首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Counts have been made of the numbers of unmyelinated and myelinated axons in the proximal and distal stumps of regenerated rat saphenous nerves and from equivalent sites in normal nerves. In the proximal part of normal nerves there were averages of 1 045 myelinated axons and 4 160 unmyelinated ones. Regenerated nerves contained the same number of myelinated axons in their proximal stumps but there was a 40% reduction in the unmyelinated axon count. In the distal stumps of these nerves the myelinated axon count had increased by an average of 620; this comes about because some regenerated myelinated axons support more than one process in the distal stump. In contrast, the number of unmyelinated axons was reduced further, from a mean of 2 476 in the proximal stump to one of 2 219.

The sizes of Schwann cell units in the normal and regenerated nerves were also noted. Schwann cell units in the proximal and distal stumps of the regenerated nerves were smaller than those in the normal ones.

These changes associated with unmyelinated axons in regenerated nerves are likely to contribute to the sensory, vasomotor and sudomotor abnormalities that sometimes occur after peripheral nerve injury and regeneration.  相似文献   


2.
Electrophysiological experiment have been carried out on rats to see if the age at which a peripheral nerve injury occurs influences the success of regeneration. The assessment was made on the basis of two measures of peripheral nerve regeneration; the extent to which axons manage to grow across the injury site and into the distal stump, and their ability to resupply cutaneous structures with functional endings. Regeneration after nerve transection of both myelinated and unmyelinated axons was studied. The results showed that, apart from rats injured when 2 weeks old, the age at which injury occurred, over the range 4–40 weeks, had little bearing on the overall success of skin reinnervation. The 2-week-old rats showed significantly poorer recovery.  相似文献   

3.
Counts of myelinated and unmyelinated axon profiles have been made from normal, uninjured rat sural nerves and from nerves injured 6 months earlier in one of two ways. In one group of rats the nerve was simply cut and left to regenerate, leading to the development of a neuroma in continuity, while in the second group the nerve was cut but then ligated as well to prevent regeneration; this led to stump neuroma formation. After nerve transection and regeneration, with subsequent formation of a neuroma in continuity, there was no change in the number of myelinated axon profiles found 25 mm proximal to the old injury site when compared with control, but there was an 18% reduction (P < 0.05) in the number of unmyelinated axon profiles. Immediately proximal to the injury site the picture was similar, with there still being the same number of myelinated axon profiles as in control material but here the reduction in unmyelinated axon numbers was slightly greater at 24% (P < 0.05). In the proximal part of nerves that had been cut and stump neuroma formation induced there was a large increase (33%) in myelinated axon profiles over and above control values (P < 0.001) but the number of unmyelinated profiles was the same as in controls. Closer to the stump neuroma the number of myelinated axon profiles had increased yet further to be 88% (P < 0.001) above control while the number of unmyelinated ones remained no different from control. Our interpretation of these results is that after nerve transection and regeneration there is no loss of peripheral neurons supporting myelinated axons but some loss of those supporting unmyelinated ones. If a cut nerve is prevented from regenerating and a stump neuroma forms, however, a vigorous sprouting response is triggered in neurons with myelinated axons while those supporting unmyelinated axons are possibly prevented from dying. The reaction of peripheral neurons to injury is such that the number of axons they support varies along the nerve as one goes disto-proximally away from the injury site. Thus discrepancies in results from different laboratories have come about because material for axon counting has been taken from different points along the nerve relative to the injury site and also because the material has been taken from nerves injured in different ways.  相似文献   

4.
Regeneration of the inferior alveolar nerve and mandibular incisor pulpal reinnervation was qualitatively and quantitatively examined by electron microscopy 2 days–11 months after intramandibular neurotomy in young adult cats. Fifteen millimeters central to the proximal stump moderate atrophic alterations of myelinated axons were observed 1–2 months after surgery. By 4–11 months a principally normal picture had been restored. The proportion of unmyelinated axons was increased 2–4 months after operation but had normalized by 11 months. In the distal stump the first regenerating axons were observed at 2 weeks. The regenerated myelinated axons failed to re-establish the previous fibre size range and normal axo-glial relations did not appear. A seemingly stable morphological pattern was reached 4–11 months postoperatively. In the late survival period the proportion of unmyelinated axons was subnormal. In the incisor pulps virtually all axons disappeared after surgery. By two weeks pulpal reinnervation had begun. From two months on, a structurally largely normal pulpal axon population was present except for some persisting unmyelinated axon degeneration. The findings are consistent with previous physiological data and suggest that structural normalization at proximal and preterminal levels follows upon re-establishment of peripheral contacts.  相似文献   

5.
We determined blood vessel and perineurial fascicle densities as well as axonal numbers in regenerated rat sciatic nerves 8 weeks after the nerves had been transected, the proximal stumps placed into the proximal ends of silicone tubes, and isolated fragments of nerve placed into the distal ends of the same tubes. The data are compared with data from the normal nerve and from regeneration in a similar paradigm in which the distal stumps were used as the inserts into the distal end of the silicone tubes. A major difference between the two regeneration paradigms was that axons were discouraged from reaching the periphery when the distal insert was an isolated fragment and encouraged to reach the periphery when the distal insert was the distal stump. We found that fascicle and blood vessel densities were greater than normal but less than with the distal stump as the distal insert. Thus we concluded that the nature of the distal insert had a bearing on how many vessels and perineurial fascicles were formed during regeneration in these conditions. Myelinated axon numbers did not differ in the two conditions whereas there were more unmyelinated axons with the isolated distal stump as the distal insert. Thus at this regeneration time the numbers of myelinated axons were not as dependent on the nature of the distal insert as were the numbers of unmyelinated axons. Finally the length of the gap had a great influence on the numbers of axons that regenerated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

7.
Electrophysiological and histological methods have been combined to obtain quantitative measures of the success of regeneration of myelinated axons in a cutaneous nerve after injury and repair by a variety of procedures. Following a simple transection injury more axons regenerated successfully when the nerve was repaired by epineurial suturing or stump suturing than when it was left unrepaired; both types of repair gave similar results. After loss of a 10-mm piece of the nerve trunk, repair with an autograft produced more regeneration than when the nerve was left untouched, but repair by stump mobilization with epineurial suturing made matters worse. On the whole, the regenerated afferents had receptive field properties similar to those found in control animals but there was a higher incidence of units that could not be typed using conventional criteria. A small proportion of them had split receptive fields. Fibre diameters and conduction velocities were reduced compared with controls; this was particularly so through the neuroma and in the distal stump. There was also evidence of abnormal interactions, possibly ephaptic, between some regenerated axons.  相似文献   

8.
Cross-anastomoses and autogenous grafts of unmyelinated and myelinated nerves were examined by electron microscopy and radioautography to determine if Schwann cells are multipotential with regard to their capacity to produce myelin or to assume the configuration seen in unmyelinated fibres. Two groups of adult white mice were studied. (A) In one group, the myelinated phrenic nerve and the unmyelinated cervical sympathetic trunk (CST) were cross-anastomosed in the neck. From 2 to 6 months after anastomosis, previously unmyelinated distal stumps contained many myelinated fibres while phrenic nerves joined to proximal CSTs became largely unmyelinated. Radioautography of distal stumps indicated that proliferation of Schwann cells occurred mainly in the first few days after anastomosis but was also present to a similar extent in isolated stumps. (B) In other mice, CSTs were grafted to the myelinated sural nerves in the leg. One month later, the unmyelinated CSTs became myelinated and there was no radioautographic indication of Schwann cell migration from the sural nerve stump to the CST grafts. Thus, Schwann cell proliferation in distal stumps is an early local response independent of axonal influence. At later stages, axons from the proximal stumps cause indigenous Schwann cells in distal stumps from the previously unmyelinated nerves to produce myelin while Schwann cells from the previously unmyelinated nerves to produce myelin while Schwann cells from the previously myelinated nerves become associated with unmyelinated fibres. Consequently, the regenerated distal nerve resembled the proximal stump. It is suggested that this change is possible because Schwann cells which divide after nerve injury reacquire the developmental multipotentiality which permits them to respond to aoxonal influences.  相似文献   

9.
To compare nerve regeneration in young adult and aging mice, the right sciatic nerves of 6- and 24-month-old mice were crushed at the sciatic notch. Two weeks later, both groups of mice were perfused with an aldehyde solution, and, after additional fixation, the sciatic nerves were processed so that the transverse sections of each nerve subsequently studied by light and electron microscopy included the entire posterior tibial fascicle 5 mm distal to the crush site. The same level was sectioned in unoperated contralateral nerves; these nerves served as controls. Electron micrographs and the Bioquant Image Analysis System IV were used to measure areas of posterior tibial fascicles and count the number of myelinated axons, the number of unmyelinated axons, and their frequency in Schwann cell units. In aging mice, the total number of regenerating myelinated axons was significantly reduced, but totals of regenerating unmyelinated axons in aging and young adults did not differ significantly. In aging mice, the frequency of Schwann cells that contained a single unmyelinated axon was greater, suggesting that before myelination began, Schwann cell ensheathment of axons also was slowed. After axotomy by a crush injury, the area of the posterior tibial fascicle was less than that in young adults and the distal disintegration of myelin sheath remnants also appeared to be retarded. The results indicate that responses of neurons, axons, and Schwann cells could be important in slowing the regeneration of myelinated fibers found in sciatic nerves from aging mice.  相似文献   

10.
Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate was 3.7 mm/day with no obvious differences between myelinated and unmyelinated axons. This contrasted with previous claims of two to three times faster regeneration rates of unmyelinated as compared to myelinated fibres. The initial delay was 0.55 days. Fewer small neurons were labelled relative to large neurons after crush and regeneration than in controls, indicating that regeneration of small neurons was less complete than that of large ones. This contrasted with the fact that unmyelinated axons in the regenerated sural nerve after 74 days were only slightly reduced.  相似文献   

11.
The presence of a distal nerve segment is considered to be essential for peripheral nerve regeneration through impermeable synthetic guidance channels. The use of a perm-selective material may provide a more appropriate regenerating environment by allowing solute exchange across the wall of the channel. We compared perm-selective acrylic copolymer (AC) channels with impermeable silicone elastomer (SE) channels in terms of regeneration in the absence of a distal nerve stump. Cohorts of 6 animals received AC and SE channels for either 4 or 8 weeks, with the distal end of the polymer tube left open in half of the animals, and plugged with the same polymer ('capped') in the other half. Capped and uncapped AC channels contained regenerated nerve cables which extended fully to the distal end of the channel, whereas capped SE channels contained only 1 mm long granulomatous tissue cables, and uncapped SE channels showed small cables with only a few myelinated axons. The nerve cables regenerated in uncapped AC channels were smaller and contained fewer myelinated axons than those observed in capped AC channels. Capped AC channels sleeved with a tight-fitting silicone tube to render them impermeable, showed no regenerated tissue within their lumen. The use of a perm-selective channel may have allowed the influx of nutrients and growth factors from the external environment while concentrating factors released by the proximal nerve stump.  相似文献   

12.
The aim of this study was to find out whether dysglycaemia causes neuropathy in the vagus nerve of insulin-treated diabetic BB/Wor rats. Specimens were collected from the left vagus nerve proximal and distal to the level of recurrent laryngeal branch and from the recurrent branch itself in control rats and diabetic BB/Wor rats subjected to hyper- or hypoglycaemia. Myelinated and unmyelinated axons were counted and myelinated axon diameters were measured by electron microscopy. In controls, the vagus nerve proximal to the recurrent branch exhibited three regions in terms of fibre composition: part A was mainly composed of large myelinated axons, part B contained small myelinated and unmyelinated axons, and part C contained mainly unmyelinated axons. The distal level resembled part C at the proximal level and the recurrent branch resembled parts A and B. In hyperglycaemic rats, a normal picture was found at the proximal and distal levels of the vagus nerve and in the recurrent branch. In hypoglycaemic rats, signs of past and ongoing degeneration and regeneration of large myelinated axons were found at the proximal and distal levels and in the recurrent branch. We conclude that hypoglycaemia elicits degenerative alterations in large myelinated axons in the vagus and recurrent laryngeal nerves in diabetic BB/Wor rats. The absence of signs of neuropathy in unmyelinated and small myelinated axons suggests that the sensory and autonomic components of the nerve are less affected. In contrast, the hyperglycaemic rats examined here did not show obvious degenerative alterations.  相似文献   

13.
Axons of a cut peripheral nerve will grow across a gap (less than or equal to 10 mm in adult rodents) formed when the proximal and distal stumps are placed at opposite ends of an impermeable, inert tube, but will not grow to the end of a blind-ended tube in the absence of the distal stump [Williams et al, 1984]. Work reported here demonstrates that cultured peripheral nervous system (PNS) cells suspended in a collagen matrix will provide an effective milieu that directs and supports axonal regeneration from a severed nerve into a blind-ended tube in the absence of a distal stump. Adult mouse sciatic nerves were cut and the proximal stumps were inserted into close-ended tubes that contained either a collagen matrix containing dissociated cells from embryonic mouse dorsal root ganglia (DRG), a collagen matrix saturated with medium conditioned by cultured DRG cells, or a collagen matrix saturated with fresh medium. In all three cases cellular cables formed that ran the full length of the tubes, but myelinated and unmyelinated axons regenerated the length of the tubes only when cultured cells had been added. The critical factor in influencing axonal regeneration through the length of the tubes was the presence of cultured cells, since collagen alone or collagen saturated with conditioned medium did not support axonal regrowth even though cells had migrated into the chambers from the proximal stumps in all cases. Ordered structure was not a requisite for axonal growth, since the cultures consisted of random arrays of dissociated cells.  相似文献   

14.
Autologous transplants are often used in repair of peripheral nerve injury. Quantitative evaluation of the results of such a transplant is obviously desirable. In previous study, we determined numerical and cytologic parameters of the regeneration that followed transection of rat sciatic nerve, but no transplant was used. This work now serves as a basis for evaluating the use of an autologous transplant in the same transection paradigm. Our procedure is to remove 8 mm of sciatic nerve in the thigh. The removed segment is then put into the center of a silicone tube and the proximal and distal stumps of the severed nerve are placed into the ends of the tube. The data show: (1) a high percentage of successful regenerations; (2) a relatively large nerve in the gap; (3) a typical outer perineurium underlying the epineurium; (4) a well-developed fascicular perineurium; and (5) approximately equal numbers of myelinated and unmyelinated axons in the gap and distal stump. If a transplant is not used there are: (1) a greater number of failures of regeneration; (2) a smaller nerve in the gap; (3) a less well-developed fascicular perineurium; (4) unequal numbers of axons in the gap as compared to the distal stump; and (5) no outer perineurium forms. The presence of a typical outer perineurium after a transplant and its absence if a transplant is not used is probably the most striking cytologic difference between the two paradigms. The equal numbers of axons in the gap and distal stump following regeneration after transplantation presumably indicate that all axons in the gap enter the distal stump without branching or ending blindly, a situation that is presumably beneficial and contrasts with the findings when a transplant is not used. Both paradigms show a remarkable increase in the density of blood vessels in the regenerated nerve in the gap between the two stumps. These findings will serve as a basis for further studies on the mechanisms of peripheral nerve regeneration.  相似文献   

15.
Branching of myelinated and unmyelinated nerve fibers in normal and regenerating personal and soleus nerves was studied by light and electron microscopy. There were at most 2% more myelinated and 13% more unmyelinated axons in the distal as compared with the proximal nerve segments. Two to four weeks after a crush lesion the distal axons became 2-3 times more numerous; thereafter their number decreased. The number of axons in the proximal nerve segment did not change. The number of myelinated sprouts in most regenerated nerves equalled the number of myelinated fibers in the proximal nerve, while the number of unmyelinated axons after 12-19 weeks was 18-60% higher than normal. Branching was not restricted to the crush region. The results indicate that following a crush lesion all axons branch but only branches of unmyelinated fibers persist for a prolonged period of time. It is tentatively suggested that regenerating axons branch when searching for a target and that when contact is made with the target this prevents additional branching and eliminates redundant branches. Myelinated axons are guided by existing Schwann cells, whereas unmyelinated axons do not follow predetermined pathways; this may explain their greater tendency to form permanent branches.  相似文献   

16.
We have developed a new peripheral nerve chamber system which allows high resolution observation of the cellular events involved in nerve regeneration. The growth into the chamber is confined to a two-dimensional sheet resembling tissue culture. An intact blood supply forms within the chamber and by 100 days the nerve bridging the chamber has a nearly normal perineurium surrounding unmyelinated and myelinated axons. Degenerating axons are very rarely seen. The early growth in the chamber has a tendency to spread widely and form a two-dimensional sheet. This results in morphologies similar to those found in tissue culture and facilitates observation of individual elements. The initially wide tissue growth gradually re-models to form a bridge with a constant width similar to the width of the peroneal nerve. Occasionally a 'side arm' containing myelinated axons was retained even though the majority of axons appeared to loop back and rejoin the main bridge. Prefilling the chamber with Matrigel did not produce a significant enhancement of growth rate over that found following prefilling with sterile saline but did result in a more normally organized structure in the long term. Proximal ingrowth occurred at a similar rate in the absence of the distal stump. The structure of the proximal stump in the absence of the distal stump was similar to the structure when both stumps were present, including the presence of myelinated axons near the proximal port by 20 days. However, at subsequent stages the absence of a distal stump led to withdrawal of the proximal growth.  相似文献   

17.
The axons of both peripheral and central neurons in C57BL/Wld s (C57BL/Ola) mice are unique among mammals in degenerating extremely slowly after axotomy. Motor and sensory axons attempting to regenerate are thus confronted with an intact distal nerve stump rather than axon-and myelin-free Schwann cell-filled endoneurial tubes. Surprisingly, however, motor axons in the sciatic nerve innervating the soleus muscle regenerate rapidly, and there is evidence that they may use Schwann cells associated with unmyelinated fibres as a pathway. If this is so, motor axon regeneration might be impaired in C57BL/Wld s mice in the phrenic nerve, which has very few unmyelinated fibres. We found that as long as the myelinated axons in the distal stump of the phrenic nerve remained intact (up to 10 days), regeneration of motor axons did not occur, in spite of vigorous production of sprouts at the crush site. In contrast to motor axons, myelinated sensory axons regenerate very poorly in C57BL/Wld s mice, even in the presence of unmyelinated axons. We showed that this was also due to adverse local conditions confronting nerve sprouts, for the dorsal root ganglion cell bodies responded normally to injury with a rapid induction of Jun protein-like immunoreactivity and when the saphenous nerve was forced to degenerate more rapidly by multiple crush lesions sensory axons regrew much more successfully. The findings show that motor and sensory axons in C57BL/Wld s mice, although very atypical in the way that they degenerate, are able to regenerate normally but only in an appropriate environment. The results also give support to the view that intact peripheral nerves either fail to encourage or actively inhibit axon growth, and that an unsuitable local environment can prevent regeneration even if the cell body is reacting normally to injury.  相似文献   

18.
In this study, we evaluated the long-term maintenance of regenerated axons in an experimental nerve amputee model. The sciatic nerve of adult rats was transected and repaired with a silicone tube leaving a short gap; the distal nerve segment was again transected 10 mm distally and the distal stump either introduced in a capped silicone chamber (amputee group) or connected to denervated targets (tibial branch into the gastrocnemius muscle and peroneal nerve apposed to skin) (reinnervation group). Morphological studies were performed at 2.5, 6, and 9 months after surgery. In all cases, axons regenerated across the silicone tube and grew in the distal nerve segment. In the amputee group, the morphological results show the expected features of a neuroma that is formed when regenerating axons are prevented from reaching the end organs, with a large number of axonal profiles indicative of regenerative sprouting. The number of myelinated axons counted at the distal nerve was sustained over 9 months follow-up, indicating that regenerated axons are maintained chronically. Immunohistochemical labeling showed maintained expression of choline acetyltransferase, calcitonin gene-related peptide, and growth-related peptides 43 in the distal neuroma at 6 and 9 months. Reconnection of the distal nerve to foreign targets mildly improved the pattern of nerve regeneration, decreasing the number of excessive sprouts. These results indicate that axons regenerated may be eventually interfaced with external input-output systems over long time, even if ending in the absence of distal targets as will occur in amputee limbs.  相似文献   

19.
To study beneficial effects of immature astrocytes on axonal regeneration in the injured adult mammalian brain, we have stereotactically implanted cultured astrocytes from embryonic (E 14–16) rat cerebral cortex into the lesion site following transection of the postcommissural fornix. The spatio-temporal pattern of axonal degeneration and regrowth in the proximal fornix stump was investigated using wheat germ agglutinin-horseradish peroxidase tracing techniques and quantitative analysis of myelinated axon profiles. Transection of the postcommissural fornix tract caused disintegration of the axons in the distal stump as well as rapid and pronounced retrograde axonal degeneration up to 800–1,200 μm proximal to the lesion site. While a small bundle of subicular fibers spontaneously extended to the lesion site within 4 weeks after injury, axonal regeneration was markedly stimulated in those animals that had received an astroglial implant. Following the former pathway, regenerating axons sprouted towards the implant but did not penetrate the graft. Instead, the axons elongated over the surface of the transplant, avoiding growth into the surrounding neuropil or into the distal fornix segment. In grafted animals we further observed a substantial increase in the number of myelinated axons of approximately 31.5% (at the level of 800 μm) and approximately 40% (at the 400 μm level) compared with the injured tract lacking a transplant. Our results indicate the capacity of juvenile astrocytes to stimulate axonal regeneration after injury of the post-commissural fornix tract in the adult rat brain. We further demonstrate myelination of the regenerated axons. © 1994 Wiley-Liss, Inc.  相似文献   

20.
This study investigated the maximum number of collaterals that can be maintained by 1 axon during regeneration of rat peripheral nerve. The tibial nerve was transected, the proximal residual, with its variable number of axons, was fixed to the distal stump and served as the donor nerve. The number of myelinated axons was calculated after 12 weeks. An increasing ratio of distal stump axon numbers to proximal donor nerve axon numbers of 1.0, 1.83, 3.64 and 7.97 yielded ratios of regenerative myelinated axon numbers to proximal donor axon numbers of 0.98, 1.51, 2.39, 2.89, respectively, with an estimated maximum value of approximately 3.3 using the Hill function. The tibial function indexes and nerve conduction velocities of the regenerated tibial nerve were -44.1 +/- 5.1 and 43.2 +/- 5.3 m/s, -57.5 +/- 4.7 and 18.6 +/- 4.3 m/s, -80.2 +/- 7.1 and 12.7 +/- 3.7 m/s, and -85.4 +/- 5.7 and 10.5 +/- 3.9 m/s, respectively. It has been suggested that 1 axon can regenerate and maintain up to 3 or 4 collaterals in regenerated rat peripheral nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号