首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different tablets containing amlodipine besylate (CAS 111470-99-6) (Vazkor 10 mg tablet as test preparation and 10 mg tablet of the originator product as reference preparation) were investigated in 18 healthy male volunteers in order to compare the bioavailability and prove the bioequivalence between both treatments after oral single dose administration. The study was performed according to an open-label, randomized, two-period cross-over design with a wash-out phase of 21 days. Blood samples for pharmacokinetic profiling were taken up to 144 h post-dose, and amlodipine plasma concentrations were determined with a validated LC-MS/MS method. Maximum plasma concentrations (Cmax) of 6,183.7 pg/ml (test) and 5,366.7 pg/ml (reference) were achieved. Areas under the plasma concentration-time curve (AUC(0-infinity)) of 267,231.0 pg x h/ml (test) and 266,061.7 ng x h/ml (reference) were calculated. The median tmax was 5.6 h (test) and 6.1 h (reference). Plasma elimination half-lives (t 1/2) were 46.46 h (test) and 45.34 h (reference). Both primary target parameters AUC(0-infinity) and Cmax were tested parametrically by analysis of variance (ANOVA); 90% confidence intervals were between 93.20%-107.16% (AUC(0-infinity) and 103.36%-123.13% (Cmax). Bioequivalence between test and reference preparation was demonstrated since for both parameters AUC and Cmax the 90% confidence intervals of the T/R-ratios of logarithmically transformed data were in the generally accepted range of 80%-125%.  相似文献   

2.
Two different oral methylprednisolone (CAS 83-43-2) formulations (Methylprednisolon-ratiopharm 8 mg tables as test preparation (T) and tablets of a reference preparation (R)) were investigated in 16 healthy volunteers in order to prove bioequivalence between these preparations. A single 8 mg oral dose was given according to a randomised two-way crossover design in the fasted state. Blood samples for determination of methylprednisolone plasma concentrations were collected at pre-defined time points up to 16 h following drug administration. A washout period of 3 days separated both treatment periods. Methylprednisolone plasma concentrations were determined by means of a validated HPLC method. Values of 342.53 ng.h/ml (test preparation) and 336.61 ng.h/ml (reference preparation) for the parameter AUC0-infinity demonstrate an nearly identical extent of drug absorption. Maximum concentrations (Cmax) of 66.58 ng/ml and 70.51 ng/ml were achieved for test and reference preparation. Time to reach maximum plasma concentration (tmax) was 2.2 h for both preparations. Cmax and AUC0-infinity-values were tested parametrically by the two one-sided t-test procedure. Bioequivalence was concluded if the 90% confidence intervals of the T/R-ratios were in the range of 80-125% for AUC0-infinity and 70-143% for Cmax. Based on the results obtained in this study, bioequivalence between Methylprednisolone ratiopharm and the reference preparation was demonstrated.  相似文献   

3.
Two different oral tetrazepam (CAS 10379-14-3) formulations (Tetrazepam-ratiopharm film-coated tablets as test preparation and tablets of a reference preparation marketed in France) were investigated in 20 healthy volunteers in order to prove bioequivalence between these preparations. A single 50 mg oral dose was given according to a randomised two-way crossover design in the fasted state. Blood samples for determination of tetrazepam plasma concentrations were collected at pre-defined time points up to 96 h following drug administration. A washout period of 14 days separated both treatment periods. Tetrazepam plasma concentrations were determined by means of a validated LC-MS/MS method. Values of 3873.08 ngh/ml (test preparation) and 3930.69 ngh/ml (reference preparation) for the parameter AUC0-infinity demonstrate an nearly identical extent of drug absorption. Maximum concentrations (Cmax) of 482.08 ng/ml and 465.14 ng/ml were achieved for test and reference preparation. Time to reach maximum plasma concentration (tmax) was 1.39 hours for both preparations. Cmax and AUC0-infinity-values were tested parametrically by an analysis of variance (ANOVA). Bioequivalence was concluded if the 90% confidence intervals of the T/R-ratios were in the range of 80%-125% for AUC0-infinity and 70%-143% for Cmax. Based on the results obtained in this study, bioequivalence between the test and the reference preparation was demonstrated.  相似文献   

4.
The relative bioavailability of a new 750 mg tablet formulation of ciprofloxacin (test formulation supplied by Dr. August Wolff GmbH and Co., Germany) was compared with that of Ciprobay tablets 750 mg (reference formulation from Bayer Vital GmbH and Co., Germany). Twenty-four healthy volunteers (12 male and 12 female) were included in this single-dose, 2-sequence, crossover randomized study. Blood samples were obtained prior to dosing and at 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 18, 24 and 30 hours after drug administration. Plasma concentrations of ciprofloxacin were determined by HPLC. No differences were found when the in vitro dissolution profiles of both formulations were compared. The pharmacokinetic parameters AUC(0-t), AUC(0-infinity), Cmax and Cmax/AUC(0-infinity) were tested for bioequivalence after log-transformation of data, and ratios of tmax were evaluated nonparametrically. The parametric analysis revealed the following mean values for the test/reference ratios (90% standard confidence intervals in parenthesis (ln-transformed data): 1.01 (0.95-1.07) for AUC(0-t), 0.99 (0.93-1.05) for AUC(0-infinity), 1.05 (0.97-1.14) for Cmax and 1.06 (0.97-1.15) for Cmax/AUC(0-infinity). The nonparametric confidence interval for tmax was 0.77-1.15. All parameters showed bioequivalence between both formulations as their confidence intervals were within the bioequivalence acceptable range of 0.80-1.25 limits; the 90% confidence interval for tmax slightly exceeded limits of bioequivalence. We conclude that both formulations show bioequivalence for both the rate and the extent of absorption.  相似文献   

5.
AIM: Two formulations of lisinopril/hydrochlorothiazide (20 mg/12.5 mg) were evaluated for bioequivalence after single dosing in healthy volunteers. METHODS: The study was conducted according to an open, randomized, 2-period crossover design with a 2-week washout interval between doses. Twenty-four volunteers participated and all completed the study successfully. Lisinopril and hydrochlorothiazide were determined in plasma by HPLC. The pharmacokinetic parameters AUC(0-t), AUC(0-infinity), Cmax and Cmax/AUC(0-infinity) were tested for bioequivalence after logarithmic transformation of data and ratios of tmax were evaluated non-parametrically. RESULTS: For lisinopril, the parametric analysis revealed the following test/reference ratios and their confidence intervals (90% CI): 1.01 (0.84-1.22) for AUC(0-t), 0.98 (0.81-1.19) for AUC(0-infinity), 1.02 (0.83-1.25) for Cmax and 1.03 (0.99-1.08) for Cmax/AUC(0-infinity). The 90% CI for tmax was 0.94-1.07. All parameters showed bioequivalence between both formulations. As for hydrochlorothiazide, test/reference ratios and their confidence intervals (90% CI) were: 1.05 (0.95-1.17), 1.02 (0.93-1.12) for AUC(0-infinity), 0.99 (0.89-1.07) for Cmax and 0.97 (0.90-1.04) for Cmax/AUC(0-infinity). The 90% CI for tmax was 1.00-1.41. All parameters showed bioequivalence between both formulations except for tmax. A discrete fall in both systolic (SBP) and diastolic (DBP) blood pressure was observed after drug administration. The time course of both parameters was similar for the 2 formulations. Heart rates also followed a similar time profile. CONCLUSIONS: The bioequivalence of the 2 formulations of lisinopril/hydrochlorothiazide was demonstrated.  相似文献   

6.
Citalopram (CAS 59729-33-8) belongs to the so-called 'second generation' antidepressant drugs and is used for the treatment of patients with major depression or other depressive disorders. In the present study, two different oral citalopram formulations (Citalopram-ratiopharm film-coated tablets as test preparation and tablets of a reference preparation distributed in Germany) were investigated in 20 healthy volunteers in order to prove bioequivalence between both preparations. A single 40 mg oral dose was administered according to an open, randomised, two-period cross-over design in the fasted state. Blood samples for determination of citalopram plasma concentrations were collected at pre-defined time points up to 168 h following drug administration. A wash-out period of 21 days separated both treatment periods. Citalopram plasma concentrations were determined by means of a validated HPLC method with fluorescence detection. Maximum plasma concentrations (Cmax), of 34.77 ng/ml (test) and 34.42 ng/ml (reference) were achieved. Areas under the plasma concentration-time curve (AUC0-infinity) of 1,719.69 ng*h/ml (test) and 1,725.71 ng*h/ml (reference) were determined. The results showed nearly identical rate and extent of drug absorption. Also further pharmacokinetic parameters were well comparable with each other. Thus, tmax showed values of 3.29 h (test) and 3.77 h (reference). The plasma elimination half-life (t1/2) was 42.50 h (test) und 44.46 h (reference). Both primary target parameters Cmax and AUC0-infinity were tested parametrically by analysis of variance (ANOVA). Bioequivalence between test and reference preparation was demonstrated since for both parameters AUC and Cmax the 90 % confidence intervals of the T/R-ratios of logarithmically transformed data were in the generally accepted range of 80 %-125 %.  相似文献   

7.
The bioavailability of a new losartan preparation (2-butyl-4-chloro-1-[p-(o-1H-tetrazol-5-ylphenyl)benzyl]imidazole-5-methanol monopotassium salt, CAS 114798-26-4) was compared with the reference preparation of the drug in 24 healthy male volunteers, aged between 19 and 32. The open, randomized, single-blind two-sequence, two-period crossover study design was performed. Under fasting conditions, each subject received a single oral dose of 100 mg losartan as a test or reference formulation. The plasma concentrations of losartan and its active metabolite were analyzed by a rapid and sensitive HPLC method with UV detection. The pharmacokinetic parameters included AUC0-36h, AUC0-infinity, Cmax, t1/2, and Ke. Values of AUC0-infinity demonstrate nearly identical bioavailability of losartan from the examined formulations. The AUC0-infinity of losartan was 2019.92+/-1002.90 and 2028.58+/-837.45 ng x h/ml for the test and reference formulation, respectively. The AUC0-infinity of the metabolite was 10851.52+/-4438.66 and 11041.18 +/-5015.81 ng x h/ml for test and reference formulation, respectively. The maximum plasma concentration (Cmax) of losartan was 745.94+/-419.75 ng/ml for the test and 745.74+/-329.99 ng/ml for the reference product and the Cmax of the metabolite was 1805.77+/-765.39 and 1606.22 +/-977.22 ng/ml for the test and reference product, respectively. No statistical differences were observed for Cmax and the area under the plasma concentration-time curve for both losartan and its active metabolite. 90 % confidence limits calculated for Cmax and AUC from zero to infinity (AUC0-infinity) of losartan and its metabolite were included in the bioequivalence range (0.8-1.25 for AUC). This study shows that the test formulation is bioequivalent to the reference formulation for losartan and its main active metabolite.  相似文献   

8.
The aim of the present study was to compare the bioavailability of ranitidine (CAS 66357-35-5) from two different ranitidine hydrochloride (CAS 66357-59-3) film tablets (Ranitab 150 mg film tablets as test preparation and 150 mg film tablets of the originator product as reference preparation). The study was conducted according to an open-label, randomised two-period cross-over design with a wash-out phase of 9 days. Blood samples for pharmacokinetic profiling were taken up to 24 h post-dose, and ranitidine plasma concentrations were determined with a validated HPLC method with UV-detection. Maximum plasma concentrations (Cmax) of 461.8 ng/ml (test) and 450.6 ng/ ml (reference) were achieved. Areas under the plasma concentration-time curve (AUC (0-infinity) of 2,488.6 ng . h/ml (test) and 2,528.8 ng . h/ml (reference) were calculated. The median tmax was 2.83 h (test) and 3.04 h (reference). Plasma elimination half-lives (t1/2) of 2.78 h (test) and 2.89 h (reference) were determined. Both primary target parameters AUC(0-infinity) and Cmax were tested parametrically by analysis of variance (ANOVA) and the 90% confidence intervals were between 91.93 %-106.98 % (AUC (0-infinity) and 92.34%-118.85% (Cmax). Bioequivalence between test and reference preparation was demonstrated since for both parameters AUC and Cmax the 90 % confidence intervals of the T/R ratios of logarithmically transformed data were in the generally accepted range of 80 %-125 %.  相似文献   

9.
The aim of the present study was to compare the bioavailability of doxycycline (CAS 564-25-0) from two different doxycycline hyclate (CAS 24390-14-5) capsules (Monodoks 100 mg capsule as test preparation and 100 mg capsule of the originator product as reference preparation) in 24 healthy male subjects. The study was conducted according to an open-label, randomised two-period cross-over design with a wash-out phase of 16 days. Blood samples for pharmacokinetic profiling were taken up to 72 h post-dose, and doxycycline plasma concentrations were determined with a validated HPLC method with UV-detection. Maximum plasma concentrations (Cmax) of 1,715.1 ng/ml (test) and 1,613.3 ng/ml (reference) were achieved. Areas under the plasma concentration-time curve (AUC(0-infinity)) of 28,586.5 ng x h/ml (test) and 29,047.5 ng x h/ml (reference) were calculated. The median tmax was 1.88 h (test) and 2.00 h (reference). Plasma elimination half-lives (t1/2) of 16.49 h (test) and 16.75 h (reference) were determined. Both primary target parameters AUC(0-infinity) and Cmax were tested parametrically by analysis of variance (ANOVA) and the 92.39 %-103.53% (AUC(0-infinity)) and 98.45%-111.74% (Cmax). Bioequivalence between test and reference preparation was demonstrated since for both parameters AUC and Cmax the 90% confidence intervals of the T/R ratios of logarithmically transformed data were in the generally accepted range of 80 0%-125%.  相似文献   

10.
The bioavailability of a new letrozole (CAS 112809-51-5) preparation was compared with the reference preparation of the drug in 25 healthy volunteers, aged between 18 and 33. A single dose of 2.5 mg was given orally in the fasted state, using a randomized two-way, cross-over protocol. A washout period of two weeks separated both treatment periods. Blood samples were obtained at regular time intervals, until 312 h after drug administration. After solid phase extraction (SPE) letrozole plasma levels were measured by high pressure liquid chromatography that was validated before the start of the study (UV detector, fluoroletrozole as an internal standard). The limit of quantification was 1.4 nmol/ml. The following pharmacokinetics parameters were calculated from letrozole plasma concentrations: AUC(0-infinity), AUC(0-t), Cmax, tmax, F(rel), MRT, t(1/2), k(el). The confidence intervals for the statistical calculations of AUC(0-infinity), Cmax, tmax were 95 % and AUC(0-t), MRT, t(1/2), k(el) were tested by means of the unpaired t-tests procedure and after logarithmic transformation for overall significant differences using analysis of variance--three-way ANOVA. The AUC(0-infinity) ratio test/reference and the 90 % confidence interval were 99.52 %, and 94.05-107.31%, respectively. The Cmax ratio test/reference and the 90 % confidence interval were 89.18 %, and 84.48-98.60%, respectively. AUC(0-infinity) and Cmax ratios (90 % CI) were within the 80-125 % interval required for bioequivalence as stipulated in the current international regulations of the European Agency for the Evalution of Medicinal Products and the Food and Drug Administration. Therefore it is concluded that the new letrozole preparation is therapeutically equivalent to the reference preparation for both the extent and the rate of absorption after single dose administration in healthy volunteers.  相似文献   

11.
A randomized, cross-over, open study of bioequivalence between two different furosemide (CAS 54-31-9) formulations was performed; simultaneously, diuretic effects (urine output, sodium, potassium and chloride excretion) were also compared. Both products meet the British Pharmacopoeia specification and the results of a previous in vitro comparative study ensure equivalence of the two dissolution curves. Twenty-four healthy volunteers (male/female) participated in the bioequivalence study. Each treatment was given as a single 40-mg tablet following an overnight fast. Furosemide concentrations in plasma (measured by HPLC) and electrolyte amounts in urine were determined up to 12 h after treatment. The pharmacokinetic parameters AUC0-infinity, Cmax and Cmax/AUC0-infinity were tested for bioequivalence after ln-transformation of data and ratios of tmax were evaluated nonparametrically. The parametric analysis revealed the following test/reference ratios and their 90% confidence intervals (90% CI): 1.06 (0.94-1.19) for AUC0-infinity, 1.12 (0.96-1.31) for Cmax, and 1.06 (0.97-1.16) for Cmax/AUC0-infinity. The 90% CI for tmax was 0.55-1.00. Bioequivalence between both formulations was concluded for all parameters except for tmax. No significant diuretic differences between both formulations (test and reference) were observed after drug administration in relation to the baseline period. Systolic and diastolic blood pressure and heart rate showed a similar time-course after the drug administration and there were no differences between both formulations. Both products were well tolerated. It can be concluded that both formulations are equivalent in vitro and in vivo.  相似文献   

12.
The relative bioavailability of different prednisolone (CAS 50-24-8) tablet formulations (Prednisolon Ferring 2, 5, and 20 mg) was investigated in comparison to a reference formulation. The study was performed in a GCP/ICH-conform manner using a randomized cross-over design in 13 healthy volunteers. With respect to the pharmacokinetic parameters Cmax (maximal prednisolone concentration), AUC0-12 h (area under the concentration-time curve until 12 h after drug intake), AUC0-infinity (area under the concentration-time curve until infinity), and t1/2 (elimination half-life time), 10 x 2 mg prednisolone tablets did not show any relevant differences as compared to the reference (1 x 20 mg) meaning that the 90% confidence intervals were within the given 0.80-1.25 limits for the decision of bioequivalence. Although not statistically significant, tmax (time to reach the maximal prednisolone plasma concentration) was 11 min shorter regarding the test preparation as compared to the reference. The pharmacokinetic parameters of 4 x 5 prednisolone tablets were also well in accordance with the reference. The most important parameters Cmax, AUC and t1/2 were within the defined limits for the acceptance of bioequivalence and, in addition, tmax did not show any significant differences. The 20 mg prednisolone tablet formulation showed almost identical parameters of Cmax, AUC, t1/2 und tmax in comparison to the reference substance. Taken together, the results of the bioavailability parameters indicate the bioequivalence of the three prednisolone test preparations as compared to the reference.  相似文献   

13.
The bioavailability of a new cefixime ((6R,7R)-7-[(Z)-2-(2-amino-4-thiazolyl)-2-(carboxymethoxyimino) acetamido]-8-oxo-3-vinyl-5-thia-1-azabicyclo-[4,2,0]-oct-2-ene-2-carboxylic acid, CAS 79350-37-1) tablet preparation (Loprax) was compared with that of a reference preparation of the drug in 24 healthy male volunteers. The trial was designed as an open, randomized, single-blind, two-sequence, two-period crossover study. Under fasting conditions, each subject received a single oral dose of 400 mg cefixime tablet as a test or reference formulation on 2 treatment days. The treatment periods were separated by a one-week washout period. The plasma concentrations of the drug were analyzed by a rapid and sensitive HPLC method with UV detection. The pharmacokinetic parameters included AUC0-24h, AUC0-infinity, Cmax, t1/2, and Ke. The mean AUC0-infinity of cefixime was 45008.7 +/- 10989.9 and 45221.3 +/- 2155.7 n x h/ml for the test and reference formulation, respectively. The maximum plasma concentration (Cmax) of cefixime was on average 4746.9 +/- 1284 ng/ml for the test and 4726.3 +/- 1206.9 ng/ml for the reference product. No statistical differences were observed for Cmax and the area under the plasma concentration-time curve for test and reference tablets. The calculated 90% confidence intervals based on the ANOVA analysis for the mean test/reference ratios of Cmax, AUC0-infinity and AUC0-24h of cefixime were in the bioequivalence range (94%-112%). Therefore, the two formulations were considered to be bioequivalent.  相似文献   

14.
Hypericins, hyperforin and flavonoids are discussed as the main components contributing to the antidepressant action of St. John's wort (Hypericum perforatum). Therefore, the objective of the two open phase I clinical trials was to obtain pharmacokinetic data of these constituents from a hypericum extract containing tablet: hypericin, pseudohypericin, hyperforin, the flavonoid aglycone quercetin, and its methylated form isorhamnetin. Each trial included 18 healthy male volunteers who received the test preparation, containing 900 mg dry extract of St John's wort (STW 3-VI, Laif 900), either as a single oral dose or as a multiple once daily dose over a period of 14 days. Concentration/time curves were determined for the five constituents, for 48 h after single dosing and for 24 h on day 14 at the end of 2 weeks of continuous daily dosing. After single dose intake, the key pharmacokinetic parameters were determined as follows: Hypericin: Area under the curve (AUC(0-infinity)) = 78.33 h x ng/ml, maximum plasma concentration (Cmax) = 3.8 ng/ml, time to reach Cmax (tmax) = 7.9 h, and elimination half-life (t1/2) = 18.71 h; pseudohypericin: AUC(0-infinity) = 97.28 h x ng/ml, Cmax = 10.2 ng/ml, tmax = 2.7 h, t1/2 = 17.19 h; hyperforin: AUC(0-infinity) = 1550.4 h x ng/ml, Cmax = 122.0 ng/ml, tmax = 4.5 h, t1/2 = 17.47 h. Quercetin and isorhamnetin showed two peaks of maximum plasma concentration separated by about 3-3.5 h. Quercetin: AUC(0-infinity) = 417.38 h x ng/ml, Cmax (1) = 89.5 ng/ml, tmax (1) = 1.0 h, Cma (2) = 79.1 ng/ml, tmax (2) = 4.4 h, t1/2 = 2.6 h; isorhamnetin: AUC(0-infinity) = 155.72 h x ng/ml, Cmax (1) = 12.5 ng/ml, tmax (1) = 1.4 h, Cmax (2) = 14.6 ng/ml, tmax (2) = 4.5 h, t1/2 = 5.61 h. Under steady state conditions reached during multiple dose administration similar results were obtained. Further pharmacokinetic characteristics calculated from the obtained data were the mean residence time (MRT), the lag-time, the peak-trough fluctuation (PTF), the lowest observed plasma concentration (Cmin), and the average plasma concentration (Cav). The data obtained for the five consitituents generally corresponded well with values previously published. The trial preparation was well tolerated.  相似文献   

15.
This investigation was carried out to evaluate the bioavailability of a new capsule formulation of doxycycline (100 mg), doxycin, relative to the reference product, vibramycin (100 mg) capsules. The bioavailability was carried out in 24 healthy male volunteers who received a single dose (100 mg) of the test (A) and the reference (B) products after an overnight fast of at least 10 hours on 2 treatment days. The treatment periods were separated by a 2-week washout period. A randomized, balanced 2-way cross-over design was used. After dosing, serial blood samples were collected for a period of 48 hours. Plasma concentrations of doxycycline were analyzed by a sensitive and validated high-performance liquid chromatography assay. The pharmacokinetic parameters for doxycycline were determined using standard noncompartmental methods. The parameters AUC(0-t), AUC(0-infinity), Cmax, K(el), t(1/2) and Cmax/AUC(0-infinity) were analyzed statistically using log-transformed data. The time to maximum concentration (tmax) was analyzed using raw data. The parametric 90% confidence intervals of the mean values of the pharmacokinetic parameters: AUC(0-t), AUC(0-infinity), Cmax and Cmax/AUC(0-infinity) were within the range 80-125% which is acceptable for bioequivalence (using log-transformed data). The calculated 90% confidence intervals based on the ANOVA analysis of the mean test/reference ratios of AUC(0-t), AUC(0-infinity), Cmax and Cmax/AUC(0-infinity) were 95.98-109.56%, 92.21 to 107.66%, 93.90-112.56%, and 96.0 to 106.91% respectively. The test formulation was found bioequivalent to the reference formulation with regard to AUC(0-t), AUC(0-infinity), Cmax and Cmax/AUC(0-infinity) by the Schuirmann's two 1-sided t-tests. Therefore, the 2 formulations were considered to be bioequivalent.  相似文献   

16.
AIM: To estimate the bioavailability and evaluate bioequivalence of a single dose of a dexibuprofen tablet (test formulation, containing dexibuprofen 400 mg, manufactured by Emcure Pharmaceuticals Ltd., Pune, India) and to compare it with that of a single dose of a Seractil tablet (reference formulation, containing dexibuprofen 400 mg, manufactured by Genus Pharmaceuticals, Bershire, UK) under fasting conditions. SUBJECTS AND METHODS: Using a two-treatment, two-period, two-sequence, randomized crossover design, test and reference formulations were administered as individual single doses to 24 healthy adult Asian male subjects of Indian origin under non-fed conditions, with 4 days washout period between dosing. 17 blood samples were drawn from each subject over a 12-hour period. Pharmacokinetic parameters, Cmax, AUC0-t, AUC0-infinity and Cmax/AUC0-infinity were calculated from the plasma concentration-time data of each individual and during each period by applying non-compartmental analysis. Analysis of variance was carried out using logarithmically transformed and non-transformed values of the stated pharmacokinetic parameters. Data for test and reference formulations were analyzed statistically to test for bioequivalence of the two formulations. RESULTS: All 24 subjects who received the two formulations on two occasions with a washout period of 4 days, completed the study and provided an adequate amount of blood at each sampling point. After oral administration the values of Cmax (microg/ml), tmax (h), AUC0-t (microg/ml x h), AUC0-infinity (microg/ml x h) for reference and test formulations were 23.501 and 22.948, 1.156 and 1.281, 69.795 and 68.455, and 72.454 and 70.208, respectively. ANOVA and CI test showed no significant (p > 0.05) variation in these pharmacokinetic parameters of test and reference formulations. When the AUC0-t values for both formulations for non-transformed and log-transformed data were compared, the test formulation showed a bioavailability of 98.08% and 99.56%, respectively, as compared to reference formulation. These values are within the acceptance limit of 80 - 120%. No adverse events were observed in any of the subjects during the two runs of the study. Both clinical and laboratory parameters of all subjects showed no clinically significant changes. CONCLUSION: The test formulation containing dexibuprofen 400 mg (manufactured by Emcure Pharmaceuticals Ltd., Pune, India) was bioequivalent to reference formulation (Seractil, manufactured by Genus Pharmaceuticals, Berkshire, UK). Both formulations were well tolerated. The test formulation can be considered a pharmaceutically and therapeutically equivalent alternative to Seractil.  相似文献   

17.
This investigation was carried out to evaluate the bioavailability of a new suspension formulation of cefixime (100 mg/5 ml), Winex, relative to the reference product, Suprax (100 mg/5 ml) suspension. The bio-availability study was carried out in 24 healthy male volunteers who received a single oral dose (200 mg) of the test (A) and the reference (B) products on 2 treatment days after an overnight fast of at least 10 hours. The treatment periods were separated by a one-week washout period. A randomized, balanced two-way crossover design was used. After dosing, serial blood samples were collected over a period of 16 hours. Plasma concentrations of cefixime were analyzed using a sensitive high-performance liquid chromatographic assay. The pharmacokinetic parameters for cefixime were determined using standard non-compartmental method. The parameters AUC(0-t), AUC(0-infinity), Cmax, Kel, t1/2 and Cmax/AUC(0-infinity) were analyzed statistically using raw and log-transformed data. The time to maximum concentration (tmax) was analyzed using raw data. The parametric 90% confidence intervals of the mean values of the pnfinity harmacokinetic parameters: AUC(0-t), AUC(0-infinity) Cmax, and Cmax/AUC(0-infinity) were within the range 80 - 125% which is acceptable for bioequivalence (using log-transformed data). The calculated 90% confidence intervals based on the ANOVA analysis for the mean test/reference ratios of AUC(0-t), AUC(0-infinity), Cmax, and Cmax/AUC(0-infinity) were 88.93 - 107.10%, 89.09 - 107.11%, 89.63 - 108.58% and 96.85 - 105.29%, respectively. The test formulation was found bioequivalent to the reference formulation with regard to AUC(0-t), AUC(0-infinity), and Cmax using the Schuirmann's two one-sided t-tests. Therefore, the two formulations were considered to be bioequivalent.  相似文献   

18.
OBJECTIVE: A study was conducted to assess the bioequivalence of two limaprost alfadex 5 microg tablets, a moisture-resistant tablet (dextran formulation) and a standard tablet (lactose formulation). MATERIALS AND METHODS: The clinical investigation was designed as a randomized, open-labeled, two-part, two-treatment, two-period crossover study, in 120 healthy male volunteers. One tablet of either formulation was administered with 200 ml of water after 10-hour overnight fast. After dosing, serial blood samples were collected for a period of 6 hours. Plasma harvested from blood was analyzed for limaprost by a validated LC/MS/MS method. The peak plasma concentration (Cmax) values and time associated with the maximal concentration (tmax) were obtained from the observed data. The elimination rate constant (lambda z) was obtained as the slope of the linear regression of the log-transformed concentration values vs. time data in the terminal phase, and the elimination half-life (t1/2) was calculated as 0.693/lambda z. The area under the curve to the last measurable point (AUC0-t) was estimated by the linear trapezoidal rule. The analysis of variance (ANOVA) was carried out using log-transformed AUC0-t, AUC0-A yen and Cmax and untransformed tmax, and 90% confidence intervals for AUC0-t and Cmax were calculated. If the 90% confidence intervals (CI) for both AUC0-t and Cmax fell fully within the interval 80 - 125%, the bioequivalence of the two formulations was established. RESULTS: The means of AUC0-t were 0.779 vs. 0.754 pg x h/ml (test vs. reference), and the means of the Cmax were 1.26 vs. 1.12 pg/ml (test vs. reference). The geometric mean ratios of the test formulation to reference formulation for AUC0-t and Cmax were 104.0 and 112.4%, respectively, and the 90% CI for AUC0-t and Cmax were 100.7 - 107.4% and 105.6 - 119.6%, respectively. Both 90% CI for AUC0-t and Cmax fell within the Ministry of Health, Labour and Welfare of Japan accepted bioequivalence range of 80 - 125%. CONCLUSIONS: Based on the results, the moisture-resistant tablet was determined to be bioequivalent to the standard tablet.  相似文献   

19.
A randomised, cross-over, open study of bioequivalence between two different atenolol (CAS 29122-68-7) tablet formulations is presented. An in vitro comparative study between the two formulations was also performed. Both products meet the USP 23 (United States Pharmacopea) specification. The values of similarity factor (f2) and difference factor (f1) obtained ensure sameness or equivalence of the two dissolution curves. Twenty-four healthy volunteers (male/female) participated in the bioequivalence study. Each treatment was given as a single 100-mg tablet following an overnight fast. Atenolol concentrations in plasma were determined up to 30 h after treatment by HPLC. The pharmacokinetic parameters AUC0-infinity, Cmax and Cmax/AUC0-infinity were tested for bioequivalence after logarithmic transformation of data and ratios of tmax were evaluated nonparametrically. The parametric analysis revealed the following test/reference ratios and their 90% confidence intervals (90% CI): 1.06 (0.99-1.13) for AUC, 1.07 (0.97-1.18) for Cmax, and 0.99 (0.94-1.07) for Cmax/AUC0-infinity. The 90% CI for tmax was 0.91-1.23. All parameters showed bioequivalence between both formulations. A discrete fall in both systolic (SBP) and diastolic (DBP) blood pressure was observed after the drug administration. The fall extent (approximately 11 mmHg in supine position) and the time course of both parameters after the drug administration was similar for both formulations. Minimal values for SBP and DBP were achieved at 6 h after the drug administration for both formulations. Heart rates were also reduced after the administration of both formulations of atenolol in a similar extent (12 b.p.m.) and following a similar time profile (i.e. maximal reductions were observed between 1 and 3 h after the drug administration). It can be concluded that both formulations are equivalent in vitro and in vivo.  相似文献   

20.
Two different finasteride (CAS 98319-26-7) tablet formulations were evaluated for their relative bioavailability (Flaxin tablets 5 mg, as the test formulation vs reference formulation, tablets 5 mg) in 23 healthy male volunteers who received a single 5 mg oral dose of each preparation. The study was open, randomized with a two-period crossover design and a 7-day washout period. Plasma samples were obtained over a 48-h interval. The finasteride concentrations were determined by high-pressure liquid chromatography (HPLC) coupled to tandem mass spectrometry (LC-MS-MS). The analytical method developed has a limit of quantitation (LOQ) of 0.50 ng/ml in plasma. For the quality control the measured concentration was 2.05 +/- 0.14 ng/ml (mean +/- SD, n = 30) with a precision of 6.9% and an accuracy of 2.55% at a concentration of the starting solution of 2.00 ng/ml, while with 20.00 ng/ml starting solution the measured concentrations were 20 +/- 0.80 ng/ml (n = 30) with a precision of 3.81% and an accuracy of 0.09%. From the plasma finasteride concentration vs time curves the following pharmacokinetics parameters were obtained: AUC0-48, AUC0-infinity, Cmax, Cmax/AUC0-48, Ke, elimination half-life and tmax. Geometric mean test/reference formulations individual percent ratio was 95.71 for AUC0-48 h and 88.70% for Cmax. The 90% confidence interval for the geometric mean of the individual ratio test/reference formulations was 95.70-120.20% for AUC0-48 h, 94.60-121.30 for AUC0-infinity and 88.70-108% for Cmax. Since for both Cmax or AUC the 90% Cl values are within the interval proposed by the Food and Drug Administration, the test formulation is bioequivalent to the reference formulation for both the rate and extent of absorption after single dose administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号