首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Epinephrine is reported to decrease the threshold of intravenous lidocaine-induced convulsions. However, the mechanism underlying this effect is not clear. Therefore, we carried out a study to examine the role of vasopressor-induced hypertension.

Methods: Fifty-six awake Wistar rats were assigned to seven groups of eight. All groups received a continuous intravenous infusion of lidocaine at a rate of 4 mg *symbol* kg sup -1 *symbol* min sup -1 until generalized convulsions occurred. The control group (group C) received plain lidocaine. The acute hypertensive groups received lidocaine with epinephrine (group E), norepinephrine (group N), or phenylephrine (group P) to increase mean arterial blood pressure (MAP) to 150 plus/minus 5 mm Hg. Sodium nitroprusside (SNP) was added to prevent an increase in mean arterial pressure in the remaining three groups (vasopressor-SNP groups).

Results: The acute hypertensive groups required significantly smaller cumulative doses of lidocaine to produce convulsions compared with control (C - 41.5 plus/minus 2.9 > E - 24.1 plus/minus 2.7, N = 27.1 plus/minus 2.8, P = 26.7 plus/minus 2.5 mg *symbol* kg sup -1; values are mean plus/minus SD, P < 0.01) In addition, plasma lidocaine concentrations (C = 11.0 plus/minus 0.7 > E = 7.4 plus/minus 0.5, N = 7.9 plus/minus 0.6, P = 8.1 plus/minus 0.8 micro gram *symbol* ml sup -1, P < 0.01) and brain lidocaine concentrations (C = 50.9 plus/minus 4.5 > E = 32.6 plus/minus 4.2, N - 34.5 plus/minus 4.8, P - 37.1 plus/minus 4.5 micro gram *symbol* g sup -1, P < 0.01) were less in the acute hypertensive groups at the onset of convulsions. In the vasopressor-SNP groups, the plasma and brain lidocaine concentrations at the onset of convulsions returned to the control values, although epinephrine and norepinephrine, but not phenylephrine, still decreased cumulative convulsant doses of lidocaine significantly (P < 0.01) compared with control (E + SNP = 30.8 plus/minus 2.9 < N + SNP = 34.8 plus/minus 2.8, P < 0.01) < P + SNP = 40.2 plus/minus 3.0 mg *symbol* kg sup -1, P < 0.01). The brain/plasma concentration ratios were similar for the seven groups.  相似文献   


2.
Anesthetic Potency of Remifentanil in Dogs   总被引:5,自引:0,他引:5  
Background: Remifentanil is an opioid that is rapidly inactivated by esterases in blood and tissues. This study examined the anesthetic potency and efficacy of remifentanil in terms of its reduction of enflurane minimum alveolar concentration (MAC) in dogs.

Methods: Twenty-five dogs were anesthetized with enflurane. One group received incremental infusion rates of remifentanil from 0.055 to 5.5 micro gram *symbol* kg sup -1 *symbol* min sup -1. A second group received constant rate infusions of remifentanil of 1.0 micro gram *symbol* kg sup -1 *symbol* min sup -1 for 6-8 h. Enflurane MAC was measured before, hourly during remifentanil infusion, and at the end of the experiment after naloxone administration. A third group received alternating infusions of 0.5 and 1.0 micro gram *symbol* kg sup -1 *symbol* min sup -1 with MAC determinations made 30 min after each change in the infusion rate. Heart rate, mean arterial pressure, and remifentanil blood concentrations were measured during MAC determinations.

Results: Enflurane MAC was reduced up to a maximum of 63.0+/- 10.4% (mean+/-SD) in a dose-dependent manner by remifentanil infusion. The dose producing a 50% reduction in the enflurane MAC was calculated as 0.72 micro gram *symbol* kg sup -1 *symbol* min sup -1 and the corresponding blood concentration was calculated as 9.2 ng/ml. Enflurane MAC reduction remained stable during continuous, constant rate infusions for periods of 6-8 h without any signs of tolerance. Recovery of enflurane MAC to baseline occurred in 30 min (earliest measurement) after stopping the remifentanil infusion.  相似文献   


3.
Background: Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 plus/minus 6% and 19 plus/minus 8%, respectively. (Skin temperature has long been known to contribute [nearly equal] 10% to the control of sweating.) Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core- temperature thresholds at a single designated skin temperature.

Methods: Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micro gram/ml; (3) a target concentration of 4 micro gram/ml; and (4) a target concentration of 8 micro gram/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees Celsius), the propofol concentration- response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model.

Results: The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = 0.6 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.98 plus/minus 0.02) and shivering (slope = 0.7 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.95 plus/minus 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.46 plus/minus 0.39).  相似文献   


4.
Background: Hypoxia or hypercapnia elicits cardiovascular responses associated with increased plasma catecholamine concentrations, whereas clonidine, an alpha2 -adrenergic agonist, decreases plasma catecholamine concentrations. The authors examined whether systemic clonidine administration would alter the hemodynamic and catecholamine responses to hypoxia or hypercapnia in anesthetized dogs.

Methods: Pentobarbital-anesthetized dogs whose lungs were mechanically ventilated were instrumented for measurement of mean arterial pressure, heart rate, mean pulmonary artery pressure, right atrial pressure, cardiac output, left ventricular end-diastolic pressure, and the peak of first derivative of left ventricular pressure. The dogs were randomly assigned to receive an intravenous bolus injection of 10 micro gram/kg clonidine followed by continuous infusion at a rate of 1 micro gram *symbol* kg sup -1 *symbol* min sup -1 (clonidine-10 group, n = 7), an intravenous bolus injection of 5 micro gram/kg clonidine followed by continuous infusion at a rate of 0.5 micro gram *symbol* kg sup -1 *symbol* min sup -1 (clonidine-5 group, n = 7), or an equivalent volume of 0.9% saline (control group, n = 7). Each dog underwent random challenges of hypoxia (PaO2 30, 40, and 50 mmHg) and hypercapnia (PaCO sub 2 60, 80, and 120 mmHg). Measurements of hemodynamic and plasma norepinephrine and epinephrine concentrations were made during each period of hypoxia or hypercapnia, and measurements of plasma clonidine concentrations were made after the loading dose of clonidine and the first and the second exposure of hypoxia or hypercapnia.

Results: Although significant increases from prehypoxic values in mean arterial pressure (39+/-10 mmHg) and plasma norepinephrine (291+/-66 pg/ml) and epinephrine (45+/-22 pg/ml) concentrations were noted during hypoxia of PaO2 30 mmHg in the control group (P < 0.05), such changes were absent in both clonidine groups. During hypercapnia of PaCO2, 120 mmHg, changes from prehypercapnic values in mean arterial pressure, mean pulmonary artery pressure, the peak of first derivative of left ventricular pressure, and plasma norepinephrine and epinephrine concentrations in the clonidine-10 and clonidine-5 groups were significantly less than those in the control group. Plasma clonidine concentrations in the clonidine-10 and clonidine-5 groups were 16.8+/-1.7 and 8.9+/-1.0, 42.5+/- 2.9 and 21.5+/-1.5, and 51.1+/-3.2 and 26.7+/- 1.0 ng/ml after the loading dose of clonidine and the first and the second exposure of hypoxia or hypercapnia, respectively.  相似文献   


5.
Background: No complete pharmacokinetic profile of propofol is yet available in children younger than 3 yr, whereas clinical studies have demonstrated that both induction and maintenance doses of propofol are increased with respect to body weight in this age group compared to older children and adults. This study was therefore undertaken to determine the pharmacokinetics of propofol after administration of a single dose in aged children 1-3 yr requiring anesthesia for dressing change.

Methods: This study was performed in 12 children admitted to the burn unit and in whom burn surface area was less than or equal to 12% of total body surface area. Exclusion criteria were: unstable hemodynamic condition, inappropriate fluid loading, associated pulmonary injury, or burn injury older than 2 days. Propofol (4 mg *symbol* kg sup -1) plus fentanyl (2.5 micro gram *symbol* kg sup -1) was administered while the children were bathed and the burn area cleaned during which the children breathed spontaneously a mixture of oxygen and nitrous oxide (50:50). Venous blood samples of 300 micro liter were obtained at 5, 15, 30, 60, 90, and 120 min, and 3, 4, 8, and 12 h after injection; an earlier sample was obtained from 8 of 12 children. The blood concentration curves obtained for individual children were analyzed by three different methods: noncompartmental analysis, mixed-effects population model, and standard two-stage analysis.

Results: Using noncompartmental analysis, total clearance of propofol (+/-SD) was 0.053+/-0.013 l *symbol* kg sup -1 *symbol* min sup -1, volume of distribution at steady state 9.5+/-3.7 l *symbol* kg sup -1, and mean residence time 188+/-85 min. Propofol pharmacokinetics were best described by a weight-proportional three-compartmental model in both population and two-stage analysis. Estimated and derived pharmacokinetic parameters were similar using these two pharmacokinetic approaches. Results of population versus two-stage analysis are as follow: systemic clearance 0.049 versus 0.048 l *symbol* kg sup -1 *symbol* min sup -1, volume of central compartment 1.03 versus 0.95 l *symbol* kg sup -1, volume of distribution at steady state 8.09 versus 8.17 l *symbol* kg sup -1.  相似文献   


6.
Pharmacokinetics of Rocuronium in Children Aged 4-11 Years   总被引:1,自引:0,他引:1  
Background: Rocuronium is a new nondepolarizing muscle relaxant with a rapid onset and intermediate duration of action. Although the pharmacokinetics of rocuronium have been determined in adults and the elderly, similar data are lacking in children. Accordingly, rocuronium's pharmacokinetics were determined in children aged 4-11 yr.

Methods: Rocuronium (600 micro gram/kg) was administered to 20 children aged 4-11 yr anesthetized with nitrous oxide and less or equal to 1% halothane, and four plasma samples were obtained over 4 h to determine rocuronium concentrations. The pharmacokinetics of rocuronium were determined using two sparse-sampling population approaches, mixed- effects modeling, and naive pooled data analysis.

Results: With mixed-effects modeling, weight-normalized plasma clearance varied with weight (P < 0.01), being 79.4 ml *symbol* min sup -1 + 3.13 ml *symbol* kg sup -1 *symbol* min sup -1. Neither weight- normalized distributional clearance (2.67 ml *symbol* kg sup -1 *symbol* min sup -1), weight-normalized central compartment volume (106 ml/kg), nor weight-normalized volume of distribution at steady-state (224 ml/kg) varied with weight, height, or age. Similar results were obtained with the naive pooled data approach.  相似文献   


7.
Background: Activation of the sympathetic nervous system occurs when desflurane is inspired shortly after anesthetic induction and when the inspired concentration of desflurane is rapidly increased during steady-state periods of anesthesia. The purpose of this study was to determine the effectiveness and dose response of fentanyl pretreatment in attenuating the neurocirculatory responses to desflurane in healthy human volunteers.

Methods: After Institutional Research Review Board approval, three study groups were selected and, in random order, received either placebo (n = 10), a 2.5-micro gram *symbol* kg sup -1 intravenous bolus of fentanyl citrate followed by a continuous infusion of 1 micro gram *symbol* kg sup -1 *symbol* h sup -1 (n = 9), or a 5.0-micro gram *symbol* kg sup -1 intravenous bolus followed by an infusion of 2 micro gram *symbol* kg sup -1 *symbol* h sup -1 (n = 11) before the administration of desflurane. Arterial (MAP) and central venous (CVP) pressures were measured directly, and heart rate (HR) was determined indirectly. Efferent muscle sympathetic nerve activity (SNA) was recorded from the peroneal nerve by microneurography. After neurocirculatory recordings at conscious unmedicated baseline and 12 min after fentanyl administration, anesthetic induction was carried out with 2.0 mg *symbol* kg sup -1 propofol and 0.2 mg *symbol* kg sup -1 vecuronium. Neurocirculatory measurements were repeated beginning 2 min after induction when desflurane was given via mask (semiclosed circle system, 6 l/min fresh gas flow, 100% Oxygen2) in three incremental 1-min steps (3.6%, 7.2% and 11%). Intubation occurred 10 min after propofol administration. Twenty minutes after intubation, recordings were obtained during two steady-state periods during which end-tidal concentrations had achieved 5.4% (0.75 MAC) and 11% (1.5 MAC) desflurane for at least 10 min. Data also were obtained during the rapid increase in the inspired gas concentration from 5.4% to 11% ("transition").

Results: Neurocirculatory variables did not differ between the three groups at conscious baseline, after fentanyl, and during steady-state periods of anesthesia. Propofol administration significantly reduced SNA and MAP. The MAP reduction was enhanced in the fentanyl-treated groups. After induction, the increases in SNA and MAP associated with the administration of desflurane by mask were not significantly reduced by fentanyl. The transition from 5.4% to 11% desflurane resulted in increases in SNA, HR, MAP, and fentanyl administration significantly attenuated the HR and MAP components. At the 11% steady-state measurement period, CVP was increased and MAP was decreased from conscious baseline, and these changes were not modified by fentanyl.  相似文献   


8.
Background: Propofol is a short-acting intravenous induction agent that induces cardiovascular depression but without significant effect no intrinsic myocardial contractility in various species. However, its effects on diseased myocardium remain unknown.

Methods: The effects of propofol (1, 3, and 10 micro gram *symbol* ml sup -1) on the intrinsic contractility of left ventricular papillary muscles from normal hamsters and those with hypertrophic cardiomyopathy (strain BIO 14.6, aged 6 months) were investigated in vitro (Krebs-Henseleit solution, 29 degrees Celsius, pH 7.40, Calcium sup +1 2.5 mmol *symbol* l [1], stimulation frequency 3/min).

Results: Cardiac hypertrophy (143 plus/minus 13%, P < 0.001) was observed in cardiomyopathic hamsters. The contractility of papillary muscles from hamsters with cardiomyopathy was less than that of controls, as shown by the decrease in maximum shortening velocity (29%, P < 0.03) and active isometric force (-51%, P < 0.03) and active isometric force (-51%, P < 0.001). Propofol did not induce any significant effect on contraction, relaxation, and contraction-relaxation coupling under low and high loads in normal hamsters. The effects of propofol were not significantly different between normal hamsters and those with cardiomyopathy. A slight but significant increase in maximum unloaded shortening velocity was observed in cardiomyopathic hamsters at 3 micro gram *symbol* ml sup -1 (4 plus/minus 6%, P < 0.05) and 10 micro gram *symbol* ml sup -1 (7 plus/minus 6%, P < 0.05).  相似文献   


9.
Background: Steroid muscle relaxants often display pharmacodynamic changes in patients with cirrhosis because of alterations in elimination processes. Rocuronium is a new steroid muscle relaxant possibly eliminated through the liver. This study was designed to compare rocuronium pharmacodynamics and pharmacokinetics in cirrhotic and healthy patients.

Methods: Rocuronium was administered to 26 cirrhotic patients and 24 control subjects anesthetized with isoflurane for an elective procedure. Patients were randomly allocated to receive an initial dose of rocuronium: 120, 180, 250, or 300 micro gram *symbol* kg sup -1. Dose-response curves were established, and ED50 was calculated. Preselected maintenance doses (75, 150, or 225 micro gram *symbol* kg sup -1) were administered at 25% recovery of twitch height to compare clinical duration of action. At the end of the procedure, relaxation was reversed in half of the patients, and the time course of recovery was compared in the two groups. Blood samples drawn during the procedure and after the last maintenance dose allowed pharmacokinetic analysis in six cirrhotic patients and six control subjects.

Results: ED50 of the initial dose was 144 micro gram *symbol* kg sup -1 in cirrhotic patients and 60 micro gram *symbol* kg sup -1 in control subjects, related to a higher initial volume of distribution (cirrhotic 78.5+/-31.7 ml *symbol* kg sup -1, control 29.8 +/-17.3 ml *symbol* kg sup -1). Time from complementary dose to 25% recovery was longer in cirrhotic patients (41.0+/-20.7 min vs. 30.2+/-9.7 min), but time course of action during maintenance was not statistically different in the two groups. In cirrhotic patients receiving five maintenance doses or more, prolongation of the duration of action with successive maintenance doses could be statistically demonstrated. Spontaneous recovery was delayed in cirrhotic patients, because of impaired elimination processes: greater volume of distribution at steady-state (264+/-92 vs. 151+/-59 ml *symbol* kg sup -1); trend toward a lower clearance (189+/-60 vs. 296 +/-169 ml *symbol* min sup -1).  相似文献   


10.
Background: Clonidine reduces heart rate (HR) responses to atropine, whereas neostigmine causes bradycardia. This study was designed to determine whether clonidine premedication would reduce tachycardia after neostigmine-atropine administration.

Methods: Fifty adult patients without cardiovascular disorders who were schedule for elective surgeries were randomly assigned to receive approximately 5 [micro sign]g/kg (oral clonidine clonidine group, n = 25) or no clonidine (control group, n = 25) 90 min before induction of general anesthesia. After tracheal intubation, anesthesia was maintained with N2 O and 1-2% isoflurane in oxygen while patients were paralyzed with vecuronium and mechanically ventilated. When surgeries were completed, adequate spontaneous respiration, responses to verbal commands, and sustained tetanus by stimulating the ulnar nerve were confirmed, and patients' tracheas were extubated. Then a mixture of 0.05 mg/kg neostigmine and 0.02 mg/kg atropine was administered intravenously over 20 s under stable hemodynamic condition (systolic blood pressure and HR within +/- 5% of preceding values), and blood pressure and HR were measured noninvasively at 1-min intervals for 10 min.

Results: Increases in HR in the clonidine group were significantly less 1-4 min after neostigmine-atropine injections compared with HR values in the control group. A maximum increase in HR of the clonidine group was also significantly less than the control group (15 +/- 7 vs. 23 +/- 10 beats/min; means +/- SD), whereas absolute values of mean blood pressure were similar. Severe bradycardia (HR < 50 beats/min) developed in no patients in either group.  相似文献   


11.
Background: The primary purpose of this study was to evaluate concentration-effect relationships of the new steroid anesthetic eltanolone during recovery from a bolus dose and constant rate intravenous infusion in healthy male volunteers.

Methods: Ten subjects received a bolus dose of 0.75 mg/kg eltanolone over 20 s. A 2-h constant rate intravenous infusion of eltanolone was given to five subjects at a rate of 2 mg *symbol* kg sup -1 *symbol* h sup -1 and to another five subjects at a rate of 3.5 mg *symbol* kg sup -1 *symbol* h sup -1. Recovery performance was assessed as the time required to reach different end-points and by means of three different psychomotor tests.

Results: A low interindividual variability was found in the serum concentration of eltanolone at the pharmacodynamic end-points during recovery. The Cp50 value for "eye opening" was 382 micro gram/l (95% confidence interval, 285-489) after a bolus dose corresponding to a median time of 16 min (range 8-25). After eltanolone infusion, the Cp50 value for "eye opening" was 507 micro gram/l (95% confidence interval, 425-605) and the corresponding median time was 21 min (range 8-25) in the low-dose group and 49 min (range 31-66) in the high-dose group. The Cp50 values at the same effect end-points in the bolus group were less than those in the infusion groups, probably because of insufficient equilibration time between serum and the effect compartment.  相似文献   


12.
Background: It should be possible to avoid variations in plasma glucose concentration during anesthesia by adjusting glucose infusion rate to whole-body glucose uptake. To study this hypothesis, we measured glucose utilization and production, before and during halothane anesthesia.

Methods: After an overnight fast, six adolescents between 12 and 17 yr of age were infused with tracer doses of [6,6-sup 2 H2]glucose for 2 h before undergoing anesthesia, and the infusion was continued after induction, until the beginning of surgery. Plasma glucose concentration was monitored throughout, and free fatty acids, lactate, insulin, and glucagon concentrations were measured before and during anesthesia.

Results: Despite the use of a glucose-free maintenance solution, plasma glucose concentration increased slightly but significantly 5 min after induction (5.3 plus/minus 0.4 vs. 4.5 plus/minus 0.4 mmol *symbol* 1 sup -1 , P < 0.05). This early increase corresponded to a significant increase in endogenous glucose production over basal conditions (4.1 plus/minus 0.4 vs. 3.6 plus/minus 0.2 mg *symbol* kg sup -1 *symbol* min sup -1, P < 0.05), with no concomitant change in peripheral glucose utilization. Fifteen minutes after induction, both glucose utilization and production rates decreased steadily and were 20% less than basal values by 35 min after induction (2.9 plus/minus 0.3 vs. 3.6 plus/minus 0.2 mg *symbol* kg sup -1 *symbol* min sup -1, P < 0.05). Similarly, glucose metabolic clearance rate decreased by 25% after 35 min. Despite the increase in blood glucose concentration, anesthesia resulted in a significant decrease in plasma insulin concentration.  相似文献   


13.
Background: Some patients who undergo cerebral aneurysm surgery require cardiopulmonary bypass and deep hypothermic circulatory arrest. During bypass, these patients often are given large doses of a supplemental anesthetic agent in the hope that additional cerebral protection will be provided. Pharmacologic brain protection, however, has been associated with undesirable side effects. These side effects were evaluated in patients who received large doses of propofol.

Methods: Thirteen neurosurgical patients underwent cardiopulmonary bypass and deep hypothermic circulatory arrest to facilitate clip application to a giant or otherwise high-risk cerebral aneurysm. Electroencephalographic burst suppression was established before bypass with an infusion of propofol, and the infusion was continued until the end of surgery. Hemodynamic and echocardiographic measurements were made before and during the prebypass propofol infusion and again after bypass. Emergence time also was determined.

Results: Prebypass propofol at 243 plus/minus 57 micro gram *symbol* kg sup -1 *symbol* min sup -1 decreased vascular resistance from 34 plus/minus 8 to 27 plus/minus 8 units without changing heart rate, arterial or filling pressures, cardiac index, stroke volume, or ejection fraction. Propofol blood concentration was 8 plus/minus 2 micro gram/ml. Myocardial wall motion appeared hyperdynamic at the end of cardiopulmonary bypass, and all patients were weaned therefrom without inotropic support. After bypass, vascular resistance decreased further, and cardiovascular performance was improved compared to baseline values. Nine of the 13 patients emerged from anesthesia and were able to follow commands at 3.1 plus/minus 1.4 h. Three others had strokes and a fourth had cerebral swelling.  相似文献   


14.
Background: Reductions in cerebral metabolic rate may increase the brain's tolerance of ischemia. However, outcome studies suggest that reductions in cerebral metabolic rate produced by anesthetics and by hypothermia may not be equally efficacious. To examine this question, we measured the effects of hypothermia, pentobarbital, and isoflurane on the cerebral metabolic rate for glucose (CMRG) and on the time to the loss of normal membrane ion gradients (terminal ischemic depolarization) of the cortex during complete global ischemia.

Methods: As pericranial temperature was varied between 39 and 25 degrees Celsius in normocapnic halothane-anesthetized rats, CMRG (using14 Carbon-deoxyglucose) or the time to depolarization (using a glass microelectrode in the cortex) after a Potassium sup + -induced cardiac arrest was measured. In other studies, CMRG and depolarization times were measured in normothermic animals (37.7 plus/minus 0.2 degree Celsius) anesthetized with high-dose pentobarbital or isoflurane (both producing burst suppression on the electroencephalogram) or in halothane-anesthetized animals whose temperatures were reduced to 27.4 plus/minus 0.3 degree Celsius. These three states were designed to produce equivalent CMRG values.

Results: As temperature was reduced from 39 to 25 degrees Celsius, CMRG decreased from 66 to 21 micro Meter *symbol* 100 g sup -1 *symbol* min1 (Q10 = 2.30), and depolarization times increased from 76 to 326 s. In similarly anesthetized animals at approximately 27 degrees Celsius, CMRG was 32 plus/minus 4 micro Meter *symbol* 100 g sup -1 *symbol* min sup -1 (mean plus/minus SD), whereas in normothermic pentobarbital- and isoflurane-anesthetized rats, CMRG values were 33 plus/minus 3 and 37 plus/minus 4 micro Meter *symbol* 100 g1 *symbol* min sup -1, respectively (P = 0.072 by one-way analysis of variance). Despite these similar metabolic rates, the times to depolarization were markedly different: for hypothermia it was 253 plus/minus 29 s, for pentobarbital 109 plus/minus 24 s, and for isoflurane 130 plus/minus 28 s (P < 0.0001).  相似文献   


15.
Background: Greater cerebral metabolic suppression may increase the brain's tolerance to ischemia. Previous studies examining the magnitude of metabolic suppression afforded by profound hypothermia suggest that the greater arterial carbon dioxide tension of pH-stat management may increase metabolic suppression when compared with alpha-stat management.

Methods: New Zealand White rabbits, anesthetized with fentanyl and diazepam, were maintained during cardiopulmonary bypass (CPB) at a brain temperature of 17 degrees Celsius with alpha-stat (group A, n = 9) or pH-stat (group B, n = 9) management. Measurements of brain temperature, systemic hemodynamics, arterial and cerebral venous blood gases and oxygen content, cerebral blood flow (CBF) (radiolabeled microspheres), and cerebral metabolic rate for oxygen (CMRO2) (Fick) were made in each animal at 65 and 95 min of CPB. To control for arterial pressure and CBF differences between techniques, additional rabbits underwent CPB at 17 degrees Celsius. In group C (alpha-stat, n = 8), arterial pressure was decreased with nitroglycerin to values observed with pH-stat management. In group D (pH-stat, n = 8), arterial pressure was increased with angiotensin II to values observed with alpha-stat management. In groups C and D, CBF and CMRO2 were determined before (65 min of CPB) and after (95 min of CPB) arterial pressure manipulation.

Results: In groups A (alpha-stat) and B (pH-stat), arterial pressure; hemispheric CBF (44 plus/minus 17 vs. 21 plus/minus 4 ml *symbol* 100 g sup -1 *symbol* min sup -1 [median plus/minus quartile deviation]; P = 0.017); and CMRO2 (0.54 plus/minus 0.13 vs. 0.32 plus/minus 0.10 ml Oxygen2 *symbol* 100 g sup -1 *symbol* min sup -1; P = 0.0015) were greater in alpha-stat than in pH-stat animals, respectively. As a result of arterial pressure manipulation, in groups C (alpha-stat) and D (pH-stat) neither arterial pressure (75 plus/minus 2 vs. 78 plus/minus 2 mm Hg) nor hemispheric CBF (40 plus/minus 10 vs. 48 plus/minus 6 ml *symbol* 100 g sup -1 *symbol* min sup -1; P = 0.21) differed between alpha-stat and pH-stat management, respectively. Nevertheless, CMRO2 was greater in alpha-stat than in pH-stat animals (0.71 plus/minus 0.10 vs. 0.45 plus/minus 0.10 ml Oxygen2 *symbol* 100 g sup -1 *symbol* min sup -1, respectively; P = 0.002).  相似文献   


16.
Background: The development of tolerance to the sympatholytic and anesthetic-reducing effects of alpha2 agonists after prolonged administration of dexmedetomidine and how the number of available alpha sub 2 adrenoceptors affects these dexmedetomidine-induced responses was studied.

Methods: The sympatholytic action of acute and chronic (3 and 10 micro gram *symbol* kg sup -1 *symbol* h sup -1 for 7 days) dexmedetomidine, was assessed by the decrease in norepinephrine turnover in the locus coeruleus and hippocampus. The anesthetic-reducing effect of chronic (7 days) dexmedetomidine (5 and 10 micro gram *symbol* kg sup -1 *symbol* h sup -1) was studied by determining the minimum alveolar concentration (MAC) for halothane that prevented rats from responding to a supramaximal noxious stimulus of dexmedetomidine (10 or 30 micro gram *symbol* kg sup -1), doses in the steep part of the dose-response curve.

The receptor reserve for the norepinephrine turnover and anesthetic-sparing responses to dexmedetomidine was delineated with 0.3-1.0 mg *symbol* kg sup -1 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, an irreversible alkylating agent.

Results: After chronic administration of dexmedetomidine at both doses, acute dexmedetomidine significantly decreased norepinephrine turnover in the hippocampus and locus coeruleus. The baseline minimum anesthetic concentration (MAC) and the MAC-sparing effect to acutely administered dexmedetomidine were preserved after chronic dexmedetomidine treatment. In the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline experiments, the dexmedetomidine-induced norepinephrine turnover effect required less than 20% and greater than 4% alpha2 adrenoceptor availability in the locus coeruleus and the dexmedetomidine induced MAC-sparing effect required less than 40% and greater than 20% alpha2 adrenoceptor availability in the locus coeruleus.  相似文献   


17.
Background: Propofol has been implicated as causing intraoperative bradyarrhythmlas. Furthermore, the effects of propofol on the electrophysiologic properties of the sinoatrial (SA) node and on normal atrioventricular (AV) and accessory pathways in patients with Wolff-Parkinson-White syndrome are unknown. Therefore, this study examined the effects of propofol on the cardiac electrophysiologic properties in humans to determine whether propofol promotes bradyarrhythmias and its suitability as an anesthetic agent in patients undergoing ablative procedures.

Methods: Twelve patients with Wolff-Parkinson-White syndrome undergoing radiofrequency catheter ablation were studied. Anesthesia was induced with alfentanil (50 micro gram/kg), midazolam (0.15 mg/kg), and vecuronium (20 mg) and maintained with alfentanil (2 micro gram *symbol* kg sup -1 *symbol* min sup -1) and midazolam (12 mg, every 15 min, as needed). A electrophysiologic study was performed consisting of measurement of the effective refractory period of the right atrium, AV node, and accessory pathway and the shortest cycle length of the AV node and accessory pathway during antegrade stimulation plus the effective refractory period of the right ventricle and accessory pathway and the shortest cycle length of the accessory pathway during retrograde stimulation. Determinants of SA node function including sinus node recovery time, corrected sinus node recovery time, and SA conduction time; intraatrial conduction time and atrial-His interval also were measured. Reciprocating tachycardia was induced by rapid right atrial or ventricular pacing, and the cycle length and atrial-His, His-ventricular, and ventriculoatrial intervals were measured. Alfentanil/midazolam was then discontinued. Propofol was administered (bolus 2 mg/kg + 120 micro gram *symbol* kg sup -1 *symbol* min sup -1), and the electrophysiologic measurements were repeated.

Results: Propofol caused a statistically significant but clinically unimportant prolongation of the right atrial refractory period. The effective refractory periods of the AV node, right ventricle, and accessory pathway, as well as the shortest cycle length, were not affected. Parameters of SA node function and intraatrial conduction also were not affected. Sustained reciprocating tachycardia was inducible in 8 of 12 patients, and propofol had no effect on its electrophysiologic properties. All accessory pathways were successfully identified and ablated.  相似文献   


18.
Background: Reversal of neuromuscular blockade induced with pancuronium, d-tubocurarine, or doxacurium is achieved using smaller doses of neostigmine in adults than in children. Also, pancuronium- and doxacurium-induced blockade is reversed with smaller doses of edrophonium in children than in adults. The purpose of this study was to compare the spontaneous and neostigmine- and edrophonium-assisted recovery of mivacurium-induced neuromuscular block in adults and children.

Methods: Fifty-four adults, aged 40.1+/-10.9 yr, and 54 children, aged 4.9+/-0.7 yr, physical status ASA 1-2, were studied during propofol/fentanyl/nitrous oxide anesthesia. A Datex relaxograph was used to monitor the electromyographic response of the adductor pollicis to train-of-four stimulation of the ulnar nerve every 10 s. After induction of anesthesia, 0.2 mg *symbol* kg sup -1 intravenous mivacurium was administered followed by an infusion to maintain 90-95% T1 block. At the end of surgery, one of four doses of neostigmine (5, 10, 20, and 50 micro gram *symbol* kg sup -1) or edrophonium (100, 200, 400, and 1,000 micro gram *symbol* kg sup -1) or placebo was given, by random allocation, when T1 had recovered to 10%. Values of T1 and train-of-four were measured for 10 min.

Results: Spontaneous recovery proceeded more rapidly in children than in adults. At 10 min, T1 had recovered to 97+/-2% (SD) in children compared with 69+/-11% in adults and train-of-four to 84 +/-5% versus 30+/-13% (P < 0.0001). In children, 10 min after reversal, recovery of T1 and train-of-four was not different from control after edrophonium and was enhanced only by the larger doses of neostigmine. In adults, recovery was accelerated by both edrophonium and neostigmine. Five minutes after reversal, recovery was improved by either drug in adults and in children.  相似文献   


19.
Background: During fire exposure, cyanide toxicity can block aerobic metabolism. Oxygen and sodium thiosulfate are accepted therapy. However, nitrite-induced methemoglobinemia, which avidly binds cyanide, decreases oxygen-carrying capacity that is already reduced by the presence of carboxyhemoglobin (inhalation of carbon monoxide in smoke). This study tested whether exogenous stroma-free methemoglobin (SFmetHb) can prevent depression of hemodynamics and metabolism during canine cyanide poisoning.

Methods: In 10 dogs (weighing 18.8 plus/minus 3.5 kg) anesthetized with chloralose-urethane and mechanically ventilated with air, baseline hemodynamic and metabolic measurements were made. Then, 137 plus/minus 31 ml of 12 g% SFmetHb was infused into five dogs (SFmetHb group). Finally, the SFmetHb group and the control group (n = 5, no SFmetHb) received an intravenous potassium cyanide infusion (0.072 mg *symbol* kg sup -1 *symbol* min sup -1) for 20 min. Oxygen consumption (V with dot sub O2) was measured with a Datex Deltatrac (Datex Instruments, Helsinki, Finland) metabolic monitor and cardiac output (Q with dot T) was measured by pulmonary artery thermodilution.

Results: From baseline to cyanide infusion in the control group, Q with dot T decreased significantly (p < 0.05) from 2.9 plus/minus 0.8 to 1.5 plus/minus 0.4 l/min, mixed venous PCO2 (Pv with barCO2) tended to decrease from 35 plus/minus 4 to 23 plus/minus 2 mmHg, Pv with barO2 increased from 43 plus/minus 4 to 62 plus/minus 8 mmHg, V with dotO2 decreased from 93 plus/minus 8 to 64 plus/minus 19 ml/min, and lactate increased from 2.3 plus/minus 0.5 to 7.1 plus/minus 0.7 mM. In the SFmetHb group, cyanide infusion did not significantly change these variables. From baseline to infused cyanide, the increases in blood cyanide (4.8 plus/minus 1.0 to 452 plus/minus 97 micro Meter) and plasma thiocyanate cyanide (18 plus/minus 5 to 65 plus/minus 22 micro Meter) in the SFmetHb group were significantly greater than those increases in the control group. SFmetHb itself caused no physiologic changes, except small decreases in heart rate and Pv with barO2. Peak SFmetHb reached 7.7 plus/minus 1.0% of total hemoglobin.  相似文献   


20.
Background: Lidocaine administered intravenously is efficacious in treating neuropathic pain at doses that do not cause sedation or other side effects. Using a computer-controlled infusion pump (CCIP), it is possible to maintain the plasma lidocaine concentration to allow drug equilibration between the plasma and the site of drug effect. Pharmacokinetic parameters were derived for CCIP administration of lidocaine in patients with chronic pain.

Methods: Thirteen patients (mean age 45 yr, mean weight 66 kg) were studied. Eight subjects received a computer-controlled infusion, targeting four increasing lidocaine concentrations (1-7 micro gram *symbol* ml sup -1) for 30 min each, based on published kinetic parameters in which venous samples were obtained infrequently after bolus administration. From the observations in these eight patients, new lidocaine pharmacokinetic parameters were estimated. These were prospectively tested in five additional patients. From the complete data set (13 patients), final structural parameters were estimated using a pooled analysis approach. The interindividual variability was determined with a mixed-effects model, with the structural model parameters fixed at the values obtained from the pooled analysis. Internal cross-validation was used to estimate the residual error in the final pharmacokinetic model.

Results: The lidocaine administration based on the published parameters consistently produced higher concentrations than desired, resulting in acute lidocaine toxicity in most of the first eight patients. The highest measured plasma concentration was 15.3 micro gram *symbol* ml sup -1. The pharmacokinetic parameters estimated from these eight patients differed from the initial estimates and included a central volume one-sixth of the initial estimate. In the subsequent prospective test in five subjects, the new parameters resulted in concentrations evenly distributed around the target concentration. None of the second group of subjects had evidence of acute lidocaine toxicity. The final parameters (+/-population variability expressed as %CV) were estimated as follows: V1 0.101+/-53% 1 *symbol* kg sup -1, V2 0.452 +/-33% l *symbol* kg sup -1, Cl1 0.0215+/-25% l *symbol* kg sup -1 *symbol* min sup -1, and Cl2 0.0589+/-35% l *symbol* kg sup -1 *symbol* min sup -1. The median error measured by internal cross-validation was +1.9%, and the median absolute error was 14%.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号