首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of chimeric and complementary-determining region (CDR) grafted monoclonal antibodies (MAb) have reduced the immunogenicity problem in the clinical application of radioimmunotherapy with monoclonal antibodies. However, humanization (Hu) has prolonged the circulation (plasma T1/2) of radiolabeled antibodies, resulting in an increased normal tissue exposure to radioactivity and greater dose-limiting bone marrow suppression. To overcome this problem, a tumor-associated glycoprotein (TAG)-72-specific CDR grafted MAb with C(H)2 domain deletion (DeltaC(H)2) was developed from the MAb CC49. Preclinical studies have demonstrated that HuCC49 DeltaC(H)2 clears more rapidly from the plasma of mice than HuCC49. This preliminary report describes the initial human experience with HuCC49 DeltaC(H)2 radiolabeled with 131I and administered to patients with metastatic colorectal carcinoma. In this pilot study we enrolled four patients who received a single infusion of 20 mg of HuCC49 DeltaC(H)2 (total protein dose) labeled with 10 mCi of 131I. Pharmacokinetics, biodistribution, dosimetry, and immune response were evaluated over 2-6 weeks. No toxicity was observed in this group of patients. A one-compartment bolus model using the non-linear (NLIN) procedures in Statistical Analysis Software (SAS; SAS, Incorporated, Cary, NC) best describes the pharmacokinetics of the 131I-HuCC49 DeltaC(H)2 with a plasma mean T1/2 of 20 +/- 3 hours, a mean residence time (MRT) of 29 +/- 4 hours and a clearance rate (Cl) of 1.5 +/- 0.1 mL/hours/kg. The whole body and marrow radiation dose estimates were 0.55 +/- 0.06 rad/mCi and 1.00 +/- 0.14 rad/mCi, respectively. All patients had positive localization of antibody to metastatic tumor sites. The 131I-HuCC49 DeltaC(H)2 biodistribution was similar to murine CC49. Three patients had no evidence of antibody response to HuCC49 DeltaC(H)2 over 6 weeks of observation, and one patient had a marginal response by week 6. Intravenous administration of HuCC49 DeltaC(H)2 is safe and well tolerated. The deleted C(H)2 construct has a shorter half-life compared with prior studies of murine CC49 but with similar biodistribution and low immunogenicity. These studies support the further clinical investigation of this agent in phase I trials by intravenous and intraperitoneal routes.  相似文献   

2.
The primary limitation of IgG antibodies for radioimmunotherapy of solid tumors is their prolonged serum half-life, leading to dose-limiting bone marrow toxicity at doses providing inadequate radiation to the tumor. A humanized C(H)2 domain-deleted variant of the anti-TAG-72 antibody CC49 (HuCC49DeltaC(H)2) has faster blood clearance, compared to the IgG, while retaining tumor targeting. We compared the pharmacokinetics and tumor uptake of (111)In-HuCC49DeltaC(H)2 in BALB/c mice and a colon carcinoma (LS-174T) mouse xenograft with that of (111)In-labeled chimeric CC49 (cCC49), an antibody with pharmacokinetics similar to the humanized CC49 parent. Immuno-conjugates of HuCC49DeltaC(H)2 and cCC49 prepared with the (111)In chelator Mx-DTPA (1-isothiocyantobenzyl-3-methyldiethylenetriaminepentaacetic acid) retained low nM affinity and radiolabeling protocols provided greater than 95% radio-incorporation with (111)In while retaining greater than 80% immunoreactivity. Blood clearance of (111)In-HuCC49DeltaC(H)2 in BALB/c mice was monoexponential (t(1/2) 5.4 hours) and faster than (111)In-cCC49 (biexponential clearance; t1/2Delta 1.5 hours; t1/2beta 162 hours). The (111)In-HuCC49DeltaC(H)2 also cleared more rapidly from the blood in the murine xenograft. At 1 hour postinjection, blood concentrations for (111)In-HuCC49DeltaC(H)2 and (111)In-cCC49 were comparable (25.5 injected dose per g [%ID/g] and 21.3 %ID/g, respectively); tumor uptake for (111)In- HuCC49DeltaC(H)2 was 7.9 %ID/g, compared to 7.5 %ID/g for (111)In-cCC49. However, at 24 hours, blood concentration for (111)In-HuCC49DeltaC(H)2 was less than (111)In-cCC49 (0.9 %ID/g versus 5.2 %ID/g, respectively) with comparable tumor retention (14.4 %ID/g versus 19.0 %ID/g, respectively). Faster blood clearance of (111)In-HuCC49DeltaC(H)2 and tumor localization comparable to that of (111)In-cCC49 provided a fourfold improved tumor-to-blood ratio for (111)In-HuCC49DeltaC(H)2 at 24 hours postinjection.  相似文献   

3.
While several murine monoclonal antibodies (MAbs) directed against carcinoma associated antigens have shown excellent tumor targeting properties in clinical trials, the use of radiolabeled MAbs for both diagnostic and therapeutic applications has been hindered by two factors: (a) the induction of host anti-immunoglobulin (Ig) responses and (b) slow plasma clearance of unbound radiolabeled MAb, resulting in bone marrow toxicity for therapeutic application, and long intervals between MAb administration and tumor detection for diagnostic applications. This report describes the development of the first recombinant Ig with properties designed to reduce or eliminate both of the above problems: a complementarity determining region (CDR)-grafted humanized (Hu) MAb with a CH2 domain deletion (delta CH2). The MAb chosen for engineering was CC49, which is directed against a pancarcinoma antigen designated TAG-72 that is expressed on the majority of colorectal, gastric, breast, ovarian, prostate, pancreatic and lung carcinomas. When characterized for antigen binding in solid phase competition radioimmunoassays, the HuCC49 delta CH2 MAb completely inhibited the binding of murine (mu) CC49 and HuCC49 for TAG-72. The relative affinity constants (Ka) of MAbs HuCC49 delta CH2, HuCC49 and muCC49 were 5.1 x 10(-9), 2.1 x 10(-9) and 2.3 x 10(-9), respectively. The plasma clearance of 131I-HuCC49 delta CH2 was significantly faster than that of intact 125I-HuCC49 after either i.v. or i.p. administration in athymic mice (p(2)0.05). Biodistribution studies in athymic mice bearing human colon carcinoma xenografts after i.v. or i.p. administration of 131I-HuCC49 delta CH2 and 125I-HuCC49 demonstrated the efficient tumor localization and substantially lower percent of the injected dose (%ID/g) of the HuCC49 delta CH2 in normal tissues. This is reflected in the significantly higher radiolocalization indices (%ID/g in tumor divided by %ID/g in normal tissue) observed with the HuCC49 delta CH2 for most normal tissues tested (p(2)0.05). The differential between the rate of plasma clearance of HuCC49 delta CH2 and HuCC49 was even more pronounced in SCID mice, which have been shown to be an appropriate model to study the metabolism of human IgG. These studies thus describe the development of a recombinant Ig molecule which, for the first time, combines 1) the properties of more rapid blood clearance than an intact humanized Ig molecule--without loss of antigen binding affinity--and 2) reduced potential for eliciting a human anti-murine antibody (HAMA) response in patients. These studies also demonstrate the potential utility of HuCC49 delta CH2 for i.p. as well as i.v. radioimmunodiagnosis and radioimmunotherapy in patients with TAG-72 positive tumors.  相似文献   

4.
The application of intraperitoneal (i.p.) radioimmunotherapy to treat i.p. tumor loci has been limited by bone marrow toxicity secondary to circulating radiolabeled antibodies. The generation of novel genetically engineered monoclonal antibodies, which can achieve high tumor uptake and rapid blood clearance, should enhance the therapeutic index of i.p. radioimmunotherapy. In this regard, a novel humanized anti-TAG-72 monoclonal antibody with a deleted CH2 region (HuCC49DeltaCH2) has been described, which localized well to subcutaneous xenograft tumors and had a rapid plasma clearance. The aim of this study was to examine the characteristics of this radiolabeled reagent when administered through the i.p. route in mice bearing i.p. tumor (LS174T). The DeltaCH2 molecule and intact humanized CC49 (HuCC49) monoclonal antibody were conjugated to PA-DOTA and radiolabeled with (177)Lu. Both molecules retained high-affinity binding to TAG-72 positive LS174T tumor cells in vitro. The radiolabeled DeltaCH2 molecule had a modest decrease in tumor localization, as compared to the intact molecule when administered i.p. to tumor-bearing mice and a dramatically shorter plasma disappearance T(1/2) at 2.7 hours compared to 61.2 hours for the intact antibody. The radiolabeled DeltaCH2 molecule thus had very high tumor:blood ratios. Using an (131)I-labeled system, the maximum tolerated dose of DeltaCH2 was >3x that of intact HuCC49. Autoradiography of tumors showed low radiation dose rates at tumor centers early (1 and 4 hours), as compared to higher dose rates at tumor periphery but a more uniform distribution by 24 hours. Dose-rate distributions were similar for both reagents. Animals bearing LS174T i.p. tumors were treated with 300 microCi of (177)Lu-labeled DeltaCH2 or intact HuCC49 by i.p. route daily x 3. The (177)Lu-DeltaCH(2) molecule mediated an increase in median survival compared to controls (67.5 +/- 7.5 days versus controls of 32 +/- 3.3) while the same dose of (177)Lu-HuCC49 produced early toxic deaths. These studies suggest that i.p. radioimmunotherapy using radiolabeled HuCC49DeltaCH2 should allow higher radiation doses to be administered with less marrow toxicity and potentially improved efficacy.  相似文献   

5.
Radioisotopes with moderate half-lives are essential for conventional radioimmunotherapy using tumor-selective MAbs which require days for localization. Actinium-225, with a half-life of 10 days and a yield of 4 alpha particles in its decay chain, may be an ideal choice for tumor-targeted radioimmunotherapy. Release of daughter radioisotopes from the primary chelator after the first decay has been a complication with the use of 225Ac. It has been reported that the domain-deleted product of MAb CC49, Hu-delta CH2 CC49, is able to extravasate and penetrate more deeply into tumors than the parent IgG molecule. We reasoned that once the 225Ac-chelate-MAb had penetrated into the tumor, the daughter radioisotopes would remain trapped even if they had been released from the primary chelator. Actinium-225 HEHA MAb CC49 conjugates were tested for distribution, micro-distribution and therapy in immunocompromised mice which had LS174T tumors growing at subcutaneous or intramuscular sites. Both 125I and 225Ac CC49 and Hu-delta CH2 CC49 were efficient in delivery of the radioisotopes to tumor sites. Tissue micro-autoradiography for the two antibody forms did not demonstrate any differences in micro-distribution of either 125I or 225Ac in the tumor. Furthermore, there was no detectable difference for the two carriers in the tumor retention of daughter radioisotopes from 225Ac. Therapy experiments with 225Ac were complicated by radiotoxicity of the conjugates. The lethal dose was about 0.5 microCi in two strains of mice regardless of the carrier. At injected doses of 0.5 and 0.25 microCi, CC49 was slightly active in tumor stasis, whereas no consistent significant effect of 225Ac-Hu-delta CH2 CC49 on growth of tumors was observed. The potential of 225Ac in radioimmunotherapy is limited by the radiotoxicity of its daughter radioisotopes. Its potential will only be realized if stable conjugates, capable of daughter radioisotope retention, can be devised.  相似文献   

6.
PURPOSE: HuCC49V10 (V10), a humanized anticarcinoma monoclonal antibody (Ab) CC49, was generated by grafting only the specificity-determining regions (SDRs) of CC49 onto the variable light and variable heavy frameworks of the human Abs LEN and 21/28'CL, respectively. SDRs are those residues of the complementarity-determining regions that are most critical for antigen (Ag) binding. Compared with HuCC49, which was developed by conventional complementarity-determining region grafting, V10 has lower reactivity to the sera from patients who were previously given murine CC49 in clinical trials, although its Ag-binding affinity is 2-3-fold lower than that of HuCC49. To generate variants of V10 with higher Ag-binding affinity and lower sera reactivity, in vitro affinity maturation of V10 was carried out using phage display technique. EXPERIMENTAL DESIGN: A limited library of Fabs was generated by replacing some of the SDRs with all possible residues located at the corresponding positions in human Abs. The library was enriched, by several rounds of panning, in Fabs that have high affinity for the TAG-72 Ag. The clones encoding the best binders were expressed in insect cells as whole Abs that were purified and characterized. RESULTS: Competition radioimmunoassay and surface plasmon resonance measurements showed that two of the isolates, V14 and V15, have higher binding affinity than that of V10. In addition, the surface plasmon resonance analysis showed that the variants V14 and V15, compared with the parental V10, have lower reactivity to the anti-V region Abs using sera from patients who received murine CC49. CONCLUSIONS: The two isolates, V14 and V15, which show higher Ag-binding reactivity and lower sera reactivity than the parental V10 Ab, are potentially more useful clinical reagents. These results demonstrate that phage display can be used to isolate variants of an Ab that are potentially less immunogenic in patients than the parental Ab from which they are derived.  相似文献   

7.
Progress in the use of monoclonal antibodies (MAbs) for the treatment of solid tumors is limited by a number of factors, including poor penetration of the labeled IgG molecule into the tumors, their inability to reach the tumor in sufficient quantities without significant normal tissue toxicity, and the development of a human antimouse antibody response to the injected MAb. One possible way to alter the pharmacology of antibodies is via the use of smaller molecular weight antibody fragments called single-chain Fvs (scFvs). A divalent construct of MAb CC49, CC49 (scFv)2, composed of two noncovalently associated scFvs, was generated and shown to bind a tumor-associated antigen (TAG-72) epitope with a similar binding affinity to that of the murine IgG. The therapeutic potential of this construct after labeling with 131I was examined in athymic mice bearing established s.c. human colon carcinoma (LS-174T) xenografts. Treatment groups (n = 10) received a single dose of 131I-labeled CC49 (scFv)2 (500-2000 microCi) or 131I-labeled CC49 IgG (250 and 500 microCi). The group of mice treated with the lowest dose of 131I-(scFv)2 (500 microCi) showed statistically significant prolonged survival, compared with controls (P = 0.036). Complete tumor regression was observed in 20% of mice given 1500 microCi of labeled (scFv)2 and 30 and 60% of mice treated with 250 and 500 microCi of labeled IgG, respectively. In conclusion, the CC49 (scFv)2 construct provides a promising delivery vehicle for therapeutic applications.  相似文献   

8.
A Phase I trial of increasing administered activities of 90yttrium (90Y)-labeled monoclonal antibody (MAb) CC49 was conducted to determine whether extrahematopoietic toxicity occurred with this radioimmunoconjugate. Twelve patients with various gastrointestinal tract cancers were administered a tracer dose of 111In-labeled MAb CC49 for biodistribution and pharmacokinetic studies. Patients then underwent a single treatment with increasing administered activities of 90Y-labeled MAb CC49 (0.3, 0.4, and 0.5 mCi/kg). Biodistribution studies, using 111In-labeled MAb CC49 as a surrogate, were determined using planar and single photon emission computed tomography imaging. Pharmacokinetic studies were performed by measuring radioactivity in blood samples taken at intervals after radioimmunoconjugate infusions. Tissue biopsies of tumor metastases and related normal tissues (liver and bone marrow) were obtained for radioactivity measurements. Radiation dosimetry estimates were calculated using these data. Toxicity was evaluated using the National Cancer Institute Common Toxicity Criteria. No dose limiting extrahematopoietic toxicity was identified in the range of administered activities used in this study. Radioimmunolocalization based on planar and single photon emission computed tomography images 111In-labeled MAb CC49 showed heterogeneous (nonspecific) liver and splenic uptake. Liver metastases were usually photopenic, and extrahepatic metastases showed faint to moderate uptake. The alpha and beta half-lives of 111In-labeled MAb CC49 and 90Y-labeled MAb CC49 in the blood were similar. Absorbed radiation dose estimates in metastatic tumor sites ranged from 180 to 3000 cGy. The percentage of injected dose/kg of tumor ranged from 1.12 to 18.14; however, tumor:normal liver ratios were consistently <1. No objective responses were observed. Doses of up to 0.5 mCi/kg could be administered with reversible grade IV myelotoxicity. Absorbed radiation dose in tumor was suboptimal, even at the highest administered activity level. Deposition of 90Y in liver was high, and estimates of absorbed dose in liver equaled or exceeded that which could be achieved in metastatic tumor sites. Strategies to enhance access of radioimmunoconjugates in tumor and diminish deposition in the liver need to be developed for effective treatment using MAb CC49 with chelated radiometals.  相似文献   

9.
10.
Multivalency is a recognized means of increasing the functional affinity of single-chain Fvs (scFvs) for optimizing tumor uptake. A unique divalent single-chain Fv protein [sc(Fv)2], based on the variable regions of the monoclonal antibody (MAb) CC49, has been generated that differs from other dimeric single-chain constructs in that a linker sequence (L) is encoded between the repeated V(L) and V(H) domains (V(L)-L-V(H)-L-V(L)-L-V(H)). This construct was expressed in soluble form in Escherichia coli and purified by ion-exchange and gel-filtration chromatography. Purity and immunoreactivity were determined by SDS-PAGE, HPLC and competitive RIA. sc(Fv)2 exhibited a relative K(A) (3.34 x 10(7) M(-1)) similar to that of the native IgG (1.14 x 10(8) M(-1)) as determined by BIAcore analysis. Pharmacokinetic studies showed rapid blood clearance for sc(Fv)2, with a T(1/2) less than 40 min. Whole-body clearance analysis also revealed rapid clearance, suggesting no significant retention in the extravascular space or normal tissues. Biodistribution studies of radiolabeled sc(Fv)2 showed tumor uptake greater than 6% ID/g after 30 min, which remained at this level for 6 hr. High tumor uptake and retention of sc(Fv)2 coupled with rapid blood and whole-body clearance makes this dimeric scFv of MAb CC49 a strong candidate for imaging and therapeutic applications.  相似文献   

11.
One major constraint in the clinical application of murine monoclonal antibodies (MAbs) is the development of a human antimurine antibody response. The immunogenicity of MAbs can be minimized by replacing nonhuman regions with corresponding human sequences. The studies reported in our article were undertaken to analyze the immunoreactivity and the immunogenicity of the CC49 single-chain antibody fragments (scFvs): (i) an scFv construct comprised of mouse CC49 VL and VH (m/m scFv), (ii) a light chain shuffled scFv with human VL (Hum4 VL) and mouse CC49 VH (h/m scFv), and (iii) a humanized scFv assembled from Hum4 VL and CC49 VH complementary determining regions (CDRs) grafted onto a VH framework of MAb 21/28' CL (h/CDR scFv). The CC49 scFvs competed for an antigen binding site with CC49 IgG in a similar fashion in a competition radioimmunoassay and were able to inhibit the binding of CC49 IgG to the antigen completely. The immunogenicity of CC49 scFvs was tested using sera with antiidiotypic antibodies to MAb CC49 obtained from patients treated by CC49 IgG in clinical trials. All tested sera exhibited the highest reactivity to the m/m scFv. However, the sera demonstrated differential reactivities to h/CDR scFv and h/m scFv. Replacement of the mouse chain in h/m scFv and h/CDR scFv decreased or completely averted serum reactivity. Our studies compared for the first time the antigen binding and immunogenicity of different scFv constructs containing the mouse, CDR grafted or human variable chains. These results indicate that the humanized CC49 scFv is potentially an important agent for imaging and therapeutic applications with TAG-72-positive tumors.  相似文献   

12.
13.
We investigated the causes of false-positive (nontumor cell) focal uptake in radioimmunodiagnosis (RAID) and false-positive high counts in radioimmunoguided surgery (RIGS). Tissue blocks of two such RAID cases were recut and examined by immunohistochemistry (IH) (group 1). Lymph nodes in the drainage area of 14 colon cancers selected because of tumor-positive draining nodes were examined similarly (group 2). The lymph nodes in group 1 showed nontumor cell germinal center (GC) and rare macrophage (Mϕ positivity with monoclonal antibody (mAb) CC49 to tumor antigen (Ag) TAG-72, the same Ag to which the mAb B72.3, used for the RAID studies, was directed. In group 2, CC49 staining was observed in the colon cancers, in noncellular tumor Ag in lymphatic channels, and in the GC of draining nodes in a pattern similar to that of follicular dendritic cells (FDC). An In-111-mAb/tumor Ag (TAG-72 or CEA) complex can result in false-positive RAID/RIGS studies by In-111 retained in the lysosomes of lymph node Mϕ, following attachment of the mAb to the Ag, and their catabolism in the Mϕ. An 1-125-mAb to either tumor Ag could lead to false-positive RIGS studies due to its attachment to the Ag portion of ag/ab complexes affixed to the FDC in the GC of the lymph nodes draining a tumor. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Failure of radiolabeled monoclonal antibodies (MAbs) in the treatment of solid tumors, for the most part, is a result of undesirable pharmacokinetics that lead to significant radiation exposure of normal tissues and an inadequate delivery of radiation doses to tumors. Using genetic engineering, antitumor MAbs can be optimized for desirable clinical applications. In the present study, we report the generation of a tetravalent single-chain Fv [[sc(Fv)2]2] of the murine MAb CC49 that recognizes the tumor-associated glycoprotein, TAG-72. [Sc(Fv)2]2 was expressed as a secreted soluble protein in Pichia pastoris under the regulation of alcohol oxidase 1 promoter. The in vitro binding properties of the tetravalent construct were analyzed by solid-phase RIA and surface plasmon resonance studies using BIAcore. The binding affinity constant (K(A)) for the [sc(Fv)2]2 and CC49 IgG were similar, i.e., 1.02 x 10(8) M(-1) and 1.14 x 10(8) M(-1), respectively, and were 4-fold higher than its divalent scFv [sc(Fv)2; 2.75 x 10(7) M(-1)]. At 6 h postadministration, the percentage of injected dose accumulated/g of LS-174T colon carcinoma xenografts was 21.3+/-1.3, 9.8+/-1.3, and 17.3+/-1.1 for radioiodinated [sc(Fv)2]2, sc(Fv)2, and IgG, respectively. Pharmacokinetic analysis of blood clearance studies showed the elimination half-life for [sc(Fv)2]2, sc(Fv)2, and IgG as 170, 80, and 330 min, respectively. The gain in avidity resulting from multivalency along with an improved biological half-life makes the tetravalent construct an important reagent for cancer therapy and diagnosis in MAb-based radiopharmaceuticals.  相似文献   

15.
To eliminate the human anti-mouse antibody (HAMA) response seen in patients treated with murine and chimeric antibodies, fully human monoclonal antibodies (MAbs) are now being developed. Tumor Necrosis Therapy (TNT) is an approach to tumor targeting that utilizes MAbs directed against common intracellular antigens such as nucleic acids, accessible only in necrotic areas of solid tumors. By binding to the necrotic core of tumors, these TNT MAbs can circumvent many of the limitations of MAbs directed against tumor cell surface antigens. Chimeric TNT-1 (chTNT-1) was first developed from the parent murine antibody by genetically engineering the murine variable regions to the human IgG(1) and kappa constant regions. Although the chimeric antibody's behavior was similar to that of the murine version, the 35% murine homology it shares allows for the potential of a HAMA response. A human antibody derived from a phage display library, designated NHS76, has been developed with similar binding characteristics to the TNT-1. To demonstrate that this genetically engineered human counterpart to chTNT-1 has similar pharmacokinetic characteristics, in vivo behavior, and targeting abilities, both antibodies were rigorously tested in parallel. For these studies, biodistribution analysis in LS174T human colon tumor-bearing nude mice was performed to compare the uptake levels in tumor and normal organs. In addition, mouse imaging and autoradiographic studies were conducted to demonstrate positive uptake in necrotic regions of tumor and negative uptake in viable tissues and organs. The results of these studies confirm the comparable nature of both antibodies and provide the necessary preclinical data to show the suitability of NHS76 as an improved product for the therapy of solid tumors in man.  相似文献   

16.
Radioimmunoguided surgery in primary colon cancer   总被引:1,自引:0,他引:1  
Radioimmunoguided surgery (RIGS), the intraoperative use of a hand-held gamma detecting probe (GDP) to identify tissue containing radiolabeled monoclonal antibody (MAb), was performed upon 30 patients with primary colon carcinoma. Each patient received an intravenous injection of MAb B72.3 (1.0 to 0.25 mg) radiolabeled with 125I (5.0 to 1.0 mCi) 8 to 34 days before exploration. The GDP was used to measure radioactivity in colon tissue, tumor bed, nodal drainage areas, and areas of suspected metastases. Antibody localized to histologically documented tumor in 23 of 30 patients (77%). Tumor margins were more clearly defined in 20 of 30 patients (67%). GDP counts led to major alterations in surgical resection in five patients (17%) and changes in adjuvant therapy in four (14%). GDP counts identified occult liver metastases in two patients (7%) and correctly indicated the benign nature of liver masses in three (10%). In four patients (13%), occult nodal metastases were identified. RIGS can precisely delineate tumor margins, define the extent of nodal involvement, and localize occult tumor, providing a method of immediate intraoperative staging that may lessen recurrences and produce higher survival rates.  相似文献   

17.
More than 60% of cancer patients injected with intact murine monoclonal antibody (MAb) develop a humoral response against the antigen even after a single dose. Analysis of a series of 35 ovarian‐cancer patients entered in phase‐I and ‐II clinical studies of T‐cells retargeted with the bi‐specific F(ab′)2 OC/TR revealed: (i) a detectable human anti‐mouse antibody (HAMA) response in 31/35 (88%) patients, with high HAMA levels (≥150 ng/ml) in 18/31 (58%) cases by the end of the treatment; (ii) no correlation between HAMA levels and the form of delivery of the mAb (OC/TR bound to T cells or bound plus soluble), time schedule or cumulative dose; (iii) an association between high HAMA levels and favorable clinical parameters and response to immunotherapy; and (iv) a significantly longer median survival probability in patients with high HAMA levels than in patients with lower HAMA levels, even when the sub‐group of non‐responder patients was considered. Evaluation of the anti‐idiotypic response in HAMA‐positive sera indicated that 11/17 sera showed high‐titer (>6000) binding of OC/TR, as evaluated by a specific radioimmunoassay, and 15/18 and 16/16 sera specifically inhibited the binding of the MOv18 and anti‐CD3 parental MAbs to ovarian‐carcinoma cells and T lymphocytes respectively. Of 7 patients evaluated for duration of the HAMA response, 5 showed stable or even increased HAMA levels. The long‐lasting HAMA response maintained an anti‐idiotypic component, directed mainly against the αCD3 idiotype of bi‐MAb OC/TR in 2 out of 3 cases tested. Int. J. Cancer (Pred. Oncol.) 84:62–68, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Radioimmunoguided surgery (RIGS) in recurrent colorectal cancer   总被引:3,自引:0,他引:3  
Since 1986, 191 patients with recurrent colorectal cancer have undergone surgical exploration 2 to 43 days after injection of 1.0 to 0.25 mg of monoclonal antibody (MAb) (B72.3 or 17-1A) radiolabeled with 5.0 to 1.0 mCi of 125I. The intraoperative use of a hand-held gamma detector (Neoprobe 1000) demonstrated that MAb identified tumor in 73% of cases. Clearer intraoperative definition of tumor margins and identification of occult tumor assisted the surgeon in the resection of liver metastases as well as nodal and pelvic disease. Unsuspected nodal disease was identified. The external use of the Neoprobe to scan the sacral region and intrarectal and intravaginal use led to the avoidance of operative procedures by defining inoperable disease. In approximately 25% of cases, the surgical procedure was modified based on Neoprobe findings. RIGS system provides a method of immediate intraoperative staging which may prevent additional recurrences, lead to earlier institution of adjuvant therapy, and result in improved survival.  相似文献   

19.
177Lutetium (177Lu) is a member of the family of elements known as lanthanides or rare earths. Monoclonal antibody (MAb) CC49, a murine IgG1, which is reactive with the tumor-associated antigen, TAG-72, has been shown previously to react with a wide range of human carcinomas; CC49 reacts to a different epitope on the TAG-72 molecule than MAb B72.3 and has a higher binding affinity. We report here the first use of a 177Lu-labeled immunoconjugate, 177Lu-CC49, in an experimental therapy model for human carcinoma. 177Lu-CC49 was shown to delay the growth of established LS-174T human colon carcinomas in athymic mice at a single dose of 50 microCi. Overt toxicity was observed with the administration of approximately 500 microCi of 177Lu-CC49 in which 5 of 9 mice died of apparent marrow toxicity. A single administration of 200 or 350 microCi of 177Lu-CC49, however, was shown to eliminate established tumors through the 77-day observation period after MAb administration. Dose fractionation experiments revealed that at least 750 microCi of 177Lu-CC49 (250 microCi/week for 3 consecutive weeks) was well tolerated in that 9 of 10 mice survived. Moreover, this dose schedule was able to eliminate the growth of relatively large (300 mm3) human colon tumor xenografts in 90% of the animals treated. Single-dose and dose fractionation studies were also carried out with an isotype-matched control MAb, 177Lu-MOPC-21. In all dose schedules, a large differential was seen between the therapeutic effects of the 177Lu-CC49 versus that of the 177Lu-control MAb. The merits and limitations of the use of 177Lu-labeled immunoconjugates (in particular, 177Lu-CC49) are discussed in terms of potential novel therapeutics for human carcinoma.  相似文献   

20.
BALB/c mice were immunized with anti-idiotypic monoclonal (MAb) antibody (anti-Id or Ab2) directed against an ABI Mab anti-carcinoembryonic (CEA) in order to obtain AB3 MAbs (anti-anti-Id). AB3 MAbs were shown to recognise the primary antigen (CEA) and one of them was tested extensively in vitro and in vivo. This AB3 MAb was shown to bind specifically to CEA on frozen sections of a human colon carcinoma by immunoper-oxidase. Scatchard plot analyses showed that the affinity of this AB3 was of the same order of magnitude as the ABI. In vivo experiments, in nude mice bearing CEA-producing human colon-carcinoma xenografts showed that up to 30% of the intravenously injected dose of 125I-labelled AB3 were localized per gram of tumour tissue. Furthermore, calculation of the ratios of AB3 concentration in the tumour over those in normal organs such as lung, liver, kidney, spleen and bone gave relatively high values similar to results obtained with ABI. All together our results show that AB3 can localize as efficiently and specifically in the tumour as ABI, despite the fact that the mice from which it was derived were immunized with a mouse MAb (AB2) and had never been exposed to CEA. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号