首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.  相似文献   

2.
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.  相似文献   

3.
Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) possess a filamentous type III secretion system (TTSS) employed to deliver effector proteins into host cells. EspA is a type III secreted protein which forms the filamentous extension to the TTSS and which interacts with host cells during early stages of attaching and effacing (A/E) lesion formation. By immunofluorescence, a polyclonal antibody previously raised to EspA from EPEC strain E2348/69 (O127:H6) stained approximately 12-nm-diameter EspA filaments produced by this strain but did not stain similar filaments produced by EHEC serotype O157:H7. Similarly, an antibody that we subsequently raised to EHEC strain 85-170 (O157:H7) EspA stained approximately 12-nm-diameter EspA filaments produced by strain 85-170 but did not stain E2348/69 EspA filaments. Given such heterogeneity between EPEC and EHEC EspA filaments, we examined polymorphisms of functional EspA filaments among different EPEC and EHEC serotypes. With use of the EPEC EspA antiserum, EspA filaments were observed only with EPEC serotypes O127:H6 and O55:H6, serotypes which encode an identical EspA protein. When stained with the EHEC EspA antiserum, EspA filaments were detected only on EHEC strains belonging to serotype O157:H7; the EHEC antiserum did, however, stain EspA filaments produced by the closely related EPEC serotype O55:H7 but not filaments of any other EPEC serotype tested. Such polymorphisms among functional EspA filaments of EPEC and EHEC would be expected to have important implications for the development of broad-range EspA-based vaccines.  相似文献   

5.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) infections result in attaching and effacing lesions on intestinal epithelial cells. Secretion of extracellular proteins via a type III secretion apparatus is necessary for the formation of attaching and effacing lesions by EPEC. We now show that EHEC also secretes polypeptides via a putative type III secretion system. The secreted EHEC proteins are recognized by rabbit antiserum raised against the proteins secreted from EPEC and by human serum from a patient infected with an EHEC O157:H7 strain.  相似文献   

6.
The locus of enterocyte effacement (LEE) pathogenicity island of enterohemorrhagic Escherichia coli (EHEC) O157:H7 possesses the same genes in identical order and orientation as the LEE of enteropathogenic E. coli (EPEC) O127:H6 but is unable to form attaching and effacing (A/E) lesions or to secrete Esp proteins when it is cloned in an E. coli K-12 background. The A/E phenotype could not be restored by trans complementation with a variety of cloned EPEC LEE fragments, suggesting functional and/or regulatory differences between the LEE pathogenicity islands of EPEC O127:H6 and EHEC O157:H7.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) and enterohemorragic E. coli (EHEC) possess a pathogenicity island (PAI), termed the locus of enterocyte effacement (LEE), which confers the capability to cause the characteristic attaching and effacing lesions of the brush border. Due to this common property, these organisms are also termed attaching and effacing E. coli (AEEC). Sequencing of the EHEC O157 genome recently revealed the presence of other putative PAIs in the chromosome of this organism. In this article, we report on the presence of four of those PAIs in a panel of 133 E. coli strains belonging to different pathogroups and serotypes. One of these PAIs, termed O122 in strain EDL 933 and SpLE3 in strain Sakai, was observed in most of the AEEC strains examined but not in the other groups of E. coli. It was also found to contain the virulence-associated gene efa1/lifA. In EHEC O157, PAI O122 is located 0.7 Mb away from the LEE. Conversely, we demonstrated that in many EHEC non-O157 strains and EPEC strains belonging to eight serogroups, PAI O122 and the LEE are physically linked to form a cointegrated structure. This structure can be considered a mosaic PAI that could have been acquired originally by AEEC. In some clones, such as EHEC O157, the LEE-O122 mosaic PAI might have undergone recombinational events, resulting in the insertion of the portion referred to as PAI O122 in a different location.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.  相似文献   

9.
Strains of Shiga toxin-producing Escherichia coli (STEC) have been associated with outbreaks of diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans. Most clinical signs of disease arise as a consequence of the production of Shiga toxin 1 (Stx1), Stx2 or combinations of these toxins. Other major virulence factors include enterohemorrhagic E. coli hemolysin (EHEC hlyA), and intimin, the product of the eaeA gene that is involved in the attaching and effacing adherence phenotype. In this study, a series of multiplex-PCR assays were developed to detect the eight most-important E. coli genes associated with virulence, two that define the serotype and therefore the identity of the organism, and a built-in gene detection control. Those genes detected were stx(1), stx(2), stx(2c), stx(2d), stx(2e), stx(2f), EHEC hlyA, and eaeA, as well as rfbE, which encodes the E. coli O157 serotype; fliC, which encodes the E. coli flagellum H7 serotype; and the E. coli 16S rRNA, which was included as an internal control. A total of 129 E. coli strains, including 81 that were O157:H7, 10 that were O157:non-H7, and 38 that were non-O157 isolates, were investigated. Among the 129 samples, 101 (78.3%) were stx positive, while 28 (21.7%) were lacked stx. Of these 129 isolates, 92 (71.3%) were EHEC hlyA positive and 96 (74.4%) were eaeA positive. All STEC strains were identified by this procedure. In addition, all Stx2 subtypes, which had been initially identified by PCR-restriction fragment length polymorphism, were identified by this method. A particular strength of the assay was the identification of these 11 genes without the need to use restriction enzyme digestion. The proposed method is a simple, reliable, and rapid procedure that can detect the major virulence factors of E. coli while differentiating O157:H7 from non-O157 isolates.  相似文献   

10.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspFU. Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.  相似文献   

11.
Intimate attachment to the host cell leading to the formation of attaching and effacing (A/E) lesions is an essential feature of enterohemorrhagic Escherichia coli (EHEC) O157:H7 pathogenesis. In a related pathogen, enteropathogenic E. coli (EPEC), this activity is dependent upon translocation of the intimin receptor, Tir, which becomes tyrosine phosphorylated within the host cell membrane. In contrast, the accumulation of tyrosine-phosphorylated proteins beneath adherent EHEC bacteria does not occur, leading to questions about whether EHEC uses a Tir-based mechanism for adherence and A/E lesion formation. In this report, we demonstrate that EHEC produces a functional Tir that is inserted into host cell membranes, where it serves as an intimin receptor. However, unlike in EPEC, in EHEC Tir is not tyrosine phosphorylated yet plays a key role in both bacterial adherence to epithelial cells and pedestal formation. EHEC, but not EPEC, was unable to synthesize Tir in Luria-Bertani medium but was able to secrete Tir into M9 medium, suggesting that Tir synthesis and secretion may be regulated differently in these two pathogens. EHEC Tir and EPEC Tir both bind intimin and focus cytoskeletal rearrangements, indicating that tyrosine phosphorylation is not needed for pedestal formation. EHEC and EPEC intimins are functionally interchangeable, but EHEC Tir shows a much greater affinity for EHEC intimin than for EPEC intimin. These findings highlight some of the differences and similarities between EHEC and EPEC virulence mechanisms, which can be exploited to further define the molecular basis of pedestal formation.  相似文献   

12.
The pathogenicity island termed the locus of enterocyte effacement (LEE) is found in diverse attaching and effacing pathogens associated with diarrhea in humans and other animal species. To explore the relation of variation in LEE sequences to host specificity and genetic lineage, we determined the nucleotide sequence of the LEE region from a rabbit diarrheagenic Escherichia coli strain RDEC-1 (O15:H-) and compared it with those from human enteropathogenic E. coli (EPEC, O127:H6) and enterohemorrhagic E. coli (EHEC, O157:H7) strains. Differing from EPEC and EHEC LEEs, the RDEC-1 LEE is not inserted at selC and is flanked by an IS2 element and the lifA toxin gene. The RDEC-1 LEE contains a core region of 40 open reading frames, all of which are shared with the LEE of EPEC and EHEC. orf3 and the ERIC (enteric repetitive intergenic consensus) sequence present in the LEEs of EHEC and EPEC are absent from the RDEC-1 LEE. The predicted promoters of LEE1, LEE2, LEE3, tir, and LEE4 operons are highly conserved among the LEEs, although the upstream regions varied considerably for tir and the crucial LEE1 promoter, suggesting differences in regulation. Among the shared genes, high homology (>95% identity) between the RDEC-1 and the EPEC and EHEC LEEs at the predicted amino acid level was observed for the components of the type III secretion apparatus, the Ces chaperones, and the Ler regulator. In contrast, more divergence (66 to 88% identity) was observed in genes encoding proteins involved in host interaction, such as intimin (Eae) and the secreted proteins (Tir and Esps). A comparison of the highly variable genes from RDEC-1 with those from a number of attaching and effacing pathogens infecting different species and of different evolutionary lineages was performed. Although RDEC-1 diverges from some human-infecting EPEC and EHEC, most of the variation observed appeared to be due to evolutionary lineage rather than host specificity. Therefore, much of the observed hypervariability in genes involved in pathogenesis may not represent specific adaptation to different host species.  相似文献   

13.
Cattle are an important reservoir of Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains, foodborne pathogens that cause hemorrhagic colitis and hemolytic uremic syndrome in humans. EHEC O157:H7 strains are not pathogenic in calves >3 weeks old. Our objective was to determine if EHEC O157:H7 strains are pathogenic in neonatal calves. Calves <36 h old inoculated with EHEC O157:H7 developed diarrhea and enterocolitis with attaching and effacing (A/E) lesions in both the large and small intestines by 18 h postinoculation. The severity of diarrhea and inflammation, and also the frequency and extent of A/E lesions, increased by 3 days postinoculation. We conclude that EHEC O157:H7 strains are pathogenic in neonatal calves. The neonatal calf model is relevant for studying the pathogenesis of EHEC O157:H7 infections in cattle. It should also be useful for identifying ways to reduce EHEC O157:H7 infections in cattle and thus reduce the risk of EHEC O157:H7 disease in humans.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) is a major of cause of diarrhea among children in developing countries. Although EPEC is a human specific pathogen, some related strains are natural pathogens of animals, including laboratory-bred rabbits. We have identified two chromosomal loci in rabbit-specific EPEC (REPEC) O15:H- strain 83/39, which are predicted to encode long polar fimbriae (LPF). lpf(R154) was identical to a fimbrial gene cluster, lpf(O113), identified previously in enterohemorrhagic E. coli (EHEC) O113:H21. The second locus, lpf(R141), comprised a novel sequence with five predicted open reading frames, lpfA to lpfE, that encoded long fine fimbriae in nonfimbriated E. coli ORN103. The predicted products of lpf(R141) shared identity with components of the lpfABCC'DE gene cluster from EHEC O157:H7, and the fimbriae were similar in morphology and length to LPF from EHEC O157:H7. Interruption of lpf(R141) resulted in significant attenuation of REPEC 83/39 for rabbits with respect to the early stages of colonization and severity of diarrhea. However, there was no significant difference in the number of bacteria shed at later time points or in overall body weight and mortality rate of rabbits infected with lpf(R141) mutant strains or wild-type REPEC 83/39. Although rabbits infected with the lpf(R141) mutants did not develop severe diarrhea, there was evidence of attaching and effacing histopathology, which was indistinguishable in morphology, location, and extent compared to rabbits infected with wild-type REPEC 83/39. The results suggested that lpf(R141) contributes to the early stages of REPEC-mediated disease and that this is important for the development of severe diarrhea in susceptible animals.  相似文献   

15.
The family of attaching and effacing (A/E) bacterial pathogens, which includes diarrheagenic enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), remains a significant threat to human and animal health. These bacteria intimately attach to host intestinal cells, causing the effacement of brush border microvilli. The genes responsible for this phenotype are encoded in a pathogenicity island called the locus of enterocyte effacement (LEE). Citrobacter rodentium is the only known murine A/E pathogen and serves as a small animal model for EPEC and EHEC infections. Here we report the full DNA sequence of C. rodentium LEE and provide a comparative analysis with the published LEEs from EPEC, EHEC, and the rabbit diarrheagenic E. coli strain RDEC-1. Although C. rodentium LEE shows high similarities throughout the entire sequence and shares all 41 open reading frames with the LEE from EPEC, EHEC, and RDEC-1, it is unique in its location of the rorf1 and rorf2/espG genes and the presence of several insertion sequences (IS) and IS remnants. The LEE of EPEC and EHEC is inserted into the selC tRNA gene. In contrast, the Citrobacter LEE is flanked on one side by an operon encoding an ABC transport system, and an IS element and sequences homologous to Shigella plasmid R100 and EHEC pO157 flank the other. The presence of plasmid sequences next to C. rodentium LEE suggests that the prototype LEE resided on a horizontally transferable plasmid. Additional sequence analysis reveals that the 3-kb plasmid in C. rodentium is nearly identical to p9705 in EHEC O157:H7, suggesting that horizontal plasmid transfer among A/E pathogens has occurred. Our results indicate that the LEE has been acquired by C. rodentium and A/E E. coli strains independently during evolution.  相似文献   

16.
An enzyme-linked immunosorbent assay for the detection of Shiga toxins (Premier EHEC assay; Meridian Diagnostics, Inc.) was compared to conventional sorbitol-MacConkey culture for the recovery of enterohemorrhagic Escherichia coli. A total of 74 enteric pathogens, including 8 E. coli O157:H7 isolates, were recovered from 974 stool specimens. Two of these specimens were not tested by Premier assaying due to insufficient sample and are not considered in the data analysis. The Premier EHEC assay detected the 6 evaluable specimens which were culture positive for E. coli O157:H7 and identified an additional 10 specimens as containing Shiga toxin. Seven isolates were recovered from these 10 specimens by an immunoblot assay and were confirmed as toxin producers by a cytotoxin assay. Of these seven, four isolates were serotype O157:H7, one was O26:NM, one was O6:H-, and one was O untypeable:H untypeable. Three specimens contained Shiga toxin by both EHEC immunoassaying and cytotoxin testing; however, no cytotoxin-producing E. coli could be recovered. The sorbitol-MacConkey method had a sensitivity and a specificity of 60 and 100%, respectively, while the Premier EHEC assay had a sensitivity and a specificity of 100 and 99.7%, respectively, for E. coli O157:H7 only. The Premier EHEC assay also detected an additional 20% Shiga toxin-producing E. coli (STEC) that were non-O157:H7. Thus, the Premier EHEC assay is a sensitive and specific method for the detection of all STEC isolates. Routine use would improve the detection of E. coli O157:H7 and allow for determination of the true incidence of STEC other than O157:H7. The presence of blood in the stool and/or the ages of the patients were poor predictors of the presence of STEC. Criteria need to be determined which would allow for the cost-effective incorporation of this assay into the routine screen for enteric pathogens in high-risk individuals, especially children.  相似文献   

17.
The majority of enterohemorrhagic Escherichia coli (EHEC) strains associated with severe disease carry the locus of enterocyte effacement (LEE) pathogenicity island, which encodes the ability to induce attaching and effacing lesions on the host intestinal mucosa. While LEE is essential for colonization of the host in these pathogens, strains of EHEC that do not carry LEE are regularly isolated from patients with severe disease, although little is known about the way these organisms interact with the host epithelium. In this study, we compared the adherence properties of clinical isolates of LEE-negative EHEC with those of LEE-positive EHEC O157:H7. Transmission electron microscopy revealed that LEE-negative EHEC O113:H21 was internalized by Chinese hamster ovary (CHO-K1) epithelial cells and that intracellular bacteria were located within a membrane-bound vacuole. In contrast, EHEC O157:H7 remained extracellular and intimately attached to the epithelial cell surface. Quantitative gentamicin protection assays confirmed that EHEC O113:H21 was invasive and also showed that several other serogroups of LEE-negative EHEC were internalized by CHO-K1 cells. Invasion by EHEC O113:H21 was significantly reduced in the presence of the cytoskeletal inhibitors cytochalasin D and colchicine and the pan-Rho GTPase inhibitor compactin, whereas the tyrosine kinase inhibitor genistein had no significant impact on bacterial invasion. In addition, we found that EHEC O113:H21 was invasive for the human colonic cell lines HCT-8 and Caco-2. Overall these studies suggest that isolates of LEE-negative EHEC may employ a mechanism of host cell invasion to colonize the intestinal mucosa.  相似文献   

18.
Shiga toxin-producing Escherichia coli (STEC), a cause of food-borne colitis and hemolytic-uremic syndrome in children, can be serotype O157:H7 (O157) or other serotypes (non-O157). E. coli O157 can be detected by culture with sorbitol-MacConkey agar (SMAC), but non-O157 STEC cannot be detected with this medium. Both O157 and non-O157 STEC can be detected by immunoassay for Shiga toxins 1 and 2. The objectives of this study were first to compare the diagnostic utility of SMAC to that of the Premier EHEC enzyme immunoassay (Meridian Diagnostics) for detection of STEC in children and second to compare the clinical and laboratory characteristics of children with serotype O157:H7 STEC and non-O157:H7 STEC infections. Stool samples submitted for testing for STEC between April 2004 and September 2009 were tested by both SMAC culture and the Premier EHEC assay at Children's Hospital Boston. Samples positive by either test were sent for confirmatory testing and serotyping at the Hinton State Laboratory Institute (HSLI). Chart review was performed on children with confirmed STEC infection. Of 5,110 children tested for STEC, 50 (0.9%) had STEC infection confirmed by culture; 33 were O157:H7 and 17 were non-O157:H7. The Premier EHEC assay and SMAC culture detected 96.0% and 58.0% of culture-confirmed STEC isolates (any serotype), respectively, and 93.9% and 87.9% of STEC O157:H7 isolates, respectively. There were no significant differences in disease severity or laboratory manifestations of STEC infection between children with O157:H7 and those with non-O157 STEC. The Premier EHEC assay was significantly more sensitive than SMAC culture for diagnosis of STEC, and O157:H7 and non-O157:H7 STEC caused infections of similar severity in children.  相似文献   

19.
20.
Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H strains. With the exception of one O157:HfliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx. The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号