首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C terminus of the circumsporozoite protein (CSP) is anchored to the parasite cell membrane by a glycosylphosphatidylinositol (GPI) glycolipid. This GPI signal sequence functions poorly in heterologous eukaryotic cells, causing CSP retention within internal cell organelles during genetic immunization. Cellular location of antigen has quantitative and qualitative effects on immune responses induced by genetic immunization. Removal of the GPI signal sequence had a profound effect on induction and efficacy of CSP-specific immune response after genetic immunization of BALB/c mice with a gene gun. The CSP produced from the plasmid lacking the GPI anchor signal sequence (CSP-A) was secreted and soluble, but that produced by the CSP+A plasmid was not. The CSP-A plasmid induced a highly polarized Th2 type response, in which the CSP-specific IgG antibody titer was three- to fourfold higher, and the protective effect was significantly greater than that induced by the CSP+A plasmid. Thus, these two physical forms of CSP induced quantitatively and qualitatively different immune responses that also differed in protective efficacy. Engineering plasmid constructs for proper cellular localization of gene products is a primary consideration for the preparation of optimally efficacious DNA vaccines.  相似文献   

2.
Chlamydia pneumoniae initiates infection in humans via the mucosal epithelia of the respiratory tract; therefore, immunity at this mucosal site is believed to be important to control infection with this pathogen. We compared the protective capacity of immunization in mice with two C. pneumoniae antigens, namely the major outer membrane protein (MOMP) and the heat shock protein 60 (HSP-60), against intranasal (i.n.) infection with the bacteria when given as protein or DNA and when administered by i.n. or intraperitoneal (i.p.) routes. Our data showed that i.n. immunizations with both antigens delivered as DNA were protective against C. pneumoniae infection, probably due to induction of cell-mediated immune responses. Our study also revealed that i.n. immunizations with MOMP, but not with HSP-60, given as protein induced protective local immune responses in the respiratory tract against C. pneumoniae infection. Moreover, no protection was induced by either antigen when the i.p. route of immunization was used. We further investigated in immunoglobulin (Ig)A-deficient mice whether the reduction in the bacterial loads observed when MOMP was administered intranasally was related to the strong local IgA responses induced by this route of immunization. Our data showed that IgA-deficient mice were more susceptible to infection than wild-type mice, suggesting that the induction of local IgA responses may play a role in the protection of the respiratory tract against C. pneumoniae infections.  相似文献   

3.
The goal of this study was to develop a new surrogate challenge model for use in evaluating protective cell-mediated immune responses against hepatitis C virus (HCV) antigens. The use of recombinant Listeria monocytogenes organisms which express HCV antigens provides novel tools with which to assay such in vivo protection, as expression of immunity against this hepatotropic bacterial pathogen is dependent on antigen-specific CD8(+) T lymphocytes. A plasmid DNA vaccine encoding a ubiquitin-NS3 fusion protein was generated, and its efficacy was confirmed by in vivo induction of NS3-specific, gamma interferon-secreting T cells following vaccination of BALB/c mice. These immunized mice also exhibited specific in vivo protection against subsequent challenge with a recombinant L. monocytogenes strain (TC-LNS3) expressing the NS3 protein. Notably, sublethal infection of naive mice with strain TC-LNS3 induced similar NS3-specific T-cell responses. These findings suggest that recombinant strains of L. monocytogenes expressing HCV antigens should prove useful for evaluating, or even inducing, protective immune responses against HCV antigens.  相似文献   

4.
目的:探讨提高丹毒丝菌表面抗原A(spaA)N端核酸疫苗免疫应答的策略.方法:通过基因重组构建含人α胰岛素抑制剂(AAT)的信号肽、大鼠寡聚软骨基质蛋白(COMP)片段、丹毒丝菌spaA基因N末端及3分子的C3d序列的真核细胞表达质粒pcDNA3-AAT-COMP-spaAN -C3d3 (pcD-ACSC)和pcDNA3- spa (pcD-S).肌注免疫LCR小鼠后, RT-PCR检测小鼠体内丹毒丝菌spaAN基因的瞬时表达, ELISA检测小鼠血清spaA抗体水平的变化, 以丹毒丝菌XJ1249评价免疫小鼠的保护效果.结果:免疫第4周时pcD-ACSC核酸疫苗激发了较高水平的SpaAN抗体而pcD-S核酸疫苗激发的抗体水平与对照相比差异不显著;同时pcD-ACSC核酸疫苗具有70%保护效果, pcD-S核酸疫苗则不具保护效果.结论:通过融合高表达分泌蛋白信号肽、增加抗原溶解度的序列和分子佐剂C3d3能显著提高spaAN的抗体水平, 为丹毒丝菌spaA核酸疫苗的应用奠定基础.  相似文献   

5.
The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circumsporozoite protein (CSP). Mice were then challenged with P. berghei sporozoites to determine the protective efficacies of different vaccine regimens. Two immunizations with the protein vaccine CV-1866, based on the hepatitis B core antigen particle, induced strong humoral immunity to the repeat region of CSP that was weakly protective against sporozoite challenge. Prime-boost with the viral vector vaccines, FP9 followed by MVA, induced strong T-cell immunity to the CD8+ epitope Pb9 and partially protected animals from challenge. Physically mixing CV-1866 with FP9 or MVA and then immunizing with the resultant combinations in a prime-boost regimen induced both cellular and humoral immunity and afforded substantially higher levels of protection (combination, 90%) than either vaccine alone (CV-1866, 12%; FP9/MVA, 37%). For diseases such as malaria in which different potent immune responses are required to protect against different stages, using combinations of partially effective vaccines may offer a more rapid route to achieving deployable levels of efficacy than individual vaccine strategies.  相似文献   

6.
The circumsporozoite protein is a predominant surface antigen present on Plasmodium sporozoites. In Plasmodium falciparum circumsporozoite protein (PfCSP), two cysteine residues (396 and 401) are present adjacent to two overlapping cytotoxic T-lymphocyte epitopes of the protein and are involved in the formation of disulfide bridges. We investigated the role of these cysteines on the cellular and antibody responses towards the CS protein because disruption of disulfide linkages and the presence of cysteine residues in the flanking region of an epitope has been shown to significantly alter the immune responses to various proteins. Mice were immunized with variant forms of PfCSP DNA vaccine plasmids where these cysteine residues were individually mutated to alanine. The plasmid vaccines induced antigen specific antibody and cytotoxic T lymphocyte responses. While no alterations of cysteine influenced the CTL responses to P. falciparum CS protein, vaccine pVRCS4, containing an altered cysteine at position 401, dramatically improved the antibody response to the carboxyl-terminal region of the protein. This work indicates that sequence alterations of genes in an anti-malarial vaccine could enhance the response towards the native protein. Given the fact that long term natural immunity to the pathogen has not been documented, it may be important to challenge the immune system with non-native proteins.  相似文献   

7.
Malaria is still responsible for up to 1 million deaths per year worldwide, highlighting the need for protective malaria vaccines. Helminth infections that are prevalent in malaria endemic areas can modulate immune responses of the host. Here we show that Strongy-Ioides ratti, a gut-dwelling nematode that causes transient infections, did not change the efficacy of vaccination against Plasmodium berghei. An ongoing infection with Litomosoides sigmodontis, a tissue-dwelling filaria that induces chronic infections in BALB/c mice, significantly interfered with vaccination efficacy. The induction of P. berghei circumspor-ozoite protein (CSP)-specific CD8(+) T cells, achieved by a single immunization with a CSP fusion protein, was diminished in L. sigmodontis-infected mice. This modulation was reflected by reduced frequencies of CSP-specific CD8(+) T cells, reduced CSP-specific IFN-y and TNF-a production, reduced CSP-specific cytotoxicity, and reduced protection against P. berghei challenge infection. Implementation of a more potent vaccine regime, by first priming with CSP-expressing recombinant live Salmonella prior to CSP fusion protein immunization, restored induction of CSP-specific CD8(+) T cells and conferred almost sterile immunity to P. berghei challenge infection also in L. sigmodontis-infected mice. In summary, we show that appropriate vaccination regimes can overcome helminth-induced interference with vaccination efficacy.  相似文献   

8.
BACKGROUND: DNA vaccines have been shown to induce protective immunity against viral infections in different animal models. We have recently demonstrated that DNA vaccine induced protective immunity against influenza A virus and La Crosse virus (LACV) is primarily mediated by humoral immune response. OBJECTIVE: The goal of this study was to investigate whether administration of DNA coding for cytokines such as interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could increase the protective immune response induced by vaccination with DNA coding for viral antigens. STUDY DESIGN: For the influenza A virus or LACV model, C57BL/6 or interferon-alpha/beta receptor (IFNAR-1)-deficient mice, respectively, were vaccinated once or twice with 100 micrograms of DNA encoding viral antigens. At the same time plasmid DNAs (100 micrograms) coding either for mouse GM-CSF or mouse IL-12 were administered. The mice were subsequently challenged with a lethal dose of influenza A virus or LACV and monitored for clinical symptoms (weight loss) and survival. RESULTS: To achieve a high degree of protection (70% survival) two injections of DNA encoding the influenza A virus surface protein hemagglutinin (HA) were required. Intriguingly, administration of DNA coding for IL-12 alone also led to a pronounced protective effect against virus challenge. Co-administration of DNAs encoding IL-12 and HA significantly increased the protective immunity against influenza A virus, while IL-12 expression did not improve protection upon vaccination with DNA coding for the internal nucleocapsid protein N of LACV. Co-injection of DNA coding for mouse GM-CSF and HA also showed an adjuvant effect. CONCLUSIONS: The data clearly indicate that co-administration of DNA encoding cytokines such as IL-12 and GM-CSF with DNA coding for viral antigens has adjuvant effects on the protective immune response against different viral pathogens.  相似文献   

9.
We tested the immunogenicity of two Trypanosoma cruzi antigens injected into mice in the form of DNA vaccine. Immunization with DNA encoding dihydroorotate dehydrogenase did not confer protective immunity in all mouse strains tested. Immunization with DNA encoding trans-sialidase surface antigen (TSSA) protected C57BL/6 (H-2(b)) mice but not BALB/c (H-2(d)) or C3H/Hej (H-2(k)) mice against lethal T. cruzi infection. In vivo depletion of CD4(+) or CD8(+) T cells abolished the protective immunity elicited by TSSA gene in C57BL/6 mice. Enzyme-linked immunospot assay with splenocytes from T. cruzi-infected mice or TSSA gene-vaccinated mice identified an H-2K(b)-restricted antigenic peptide, ANYNFTLV. The CD8(+)-T-cell line specific for this peptide could recognize T. cruzi-infected cells in vitro and could protect naive mice from lethal infection when adoptively transferred. Coadministration of the interleukin-12 (IL-12) gene with the TSSA gene facilitated the induction of ANYNFTLV-specific CD8(+) T cells and improved the vaccine efficacy against lethal T. cruzi infection. These results reinforced the utility of immunomodulatory adjuvants such as IL-12 gene for eliciting protective immunity against intracellular parasites by DNA vaccination.  相似文献   

10.
Complement receptor 2 (CR2) and its physiological ligand, C3d, known for its molecular adjuvant property on the immune response, exhibit opposite effects with regard to autoimmunity. Although CR2 has been implicated in maintaining self-tolerance, recent studies reported a role for C3d signaling to CR2 in tolerance breakdown to self-antigens and the initiation of inflammatory autoimmune pathologies. In the present study, we have investigated the effect of C3d in a model of tolerogenic DNA vaccination encoding the myelin oligodendrocyte glycoprotein (MOG-DNA) which protected mice from the induction of an experimental autoimmune encephalomyelitis (EAE). We show that fusing two or three copies of C3d to MOG overcomes the protective effect of DNA vaccination. Multimeric C3d was able to revert the unresponsiveness state of specific T cells induced by MOG-DNA, independently of a modification in the Th1/Th2 cytokine pattern. Interestingly, the adjuvant effect of C3d was not sufficient to boost the anti-MOG antibody response after DNA vaccination. These findings suggest that C3d might be involved in self-tolerance breakdown and could contribute to the pathogenesis of central nervous system autoimmune disorders.  相似文献   

11.
Cell-mediated immunity plays a crucial role in host defenses against Cryptococcus (Filobasidiella) neoformans. Therefore, the identification of cryptococcal antigens capable of producing T-cell-mediated responses, such as delayed-type hypersensitivity (DTH) reactions, may be useful in the development of immune-based strategies to control cryptococcosis. In order to characterize DTH-producing antigens, culture supernatants from the unencapsulated Cap-67 strain were separated by anion-exchange chromatography. After further fractionation by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a purified protein with an apparent molecular mass of 25 kDa was found to produce DTH, as evidenced by increased footpad swelling in mice immunized with culture supernatants, relative to unimmunized mice. The 20-amino-acid N-terminal sequence of the 25-kDa protein was used to search data of the C. neoformans Genome Project. Based on the genomic DNA sequence, a DNA probe was used to screen a lambda cDNA library prepared from strain B3501. Clones were isolated containing the full-length gene (d25), which showed homology with a number of polysaccharide deacetylases from fungi and bacteria. The recombinant d25 protein expressed in Escherichia coli was similar to the natural one in DTH-producing activity. Moreover, immunization with either the natural or the recombinant protein prolonged survival and decreased fungal burden in mice challenged with the highly virulent C. neoformans strain H99. In conclusion, we have described the first cryptococcal gene whose product, a 25-kDa extracellular polysaccharide deacetylase, has been shown to induce protective immunity responses.  相似文献   

12.
The evolution of increasingly virulent human pathogens, together with the rapid onset of antimicrobial resistance has created a need for new vaccination strategies. Nucleic acid vaccines, based on recombinant DNA technology are a promising new vaccine formulation capable of eliciting both humoral and cellular immune responses. This technology has been experimentally validated in animal models of pathogen challenge and tumor protection following administration of a DNA vaccine and has led to extensive research into the mechanisms of protective immunity. We focus here on the cellular and molecular mechanisms leading to cell-mediated immune responses to DNA vaccines and discuss these mechanisms in light of recent advances in the field of dendritic cell immunobiology. In particular, the potential involvement of: (i) the CpG pattern-recognition receptor, toll-like receptor-9; (ii) the dendritic cell-specific surface adhesion molecule, DC-SIGN; and (iii) the molecular interactions between CD40 and CD154 in the evolution of protective cell-mediated immunity to DNA vaccines are discussed. An improved understanding of the precise mechanisms leading to protective cellular immunity following DNA vaccination may help in the design of novel DNA constructs containing immunostimulatory features that target one or more of these mechanisms, with the aim of increasing the immunogenic potential and protective efficacy of DNA vaccines.  相似文献   

13.
The ability of the C3d component of complement to enhance antibody responses and protective immunity to influenza virus challenges was evaluated using a DNA vaccine encoding a C3d fusion of the hemagglutinin (HA) from influenza virus. Plasmids were generated that encoded a transmembrane HA (tmHA), a secreted form of HA (sHA), or a sHA fused to three tandem copies of the murine homologue of the C3d (sHA-3C3d). Analysis of the titers, avidity maturation, and hemagglutinin-inhibition activity of raised antibody revealed that immunizations with sHA-3C3d DNA accelerated both the avidity maturation of antibody to HA and the appearance of hemagglutinin-inhibition activity. These accelerated antibody responses correlated to a more rapid appearance of protective immunity. They also correlated to complete protection from live virus challenge by a single vaccination at a dose ten times lower than the protective dose for non-C3d forms of HA.  相似文献   

14.
We analyzed four DNA vaccines based on DENV-2 NS1: pcENS1, encoding the C-terminal from E protein plus the NS1 region; pcENS1ANC, similar to pcENS1 plus the N-terminal sequence from NS2a (ANC); pcTPANS1, coding the t-PA signal sequence fused to NS1; and pcTPANS1ANC, similar to pcTPANS1 plus the ANC sequence. The NS1 was detected in lysates and culture supernatants from pcTPANS1-, pcENS1- and pcENS1ANC-transfected cells and not in cells with pcTPANS1ANC. Only the pcENS1ANC leads the expression of NS1 in plasma membrane, confirming the importance of ANC sequence for targeting NS1 to cell surface. High levels of antibodies recognizing conformational epitopes of NS1 were induced in mice immunized with pcTPANS1 and pcENS1, while only few pcENS1ANC-inoculated animals presented detectable anti-NS1 IgG. Protection against DENV-2 was verified in pcTPANS1- and pcENS1-immunized mice, although the plasmid pcTPANS1 induced slight higher protective immunity. These plasmids seem to activate distinct patterns of the immune system.  相似文献   

15.
The circumsporozoite protein (CSP) from the surface of sporozoite stage Plasmodium sp. malaria parasites is among the most important of the malaria vaccine candidates. Gene gun injection of genetic vaccines encoding Plasmodium berghei CSP induces a significant protective effect against sporozoite challenge; however, intramuscular injection does not. In the present study we compared the immune responses and protective effects induced by P. berghei CSP genetic vaccines delivered intradermally with a needle or epidermally with a gene gun. Mice were immunized three times at 4-week intervals and challenged by a single infectious mosquito bite. Although 50 times more DNA was administered by needle than by gene gun, the latter method induced significantly greater protection against infection. Intradermal injection of the CSP genetic vaccine induced a strong Th1-type immune response characterized by a dominant CSP-specific immunoglobulin G2a (IgG2a) humoral response and high levels of gamma interferon produced by splenic T cells. Gene gun injection induced a predominantly Th2-type immune response characterized by a high IgG1/IgG2a ratio and significant IgE production. Neither method generated measurable cytotoxic T lymphocyte activity. The results indicate that a gene gun-mediated CS-specific Th2-type response may be best for protecting against malarial sporozoite infection when the route of parasite entry is via mosquito bite.  相似文献   

16.
恶性疟原虫环子孢子蛋白基因中央保守区编码产物具有37个NANP串联重复序列,并认为(NANP)n具有保护性免疫作用。本文通过酚/氯仿抽提乙醇沉淀方法提取恶性疟原虫全基因组DNA,首次采用PCR方法获得环子孢子蛋白CSP基因中央保守区片段。我们用地高辛标记的PCR产物作DNA探针,杂交试验表明具有高度的敏感性和特异性。同时,本文还探讨了PCR技术在病原学检测、疫苗研制、流行病学调查、疗效考核等方面的潜在应用前景。  相似文献   

17.
Protection against malaria can be achieved by induction of a strong CD8+ T‐cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long‐lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8+ T‐cell response and sterile protection, which is short‐lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite‐specific antibodies that showed protective capacity. The numbers of CSP‐specific CD8+ T cells were not substantially enhanced by sporozoite infections; however, CSP‐specific memory CD8+ T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized‐only mice. CD4+ T cells contributed to protection as well; but CD8+ memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8+ effector‐memory T cells with increased cytotoxic activity as well as CD4+ memory T cells and neutralizing antibodies.  相似文献   

18.
19.
Cutaneous leishmaniasis produces open sores that lead to scarring and disfiguration. We have reported that vaccination of C57BL/6 mice with live Leishmania major plus CpG DNA (Lm/CpG) prevents lesion development and provides long‐term immunity. Our current study aims to characterize the components of the adaptive immune response that are unique to Lm/CpG. We find that this vaccine enhances the proliferation of CD4+ Th17 cells, which contrasts with the highly polarized Th1 response caused by L. major alone; the Th17 response is dependent upon release of vaccine‐induced IL‐6. Neutralization of IFN‐γ and, in particular, IL‐17 caused increased parasite burdens in Lm/CpG‐vaccinated mice. IL‐17R‐deficient Lm/CpG‐vaccinated mice develop lesions, and display decreased IL‐17 and IFN‐γ, despite normal IL‐12, production. Neutrophil accumulation is also decreased in the IL‐17R‐deficient Lm/CpG‐vaccinated mice but Treg numbers are augmented. Our data demonstrate that activation of immune cells through CpG DNA, in the presence of live L. major, causes the specific induction of Th17 cells, which enhances the development of a protective cellular immunity against the parasite. Our study also demonstrates that vaccines combining live pathogens with immunomodulatory molecules may strikingly modify the natural immune response to infection in an alternative manner to that induced by killed or subunit vaccines.  相似文献   

20.
The gene encoding a protective protein antigen of the gram-positive bacterium Erysipelothrix rhusiopathiae, an important veterinary pathogen responsible for erysipelas in swine and a variety of diseases in animals, was cloned and sequenced. The gene encodes a polypeptide of 597 amino acids plus a putative signal sequence of 29 amino acids, resulting in a mature protein with a molecular mass of 69,017 Da. Sequence analysis of the gene product revealed a C-terminal region composed of nine tandem repeats of 20 amino acids and a total sequence that is nearly identical to that of the 64-kDa cell surface protein (SpaA) of the bacterium. Because of this similarity, the protein was designated SpaA.1. In this study, we examined whether the SpaA.1 protein could induce protective antibodies and whether we could identify the region involved in protective immunity. Both the mature SpaA.1 protein and its C-terminal repeat region, but not the N-terminal segment, were expressed in Escherichia coli and purified as a histidine-tagged fusion recombinant protein. Rabbit antiserum raised against the mature SpaA.1 protein passively protected mice from lethal challenge with a virulent homologous strain, Fujisawa-SmR, suggesting that protection is mediated by humoral antibodies. To determine which domain of the SpaA.1 protein is responsible for the observed protection, mice were actively immunized with either the mature SpaA. 1 protein or the C-terminal repeat region and then challenged with Fujisawa-SmR. The result showed that mice immunized with the mature SpaA.1 protein, but not the C-terminal repeat region, were protected, suggesting that the protection-eliciting epitope(s) is located within the N-terminal two-thirds of the SpaA.1 molecule. This was confirmed by passive immunization experiments in which the protective activity of rabbit antiserum, raised against mature SpaA. 1 protein, was not abolished by absorption with the purified recombinant C-terminal repeat region. In addition, antibodies specific for the C-terminal repeat region were unable to protect mice from lethal challenge. These results show that the N-terminal two-thirds of the SpaA.1 molecule may constitute a good vaccine candidate against erysipelas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号