首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2023,41(31):4497-4507
As congenital cytomegalovirus (CMV) infections are the leading non-genetic cause of sensorineural hearing loss and significant neurological disabilities in children, the development of CMV vaccines should be given the highest public health priority. Although MF59-adjuvanted glycoprotein B (gB) vaccine (gB/MF59) is safe and immunogenic, its efficacy in terms of protection from natural infection was around 50 % in clinical trials. Although gB/MF59 induced high antibody titers, anti-gB antibodies contributed little to the neutralization of infection. Recent studies have found that non-neutralizing functions, including antibody-dependent phagocytosis of virions and virus-infected cells, are likely to play important roles in pathogenesis and vaccine design. Previously, we isolated human monoclonal antibodies (MAbs) that reacted with the trimeric form of gB ectodomain and found that preferential epitopes for neutralization were present on Domains (Doms) I and II of gB, while there were abundant non-neutralizing antibodies targeting Dom IV. In this study, we analyzed the phagocytosis activities of these MAbs and found the following: 1) MAbs effective for phagocytosis of the virions targeted Doms I and II, 2) the MAbs effective for phagocytosis of the virions and those of virus-infected cells were generally distinct, and 3) the antibody-dependent phagocytosis showed little correlation with neutralizing activities. Taking account of the frequency and levels of neutralization and phagocytosis, incorporation of the epitopes on Doms I and II into developing vaccines is considered desirable for the prevention of viremia.  相似文献   

2.
《Vaccine》2015,33(51):7328-7336
A vaccine to prevent congenital cytomegalovirus (CMV) infections is a national priority. Investigational vaccines have targeted the viral glycoprotein B (gB) as an inducer of neutralizing antibodies and phosphoprotein 65 (pp65) as an inducer of cytotoxic T cells. Antibodies to gB neutralize CMV entry into all cell types but their potency is low compared to antibodies that block epithelial cell entry through targeting the pentameric complex (gH/gL/UL128/UL130/UL131). Hence, more potent overall neutralizing responses may result from a vaccine that combines gB with pentameric complex-derived antigens. To assess the ability of pentameric complex subunits to generate epithelial entry neutralizing antibodies, DNA vaccines encoding UL128, UL130, and/or UL131 were formulated with Vaxfectin®, an adjuvant that enhances antibody responses to DNA vaccines. Mice were immunized with individual DNA vaccines or with pair-wise or trivalent combinations. Only the UL130 vaccine induced epithelial entry neutralizing antibodies and no synergy was observed from bi- or trivalent combinations. In rabbits the UL130 vaccine again induced epithelial entry neutralizing antibodies while UL128 or UL131 vaccines did not. To evaluate compatibility of the UL130 vaccine with DNA vaccines encoding gB or pp65, mono-, bi-, or trivalent combinations were evaluated. Fibroblast and epithelial entry neutralizing titers did not differ between rabbits immunized with gB alone vs. gB/UL130, gB/pp65, or gB/UL130/pp65 combinations, indicating a lack of antagonism from coadministration of DNA vaccines. Importantly, gB-induced epithelial entry neutralizing titers were substantially higher than activities induced by UL130, and both fibroblast and epithelial entry neutralizing titers induced by gB alone as well as gB/pp65 or gB/UL130/pp65 combinations were comparable to those observed in sera from humans with naturally-acquired CMV infections. These findings support further development of Vaxfectin®-formulated gB-expressing DNA vaccine for prevention of congenital CMV infections.  相似文献   

3.
Congenital infection of human cytomegalovirus (HCMV) is the leading cause of childhood hearing loss and mental retardation. Unfortunately, a preventive vaccine remains elusive. Two strategies have been employed to develop HCMV vaccines, including (1) attenuating HCMV to generate modified virus vaccines and (2) isolating subunit viral antigen(s) to create individual antigen vaccines. The most studied candidate in each category is live attenuated Towne virus and recombinant gB/MF59 vaccine, respectively. Although both were moderately efficacious, neither could induce the durable, robust humoral and cellular immunity commonly seen in HCMV seropositive subjects. In addition, both vaccines failed to induce neutralizing antibodies against viral infection of endothelial cells, epithelial cells and leukocytes. This review summarizes the recent understanding of host natural immunity to HCMV, including the importance of antibodies targeting HCMV epithelial tropism, and discusses its implications for vaccine design. We also highlight some recent key discoveries that may lead to the development of an effective HCMV vaccine.  相似文献   

4.
《Vaccine》2018,36(12):1689-1699
A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.  相似文献   

5.
Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Currently, modified live ILTV vaccines are used to control ILT infections. However, the live ILTV vaccines can revert to virulence after bird-to-bird passage and are capable of establishing latent infections, suggesting the need to develop safer vaccines against ILT. We have evaluated the role of three major ILTV surface glycoproteins, namely, gB, gC, and gD in protection and immunity against ILTV infection in chickens. Using reverse genetics approach, three recombinant Newcastle disease viruses (rNDVs) designated rNDV gB, rNDV gC, and rNDV gD were generated, each expressing gB, gC, and gD, respectively, of ILTV. Chickens received two immunizations with rNDVs alone (gB, gC, and gD) or in combination (gB + gC, gB + gD, gC + gD, and gB + gC + gD). Immunization with rNDV gD induced detectable levels of neutralizing antibodies with the magnitude of response greater than the rest of the experimental groups including those vaccinated with commercially available vaccines. The birds immunized with rNDV gD showed complete protection against virulent ILTV challenge. The birds immunized with rNDV gC alone or multivalent vaccines consisting of combination of rNDVs displayed partial protection with minimal disease and reduced replication of challenge virus in trachea. Immunization with rNDV gB neither reduced the severity of the disease nor the replication of challenge virus in trachea. The superior protective efficacy of rNDV gD vaccine compared to rNDV gB or rNDV gC vaccine was attributed to the higher levels of envelope incorporation and infected cell surface expression of gD than gB or gC. Our results suggest that rNDV expressing gD is a safe and effective bivalent vaccine against NDV and ILTV.  相似文献   

6.
Cui X  Meza BP  Adler SP  McVoy MA 《Vaccine》2008,26(45):5760-5766
Antibodies that neutralize cytomegalovirus (CMV) entry into fibroblasts are predominantly directed against epitopes within virion glycoproteins that are required for attachment and entry. However, the mechanism of CMV entry into epithelial and endothelial cells differs from fibroblast entry. Using assays that simultaneously measured neutralizing activities against CMV entry into fibroblasts and epithelial cells, we found that human immune sera and CMV-hyperimmuneglobulins have on on average 48-fold higher neutralizing activities against epithelial cell entry compared to fibroblast entry, suggesting that natural CMV infections elicit neutralizing antibodies that are epithelial entry-specific. This activity could not be adsorbed with recombinant gB. The Towne vaccine and the gB/MF59 subunit vaccine induced epithelial entry-specific neutralizing activities that were on on average 28-fold (Towne) or 15-fold (gB/MF59) lower than those observed following natural infection. These results suggest that CMV vaccine efficacy may be enhanced by the induction of epithelial entry-specific neutralizing antibodies.  相似文献   

7.
Possible correlations have been proposed between autoimmune diseases, such as systemic lupus erythematosus (SLE), and infection with human cytomegalovirus (CMV). The recent observation that an adenovirus expressing the immunodominant envelope glycoprotein of CMV, glycoprotein B (gB), may be capable of inducing autoantibodies in certain mouse strains has prompted interest in exploring potential relationships between gB immunization and autoimmune disease. We examined whether a recombinant CMV gB vaccine, or a gB canarypox vectored vaccine (ALVAC-CMVgB), administered to a total of 76 CMV-seronegative subjects, was capable of inducing cross-reactive antibodies to Smith antigen (Sm), ribonucleoprotein complex (RNP), and the U1-70 kDa component of the RNP complex. Using immunofluorescence, EIA and immunoblot analyses, we failed to identify induction of autoantibodies following vaccination with gB, whether administered alone as a purified protein subunit with adjuvant, or in combination with expression in a vectored approach using a recombinant canarypox. These data reinforce the favorable safety profile of CMV gB vaccines.  相似文献   

8.
《Vaccine》2020,38(10):2340-2349
Cytomegalovirus is a leading cause of congenital disease and a vaccine is a high priority. The viral gB glycoprotein is essential for infection on all cell types. The guinea pig is the only small animal model for congenital CMV (cCMV), but requires guinea pig cytomegalovirus (GPCMV). Various GPCMV gB vaccine strategies have been investigated but not with a full length protein. Previous GPCMV gB vaccines have failed to fully protect against cCMV, with approximately 50% efficacy. In an effort to define the basis of GPCMV gB based vaccine failure, we evaluated recombinant defective Ad vectors encoding GPCMV gB full length (gBwt), or truncated protein lacking transmembrane domain (gBTMD). Both candidate vaccines evoked high anti-gB titers and neutralized virus infection on fibroblast cells but had varying weaker results on non-fibroblasts (renal epithelial and placental trophoblasts). Non-fibroblast cells are dependent upon the viral pentamer complex (PC) for endocytic pathway cell entry. In contrast, fibroblasts cells that express the viral receptor platelet derived growth factor receptor alpha (PDGFRA) to enable entry by direct cell fusion independent of the PC. Anti-gBwt sera was approximately 2-fold (renal epithelial) to 3-fold (fibroblasts) more effective at neutralizing virus compared to anti-gBTMD sera. Both gB vaccines were weakest against virus neutralization on trophoblasts. Knockout of PDGFRA cell receptor on fibroblast cells (GPKO) rendered virus dependent upon the PC pathway for cell entry and anti-gB GPCMV NA50 was more similar to epithelial cells. In a gBwt vaccine protection study, vaccination of animals significantly reduced, but did not prevent dissemination of wild type GPCMV challenge virus to target organs. Depletion of complement in vivo had limited impact on vaccine efficacy. Overall, a full length gB antigen has the potential to improve neutralizing antibody titer but fails to fully prevent virus dissemination and likely congenital infection.  相似文献   

9.
Genital herpes simplex virus (HSV) infections are common but results from vaccine trials with HSV-2 glycoprotein D (gD) have been disappointing. We therefore compared a similar HSV gD2 vaccine, to a further truncated gD2 vaccine, to a vaccine with gD2 plus gB2 and gH2/gL2 and to a vaccine with only gB2 and gH2/gL2 in a guinea pig model of genital herpes. All vaccines were administered with cationic liposome-DNA complexes (CLDC) as an adjuvant. All vaccines significantly decreased the severity of acute genital disease and vaginal virus replication compared to the placebo group. The majority of animals in all groups developed at least one episode of recurrent disease but the frequency of recurrent disease was significantly reduced by each vaccine compared to placebo. No vaccine was significantly more protective than gD2 alone for any of the parameters described above. No vaccine decreased recurrent virus shedding. When protection against acute infection of dorsal root ganglia and the spinal cord was evaluated all vaccines decreased the per cent of animal with detectable virus and the quantity of virus but again no vaccine was significantly more protective than another. Improvements in HSV-2 vaccines may require inclusion of more T cell targets, more potent adjuvants or live virus vaccines.  相似文献   

10.
《Vaccine》2020,38(42):6487-6499
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10–200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.  相似文献   

11.
《Vaccine》2015,33(32):4013-4018
Cytomegalovirus (CMV) subunit vaccine candidates include glycoprotein B (gB), and phosphoprotein ppUL83 (pp65). Using a guinea pig cytomegalovirus (GPCMV) model, this study compared immunogenicity, pregnancy outcome, and congenital viral infection following pre-pregnancy immunization with a three-dose series of modified vaccinia virus Ankara (MVA)-vectored vaccines consisting either of gB administered alone, or simultaneously with a pp65 homolog (GP83)-expressing vaccine. Vaccinated and control dams were challenged at midgestation with salivary gland-adapted GPCMV. Comparisons included ELISA and neutralizing antibody responses, maternal viral load, pup mortality, and congenital infection rates. Strikingly, ELISA and neutralization titers were significantly lower in the gB/GP83 combined vaccine group than in the gB group. However, both vaccines protected against pup mortality (63.2% in controls vs. 11.4% and 13.9% in gB and gB/GP83 combination groups, respectively; p < 0.0001). Reductions in pup viral load were noted for both vaccine groups compared to control, but preconception vaccination resulted in a significant reduction in GPCMV transmission only in the monovalent gB group (26/44, 59% v. 27/34, 79% in controls; p < 0.05). We conclude that, using the MVA platform, the addition of GP83 to a gB subunit vaccine interferes with antibody responses and diminishes protection against congenital GPCMV infection, but does not decrease protection against pup mortality.  相似文献   

12.
ST-based lipopeptide vaccine candidates were constructed in which ST was chemically synthesized and folded into the correct conformation prior to ligation to a module containing a T-helper cell epitope (T(H)) and the Toll-like receptor 2 (TLR2) agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (P2C). Two different chemistries, thioether-based and oxime-based, were then used to ligate ST to the lipidated T(H) epitope. The enterotoxic activity of synthetic ST and the ST-based lipopeptide vaccines was determined in mice followed by an evaluation of immunological efficacy. The importance of the fine detail in chemical composition used in vaccine design was demonstrated by the findings that (i) the oxime-based vaccine exhibited little or no toxicity but the thioether-based vaccine, exhibited residual toxicity in suckling mice, (ii) although each of the synthetic vaccines generated specific anti-ST antibodies, it was the low titer antibodies induced by the oxime-based vaccine that demonstrated better neutralizing activity suggesting that the chemical linkage also affects the specificity of antibodies, (iii) the geometric arrangement of ST within a vaccine can profoundly affect the specificity and biological function of the antibodies that are elicited, and (iv) the lipopeptide-based ST vaccine candidate assembled using oxime chemistry induced a better neutralizing antibody response to ST when administered by the mucosal (intranasal) route.  相似文献   

13.
《Vaccine》2018,36(45):6761-6771
Human papillomavirus (HPV) type 16 is the most common type implicated as the etiological agent that causes cervical cancer. The marketed prophylactic vaccines against HPV infection are composed of virus-like particles (VLPs) assembled from the recombinant major capsid protein L1. Elicitation of functional and neutralizing antibodies by vaccination is the mode of action by which the vaccines prevent the viral infection. In this study, a panel of murine mAbs against HPV16 L1 were generated and comprehensively characterized with respect to their mapping to the epitope spectrum on the viral capsid. These mAbs were categorized into five epitope bins by two different methods based on the pairwise cross-inhibition and competition with human polyclonal antibodies. In addition, a preliminary demonstration of the spatial relationship of the epitopes recognized by these mAbs was performed using a cross-blocking assay with a well-characterized human mAb, 26D1. Interestingly, two mAbs recognizing different epitopes were found to act synergistically in the pseudovirion-based neutralization assay (PBNA). To facilitate cross-lab and cross-study comparison, the international standard (IS) serum 05/134 was used to calibrate the mAbs as well as the human serum samples from the HPV16/18 vaccine recipients. The neutralizing mAbs, particularly those that recognizing immunodominant epitopes, would be useful in developing epitope-specific assays for monitoring the vaccine production process and for serological assessment.  相似文献   

14.
Herpes B virus (Cercopithecine herpesvirus 1) is endemic in captive macaque populations and poses a serious threat to humans who work with macaques or their tissues. A vaccine that could prevent or limit B virus infection in macaques would lessen occupational risk. To that end, a DNA vaccine plasmid expressing the B virus glycoprotein B (gB) was constructed and tested for immunogenicity in mice and macaques. Intramuscular (IM) or intradermal (ID) immunization in mice elicited antibodies to gB that were relatively stable over time and predominately of the IgG2a isotype. Five juvenile macaques were immunized by either IM+ID (n=2) or IM (n=3) routes, with two booster immunizations at 10 and 30 weeks. All five animals developed antibodies to B virus gB, with detectable neutralizing activity in the IM+ID immunized animals. These results demonstrated that DNA immunization can be used to generate an immune response against a B virus glycoprotein in uninfected macaques.  相似文献   

15.

Background

Cytomegalovirus (CMV) is the most common cause of congenital virus infection. Infection of guinea pigs with guinea pig CMV (GPCMV) can provide a useful model for the analysis of its pathogenesis as well as for the evaluation of vaccines. Although glycoprotein B (gB) vaccines have been reported to reduce the incidence and mortality of congenital infection in human clinical trials and guinea pig animal models, the mechanisms of protection remain unclear.

Methods

To understand the gB vaccine protection mechanisms, we analyzed the spread of challenged viruses in the placentas and fetuses of guinea pig dams immunized with recombinant adenoviruses expressing GPCMV gB and β-galactosidase, rAd-gB and rAd-LacZ, respectively.

Results

Mean body weight of the fetuses in the dams immunized with rAd-LacZ followed by GPCMV challenge 3 weeks after immunization was 78% of that observed for dams immunized with rAd-gB. Under conditions in which congenital infection occurred in 75% of fetuses in rAd-LacZ-immunized dams, only 13% of fetuses in rAd-gB-immunized dams were congenitally infected. The placentas were infected less frequently in the gB-immunized animals. In the placentas of the rAd-LacZ- and rAd-gB-immunized animals, CMV early antigens were detected mainly in the spongiotrophoblast layer. Focal localization of viral antigens in the spongiotrophoblast layer suggests cell-to-cell viral spread in the placenta. In spite of a similar level of antibodies against gB and avidity indices among fetuses in each gB-immunized dam, congenital infection was sometimes observed in a littermate fetus. In such infected fetuses, CMV spread to most organs.

Conclusions

Our results suggest that antibodies against gB protected against infection mainly at the interface of the placenta rather than from the placenta to the fetus. The development of strategies to block cell-to-cell viral spread in the placenta is, therefore, required for effective protection against congenital CMV infection.  相似文献   

16.
《Vaccine》2021,39(38):5358-5367
Development of a human cytomegalovirus (HCMV) vaccine is a Tier 1 priority by the National Institutes of Medicine, as HCMV is the most common congenital infection globally and most frequent infectious complication in transplant patients. Relevant preclinical non-human primate models used for testing HCMV vaccine immunogenicity are rhesus and cynomolgous monkeys. However, a complication in using these models is that species-specific CMV variants are endemic in non-human primate breeding colonies. We hypothesize that natural immunity to species-specific CMV in rhesus and cynomolgous monkeys impacts HCMV vaccine immunogenicity and may interfere with our ability to fully interpret vaccine immunogenicity. A modified mRNA vaccine encoding HCMV glycoprotein (gB) and the pentameric complex (PC) packaged in lipid nanoparticles (LNP) was delivered intramuscularly to groups of cynomolgous (n = 16, CyCMV-seropositive) and rhesus macaques (n = 24, RhCMV-seropositive). High pre-vaccination IgG binding responses to HCMV gB were present in both species, but pre-vaccination binding responses to PC were mostly present in rhesus macaques. Yet, at least a log increase in both PC and gB-specific plasma IgG levels was detected post-second HCMV mRNA vaccination in both species. Both species responded with high epithelial cell neutralizing antibody responses at 4 weeks post second HCMV mRNA vaccination, but limited fibroblast neutralizing antibodies. HCMV gB + PC mRNA/LNP vaccine also elicited IgG binding responses to cell-associated gB, an identified immune correlate of protection, in both species after the second vaccination, and there was a moderately strong direct correlation between this pre- and post-vaccination response in rhesus macaques. Based on the correlation between pre-existing and post-vaccine gB-specific binding responses in rhesus macaques, we conclude that species-specific CMV variant-specific antibody responses contribute to antibody responses to HCMV vaccination in primate models, indicating that pre-existing immunity must be taken into account in non-human primate preclinical models and will impact immunogenicity of HCMV vaccines seropositive human vaccinees.  相似文献   

17.
《Vaccine》2022,40(41):5892-5903
To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.  相似文献   

18.
Liu K  Jiang D  Zhang L  Yao Z  Chen Z  Yu S  Wang X 《Vaccine》2012,30(19):3034-3041
Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development.  相似文献   

19.
Human cytomegalovirus (HCMV) infects the majority of the global population and persists within the infected host for life; infection of healthy adults rarely leads to severe acute clinical symptoms. In contrast, HCMV is a leading infectious cause of congenital disease and a common cause of complications in transplant recipients. A vaccine to prevent HCMV disease in these populations is a widely recognized medical need. We review recent advances in our understanding of the candidate vaccine antigens and published clinical trial data for the four most recent HCMV vaccine candidates: a gB subunit adjuvanted with MF59, a DNA vaccine expressing gB and pp65, alphavirus replicon particles (VRPs) expressing gB and a pp65–IE1 fusion protein, and a pp65 peptide vaccine. The candidates are safe, although some adverse events were reported for an adjuvanted variant of the pp65 peptide vaccine. The gB/MF59 vaccine elicited strong humoral responses with limited durability. The gB/pp65 DNA vaccine elicited cellular immunity, and the pp65 peptide vaccine elicited modest cellular immunity, but only when formulated with an adjuvant. Only the VRP vaccine expressing gB and pp65–IE1 elicited both humoral and cellular immunity. The gB/MF59 vaccine showed a short-term 50% efficacy at preventing infection of seronegative women and significantly reduced viremia and need for antivirals in solid organ transplant recipients, and the gB/pp65 DNA vaccine showed signs of clinical benefit in hematopoietic stem cell transplant recipients. Importantly, the partial efficacy of the subunit and DNA vaccines is new evidence that both humoral and cellular immunity contribute to controlling HCMV-related disease. These data show the clinical feasibility of a recombinant HCMV vaccine. We discuss areas for potential improvements in the next generation of vaccine candidates.  相似文献   

20.
The transmission of cytomegalovirus (CMV) from mother to fetus can give rise to severe neurodevelopment defects in newborns. One strategy to prevent these congenital defects is prophylactic vaccination in young women. A candidate vaccine antigen is glycoprotein B (gB). This antigen is abundant on the virion surface and is a major target of neutralization responses in human infections. Here, we have evaluated in a challenge model of congenital guinea pig CMV (GPCMV) infection, GPCMV-gB vaccines formulated with the clinically relevant Adjuvant Systems AS01B and AS02V, or with Freund's adjuvant (FA). Fifty-two GPCMV-seronegative female guinea pigs were administered three vaccine doses before being mated. GPCMV-challenge was performed at Day 45 of pregnancy (of an estimated 65 day gestation). Pup mortality rates in the gB/AS01B, gB/AS02V, and gB/FA groups were 24% (8/34), 10% (4/39) and 36% (12/33), respectively, and in the unvaccinated control group was 65% (37/57). Hence, efficacies against pup mortality were estimated at 64%, 84% and 44% for gB/AS01B (p < 0.001), gB/AS02V (p < 0.001) and gB/FA (p = 0.014), respectively. Efficacies against GPCMV viremia (i.e. DNAemia, detected by PCR) were estimated at 88%, 68% and 25% for the same vaccines, respectively, but were only significant for gB/AS01B (p < 0.001), and gB/AS02V (p = 0.002). In dams with viremia, viral load was approximately 6-fold lower with vaccination than without. All vaccines were highly immunogenic after two and three doses. In light of these results and of other results of AS01-adjuvanted vaccines in clinical development, vaccine immunogenicity was further explored using human CMV-derived gB antigen adjuvanted with either AS01B or the related formulation AS01E. Both adjuvanted vaccines were highly immunogenic after two doses, in contrast to the lower immunogenicity of the unadjuvanted vaccine. In conclusion, the protective efficacy and immunogenicity of adjuvanted vaccines in this guinea pig model are supportive of investigating gB/AS01 and gB/AS02 in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号