential of B-cells or on 86Rb+ efflux and insulin release from isolated islets. In 10 mM glucose, 0.5–2 mM TEA produced a concentration-dependent increase in spike amplitude without modifying slow-wave duration or frequency. Insulin release was only slightly increased under these conditions. In conclusion, K+-VCa channels are not operative when the B-cell membrane is not depolarized (in low glucose). They appear to play a role in the repolarization of the spikes but not in that of the slow waves. In contrast to ATP-sensitive K+ channels, K+-VCa channels are not a target on which glucose acts to regulate electrical activity in B-cells and, hence, insulin release.  相似文献   

17.
The effects of various stimulants of insulin release on cytosolic free Ca2+, [Ca2+]i, in dispersed and cultured pancreatic beta-cells from ob/ob-mice were studied using the indicator quin-2, which in itself has only slight effects on the glucose-induced insulin release and the metabolism of the sugar. The resting [Ca2+]i was 158 +/- 7 nM. After increasing glucose to 20 mM there was a lag-period of 1-2 min before [Ca2+]i gradually rose, reaching a new plateau 60% higher after 5-6 min. Increasing intracellular cyclic AMP by adding forskolin did not further increase [Ca2+]i; on the contrary there was a slight temporary reduction despite a doubling of insulin secretion. The maintenance of the beta-cell function was evident from a marked increase of cytosolic [Ca2+]i after depolarization evoked by high extracellular K+. Also dibutyryl cyclic AMP and theophylline lacked the ability to raise [Ca2+]i beyond that obtained by glucose. The results suggest that cyclic AMP potentiates glucose-induced insulin release by sensitizing the secretory machinery to changes of [Ca2+]i rather than by increasing the cytosolic concentration of the ion.  相似文献   

18.
The role of the P/Q-type voltage-gated Ca(2+) channels (VGCCs) in release of neurotransmitters involved in nociception is not fully understood. Rolling mouse Nagoya (tg(rol)), a P/Q-type channel mutant mouse, expresses P/Q-type VGCC whose activation curve has a higher half activation potential and a smaller slope factor than the wild type channel. We previously reported that tg(rol) mice showed hypoalgesic responses to noxious stimuli. In this study, we examined the VGCC current in dorsal root ganglion (DRG) neurons by the whole-cell patch-clamp method. Both ω-agatoxin IVA (0.1 μM) and ω-conotoxin GVIA (1 μM) inhibited the VGCC current by about 40-50% in both the homozygous tg(rol) (tg(rol)/tg(rol)) and wild type (+/+) mice. The voltage-activation relationships of the total VGCC current and the ω-agatoxin IVA-sensitive component in the tg(rol)/tg(rol) mice shifted positively compared to the +/+ mice, whereas that sensitive to the ω-conotoxin GVIA was not different between the two genotypes. The time constant of activation of the VGCC current at -20 mV was longer in the tg(rol)/tg(rol) mice than in the +/+ mice. These changes in the properties of the VGCC in the tg(rol)/tg(rol) mouse may reduce the amount of the released neurotransmitters and account for the hypoalgesic responses.  相似文献   

19.
The effect of arginine-vasopressin (AVP, 0.1 M) on elementary Ca2+ channel currents (L-type) was studied in cell-attached patches with 10 mM BaCl2 as the charge carrier. At a constant potential of –30 mV, bath applied AVP increased the channel openness (NP o) by a factor of 4.7±3.0 (mean±SD, n=9), the effect resulted from an increase in the frequency of opening (factor 2.5±0.8) and from a longer mean open time. Under control, openings longer than 5 ms contributed only 4% of the total, however, with the application of AVP this contribution increased to 29%. Under control, the open times were distributed along a single exponential (o1=0.8±0.4 ms), a double exponential distribution was obtained during AVP (o1=0.8±0.5 ms, o2=7.5±0.7 ms). The Ca2+ agonist BAYk8644 (1 M) changed the open time distribution similarly to AVP (o1=1.0±0.5 ms, o2=9±2.8 ms). With 1 M BAYk8644 in the bath, AVP did not significantly increase the relative contribution of long openings, however, AVP increased the frequency of openings by a factor of 2.0±1 (n=6). The results are compatible with the idea that AVP can change the gating of L-type Ca2+ channels from mode 1 to mode 2.  相似文献   

20.
We studied the effects of the cAMP-hydrolyzing enzyme phosphodiesterase type-4 (PDE4) on the L-type Ca2+ channels (LTCCs) and Ca2+-dependent secretion in mouse chromaffin cells (MCCs). The selective PDE4 inhibitor rolipram (3 μM) had a specific potentiating action on Ca2+ currents of MCCs (40% increase within 3 min). A similar effect was produced by the selective β1-AR agonist denopamine (1 μM) and by the unselective PDEs inhibitor IBMX (100 μM). Rolipram and denopamine actions were selective for LTCCs, and the Ca2+ current increase remained unchanged if the two compounds were applied simultaneously. This suggests that at rest, LTCCs in MCCs are down-regulated by the low levels of cAMP determined by PDE4 activity and that LTCCs can be up-regulated by either inhibiting PDE4 or activating β1-AR. No other PDEs are likely involved in this specific action. PDE4 inhibition had also a marked effect on the spontaneous firing of resting MCCs and catecholamine secretion. Rolipram up-regulated the LTCCs contributing to the “pace-maker” current underlying action potential (AP) discharges and accelerated the firing rate, with no significant effects on AP waveform. Acceleration of AP firing was also induced by the LTCC-agonist Bay K (1 μM), while nifedipine (3 μM) reduced the firing frequency, suggesting that LTCCs and intracellular cAMP play a key role in setting the pace-maker current regulating MCCs excitability. Rolipram increased also the size of the ready-releasable pool and the quantal content of secretory vesicles without affecting their probability of release. Thus, rolipram acts on MCCs by up-regulating both exocytosis and AP firings. These two processes are effectively down-regulated by PDE4 at rest and can dramatically increase the quantity of released catecholamines when PDE4 is inhibited and/or cAMP is raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号