首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomson LM  Zeng J  Terman GW 《Neuroscience》2006,141(3):1489-1501
Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR-mediated excitatory postsynaptic current in modulating nociceptive transmission within the spinal cord is discussed.  相似文献   

2.
The development of glutamatergic synapses involves a sequence of events that are still not well understood. We have studied the time course of the development of glutamatergic synapses in cultured spinal neurons by characterizing spontaneous synaptic currents recorded from cells maintained in vitro for different times. At short times in culture (2 days in vitro; DIV2), spontaneous synaptic activity consisted almost solely of N-methyl-D-aspartate (NMDA) receptor (NMDAR) openings. In contrast, older neurons (DIV5 to DIV8) displayed clear alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated synaptic currents, while the NMDAR-mediated activity remained small. Between 8 and 14 days in vitro there was a large increase in the density of synaptically activated NMDARs, although there was no significant increase in the density of the NMDAR-mediated current activated by exogenous glutamate. The results indicate that there is a switch in NMDAR targeting from somatic to synaptic regions during the course of the second in vitro week. Finally, our results support the conclusion that the spontaneous synaptic activity displayed in culture depends on ongoing NMDAR-mediated activity, even when the expression of synaptic NMDARs is low.  相似文献   

3.
This study evaluated the role of glutamate ionotropic receptors on the control of [3H]acetylcholine ([3H]ACh) release by the intrinsic striatal cholinergic cells. [3H]-choline previously taken up by chopped striatal tissue and converted to [3H]ACh, was released under stimulation by glutamate, N-methyl-d-aspartate (NMDA), kainate and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Experiments were conducted in the absence of choline uptake inhibitors or acetylcholinesterase inhibitors. A paradigm of two stimulations was employed, the first in control conditions and the second after 9 min of perfusion with the test agents MK-801, 2-amino-5-phosphonopentanoic acid (AP-5), tetrodotoxin (TTX), 6,7-dinitroquinoxaline-2,3-dione (DNQX), 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]quinoxaline-7-sulfonamide (NBQX), glycine and magnesium. Our results support that (1) in the absence of Mg2+, NMDA is the most effective agonist to stimulate [3H]ACh release from striatal slices (2) magnesium effectively antagonized kainate and AMPA stimulation suggesting that at least part of the kainate and AMPA effects might be attributed to glutamate release (3) besides NMDA, kainate receptors showed a more direct involvement in [3H]ACh release control based on the smaller dependence on Mg2+ and less inhibition by TTX and (4) stimulation of ionotropic glutamate receptors may induce long lasting biochemical changes in receptor/ion channel function since the effects of TTX and/or Mg2+ ions on [3H]ACh release were modified by previous exposure of the tissue to agonists.  相似文献   

4.
Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded under Whole-cell voltage clamp from carp type 1 horizontal cells (H1 cells) uncoupled by dopamine in retinal slices. Red light steps, which hyperpolarise cones and reduce glutamate release, induced outward current responses accompanied by a suppression of sEPSCs. sEPSCs decayed exponentially with a mean time constant of 0.71+/-0.07 ms and had a reversal potential near 0 mV. Power spectral analysis of sEPSCs revealed a similar decay time constant. They were suppressed by a non-NMDA receptor antagonist, CNQX at 10 microM, and a relatively specific AMPA receptor antagonist, GYKI52466 at 20 microM. The presence of sEPSCs suggests that the release of glutamate from cone synaptic terminals is vesicular. The reduction in mean sEPSC frequency with red light was not accompanied by a significant change in the mean sEPSC conductance increase (482+/-59 pS), suggesting that a decrease in the vesicular release rate from cones does not alter the vesicular glutamate concentration (quantal contents). The results suggest that the spontaneous events in H1 cells were contributed by non-NMDA (possibly AMPA) type glutamate receptors modulated by the red cone input.  相似文献   

5.
Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of -70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of approximately 3.5 Hz and an average maximal amplitude of approximately 120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by approximately 17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.  相似文献   

6.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons from rat PFC slices showed that stimulation of local afferents (in 2 microM bicuculline) evoked mixed [AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors] glutamate receptor-mediated excitatory postsynaptic potentials (EPSPs). Clozapine (1 microM) potentiated polysynaptically mediated evoked EPSPs (V(Hold) = -65 mV), or reversed EPSPs (rEPSP, V(Hold) = +20 mV) for >30 min. The potentiated EPSPs or rEPSPs were attenuated by elevating [Ca(2+)](O) (7 mM), by application of NMDA receptor antagonist 2-amino5-phosphonovaleric acid (50 microM), or by pretreatment with dopamine D1/D5 receptor antagonist SCH23390 (1 microM) but could be further enhanced by a dopamine reuptake inhibitor bupropion (1 microM). Clozapine had no significant effect on pharmacologically isolated evoked NMDA-rEPSP or AMPA-rEPSPs but increased spontaneous EPSPs without changing the steady-state resting membrane potential. Under voltage clamp, clozapine (1 microM) enhanced the frequency, and the number of low-amplitude (5-10 pA) AMPA receptor-mediated spontaneous EPSCs, while there was no such changes with the mini-EPSCs (in 1 microM TTX). Taken together these data suggest that acute clozapine can increase spike-dependent presynaptic release of glutamate and dopamine. The glutamate stimulates distal dendritic AMPA receptors to increase spontaneous EPSCs and enabled a voltage-dependent activation of neuronal NMDA receptors. The dopamine released stimulates postsynaptic D1 receptor to modulate a lasting potentiation of the NMDA receptor component of the glutamatergic synaptic responses in the PFC neuronal network. This sequence of early synaptic events induced by acute clozapine may comprise part of the activity that leads to later cognitive improvement in schizophrenia.  相似文献   

7.
Although astrocytes are the most abundant cell type in the brain, evidence for their activation during physiological sensory activity is lacking. Here we show that whisker stimulation evokes increases in astrocytic cytosolic calcium (Ca(2+)) within the barrel cortex of adult mice. Increases in astrocytic Ca(2+) were a function of the frequency of stimulation, occurred within several seconds and were inhibited by metabotropic glutamate receptor antagonists. To distinguish between synaptic input and output, local synaptic activity in cortical layer 2 was silenced by iontophoresis of AMPA and NMDA receptor antagonists. The antagonists did not reduce astrocytic Ca(2+) responses despite a marked reduction in excitatory postsynaptic currents in response to whisker stimulation. These findings indicate that astrocytes respond to synaptic input, by means of spillover or ectopic release of glutamate, and that increases in astrocytic Ca(2+) occur independently of postsynaptic excitatory activity.  相似文献   

8.
Neurons of the central nervous system (CNS) exhibit a variety of forms of synaptic plasticity, including associative long-term potentiation and depression (LTP/D), homeostatic activity-dependent scaling and distance-dependent scaling. Regulation of synaptic neurotransmitter receptors is currently thought to be a common mechanism amongst many of these forms of plasticity. In fact, glutamate receptor 1 (GluR1 or GluRA) subunits containing L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors have been shown to be required for several forms of hippocampal LTP and a particular hippocampal-dependent learning task. Because of this importance in associative plasticity, we sought to examine the role of these receptors in other forms of synaptic plasticity in the hippocampus. To do so, we recorded from the apical dendrites of hippocampal CA1 pyramidal neurons in mice lacking the GluR1 subunit (GluR1 −/−). Here we report data from outside-out patches that indicate GluR1-containing receptors are essential to the extrasynaptic population of AMPA receptors, as this pool was nearly empty in the GluR1 −/− mice. Additionally, these receptors appear to be a significant component of the synaptic glutamate receptor pool because the amplitude of spontaneous synaptic currents recorded at the site of input and synaptic AMPA receptor currents evoked by focal glutamate uncaging were both substantially reduced in these mice. Interestingly, the impact on synaptic weight was greatest at distant synapses such that the normal distance-dependent synaptic scaling used by these cells to counter dendritic attenuation was lacking in GluR1 −/− mice. Together the data suggest that the highly regulated movement of GluR1-containing AMPA receptors between extrasynaptic and synaptic receptor pools is critically involved in establishing two functionally diverse forms of synaptic plasticity: LTP and distance-dependent scaling.  相似文献   

9.
The development and function of the vertebrate neuromuscular junction (NMJ) is continually being redefined. Previous studies have indicated that glutamate may play a role in the development or function of the NMJ by associating with presynaptic receptors. We have used larval zebrafish (Danio rerio) to investigate the presence of presynaptic ionotropic glutamate receptors (iGluRs) at the NMJ in vivo. In whole-mount zebrafish larvae, antibody staining directed to NR2A subunits colocalized with specific staining of motoneuron axon tracts. Whole cell voltage-clamp recordings of miniature endplate currents (mEPCs) from axial white muscle were performed during application of iGluR agonists and antagonists. Local perfusion of the NMJ with iGluR agonists resulted in significant increases in the frequency of spontaneous acetylcholine (ACh) release. These increases were blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50 microM) and by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione (50 microM). Further pharmacological investigation revealed no effect of the kainate receptor-specific antagonist (2S,4R)-4-methylglutamate (10 microM) on kainate-induced rises in the frequency of spontaneous ACh release. However, these were blocked with the AMPA receptor-specific antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (50 microM). Application of glutamate (1 mM) in the presence of the glutamate uptake inhibitor d-threo-beta-benzyloxyaspartate(200 microM) resulted in a significant increase in the frequency of mEPCs. These results suggest the presence of AMPA and NMDA receptors in association with motoneuron axons of larval zebrafish.  相似文献   

10.
To elucidate the mechanisms involved in the inhibition of synaptic transmission by ammonium ions, the effects of NH4Cl on glutamate release and on synaptic transmission from Schaffer collaterals to CA1 pyramidal cells were measured in fully submerged slices of rat hippocampus. The large, Ca(2+)-dependent release of glutamate evoked by electrical-field stimulation or by 56 mM K+ was not reduced by 5 mM NH4Cl. In contrast, 5 mM NH4Cl decreased the smaller, field stimulation-induced release of glutamate observed in the presence of low concentrations of Ca2+ (0.1 mM), as well as the spontaneous release of glutamate both in normal and low Ca2+. Unlike the Ca(2+)-dependent release of glutamate, synaptic transmission was reversibly depressed even by 1 mM NH4 Cl. Firing of CA1 pyramidal cells evoked by iontophoretically applied glutamate was significantly inhibited by 2 or 5 mM NH4Cl. This depression was increased in the presence of 25 microM bicuculline. Results suggest that ammonium ions do not depress the Ca(2+)-dependent release of glutamate originating from synaptic vesicles, which is involved in synaptic transmission. Rather, ammonium ions inhibit synaptic transmission by a postsynaptic action, a conclusion strengthened by the inhibitory effect of NH4Cl on glutamate-induced firing. However, NH4Cl may inhibit the formation of cytoplasmic glutamate, the source of spontaneous and Ca(2+)-independent release.  相似文献   

11.
Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus.  相似文献   

12.
Cervetto C  Taccola G 《Neuroscience》2008,154(4):1517-1524
Increasing experimental and clinical evidence suggests that abnormal glutamate transmission might play a major role in a vast number of neurological disorders. As a measure of glutamatergic excitation, we have studied the acetylcholine (ACh) release induced by N-methyl-d-aspartate (NMDA) receptor stimulation in primary cultured rat ventral horn spinal neurons and we have evaluated the possibility to limit the consequences of the hyperactivation of glutamatergic receptors, by recruiting the inhibitory transmission mediated by GABA and glycine. For this purpose, we have exposed cell cultures, previously loaded with [(3)H]choline, to NMDA, which increased the spontaneous tritium efflux in a concentration-dependent manner. Tritium release is dependent upon external Ca(2+), tetrodotoxin, Cd(2+) ions and omega-conotoxin GVIA, but not on omega-conotoxin MVIIC nor nifedipine, suggesting the involvement of N-type voltage-sensitive calcium channels. NMDA-mediated [(3)H]ACh release was completely prevented by MK-801, 5,7-diclorokynurenic acid and ifenprodil, while it was strongly inhibited by a lower external pH, suggesting that the involved NMDA receptors contain NR1 and NR2B subunits. Muscimol inhibited NMDA-evoked [(3)H]ACh release and its effect was antagonized by SR95531 and potentiated by diazepam, indicating the involvement of benzodiazepine-sensitive GABA(A) receptors. Also glycine, via strychnine-sensitive receptors, inhibited the effect of NMDA. It is concluded that glutamate acts on the NMDA receptors situated on spinal motoneurons to evoke ACh release, which can be inhibited through the activation of GABA(A) and glycine receptors present on the same neurons. These data suggest that glutamatergic overload of receptors located onto spinal cord motoneurons might be decreased by activating GABA(A) and glycine receptors.  相似文献   

13.
Postsynaptic differentiation during glutamatergic synapse formation is poorly understood. Using a novel biophysical approach, we have investigated the distribution and density of functional glutamate receptors and characterized their clustering during synaptogenesis in cultured hippocampal neurons. We found that functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors are evenly distributed in the dendritic membrane before synaptogenesis with an estimated density of 3 receptors/microm(2). Following synaptogenesis, functional AMPA and NMDA receptors are clustered at synapses with a density estimated to be on the order of 10(4) receptors/microm(2), which corresponds to approximately 400 receptors/synapse. Meanwhile there is no reduction in the extrasynaptic receptor density, which indicates that the aggregation of the existing pool of receptors is not the primary mechanism of glutamate receptor clustering. Furthermore our data suggest that the ratio of AMPA to NMDA receptor density may be regulated to be close to one in all dendritic locations. We also demonstrate that synaptic AMPA and NMDA receptor clusters form with a similar time course during synaptogenesis and that functional AMPA receptors cluster independently of activity and glutamate receptor activation, including following the deletion of the NMDA receptor NR1 subunit. Thus glutamate receptor activation is not necessary for the insertion, clustering, and activation of functional AMPA receptors during synapse formation, and this process is likely controlled by an activity-independent signal.  相似文献   

14.
We examined synaptic transmission between rods or cones and horizontal cells, using perforated patch recording techniques in salamander retinal slices. Experimental conditions were established under which horizontal cells received nearly pure rod or pure cone input. The response-intensity relation for both photoreceptors and horizontal cells was described by a Michaelis-Menten function with an exponent close to 1. A dynamic model was developed for the transduction from photoreceptor voltage to postsynaptic current. The basic model assumes that: (i) photoreceptor light-evoked voltage controls Ca2+ entry according to a Boltzmann relation; (ii) the rate of glutamate release depends linearly on the voltage-gated Ca2+ current (ICa) in the synaptic terminal; (iii) glutamate concentration in the synaptic cleft reflects the balance of release and reuptake in which reuptake obeys first order kinetics; (iv) the binding of glutamate to its receptor and channel gating are fast compared with glutamate kinetics in the synaptic cleft. The good fit to the model confirms that these are the key features of synaptic transmission from rods and cones. The model accommodated changes in kinetics induced by the glutamate uptake blocker, dihydrokainate. The match between model and response was not improved by including an estimate of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor desensitization or by making glutamate uptake voltage dependent.  相似文献   

15.
The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mimic bursts of excitation. A stimulus train evoked a simple, short-lived postsynaptic response from CA1 hippocampal pyramidal neurons, but the train evoked a complex series of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) from the NAc spiny projection neurons. As is commonly seen with projection neurons, the EPSC amplitudes initially displayed facilitation followed by depression, and that pattern was sensitive to the extracellular calcium concentration. In addition, there were two other novel observations. The spiny projection neurons responded to the stimulus train with a prolonged depolarization that was accompanied by a posttrain increase of spontaneous glutamatergic synaptic activity. Blocking AMPA/kainate glutamate receptors strongly inhibited the evoked EPSP/EPSCs, the posttrain spontaneous synaptic activity, and the prolonged depolarization. A potassium channel inhibitor increased and extended the prolonged postsynaptic depolarization, causing a long-lasting depolarized plateau potential. Our results indicate that burst-like activity along ventral striatal afferents is extended in time by additional spontaneous glutamate release that is integrated by the postsynaptic spiny projection neurons into a prolonged depolarization. The results suggest that the posttrain quantal glutamate release helps to blend and maintain multiple afferent inputs. That convergent excitation is further integrated by the postsynaptic neuron into a prolonged depolarization that may contribute to the depolarized "up state" observed in vivo.  相似文献   

16.
The effect of S 18986, positive AMPA receptor modulator, on acetylcholine (ACh), gamma-aminobutyric acid (GABA) and glutamate (Glu) release from the hippocampus of freely moving young and aged rats was investigated by microdialysis coupled to HPLC. The cognition-enhancing properties were evaluated by a passive avoidance test. In 3 month-old rats, S 18986 (10 mg/kg i.p.) increased by 70% ACh release, which returned to basal level within 2 h, while 3 mg/kg had no effect. In 22 month-old rats, both 3 and 10 mg/kg i.p. induced a long lasting increase in ACh release, as large as that induced by 10 mg/kg in young rats. S 18986 did not modify GABA and glutamate release. No effect on general behavior was observed, but S 18986 at both doses prevented the disrupting effect of scopolamine (1 mg/kg i.p.) on passive avoidance acquisition.  相似文献   

17.
Many excitatory synapses are thought to be postsynaptically 'silent', possessing functional NMDA but lacking functional AMPA glutamate receptors. The acquisition of AMPA receptors at silent synapses may be important in synaptic plasticity and neuronal development. Here we characterize a possible morphological correlate of silent synapses in cultured hippocampal neurons. Initially, most excitatory synapses contained NMDA receptors, but only a few contained detectable AMPA receptors. Synapses progressively acquired AMPA receptors as the cultures matured. AMPA receptor blockade increased the number, size and fluorescent intensity of AMPA receptor clusters and rapidly induced the appearance of AMPA receptors at 'silent' synapses. In contrast, NMDA receptor blockade increased the size, intensity and number of NMDA receptor clusters and decreased the number of AMPA receptor clusters, resulting in an increase in the proportion of 'silent' synapses. These results suggest that the number of silent synapses is regulated during development and by changes in synaptic activity.  相似文献   

18.
We investigated the influence of synaptically released glutamate on postsynaptic structure by comparing the effects of deafferentation, receptor antagonists and blockers of glutamate release in hippocampal slice cultures. CA1 pyramidal cell spine density and length decreased after transection of Schaffer collaterals and after application of AMPA receptor antagonists or botulinum toxin to unlesioned cultures. Loss of spines induced by lesion or by botulinum toxin was prevented by simultaneous AMPA application. Tetrodotoxin did not affect spine density. Synaptically released glutamate thus exerts a trophic effect on spines by acting at AMPA receptors. We conclude that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.  相似文献   

19.
Cerebellar basket and stellate neurons (BSNs) provide feed-forward inhibition to Purkinje neurons (PNs) and thereby play a principal role in determining the output of the cerebellar cortex. During low-frequency transmission, glutamate released at parallel fiber synapses excites BSNs by binding to AMPA receptors; high-frequency transmission also recruits N-methyl-d-aspartate (NMDA) receptors. We find that, in addition to these ligand-gated receptors, a G-protein-coupled glutamate receptor subtype participates in exciting BSNs. Stimulation of metabotropic glutamate receptor 1alpha (mGluR1alpha) with the mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) leads to an increase in spontaneous firing of BSNs and indirectly to an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded in PNs. Under conditions in which ligand-gated glutamate receptors are blocked, parallel fiber stimulation generates a slow excitatory postsynaptic current (EPSC) in BSNs that is inhibited by mGluR1alpha-selective antagonists. This slow EPSC is capable of increasing BSN spiking and indirectly increasing sIPSCs frequency in PNs. Our findings reinforce the idea that distinct subtypes of glutamate receptors are activated in response to different patterns of activity at excitatory synapses. The results also raise the possibility that mGluR1alpha-dependent forms of synaptic plasticity may occur at excitatory inputs to BSNs.  相似文献   

20.
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by direct retinal ganglion cell projection to the suprachiasmatic nucleus (SCN). This synaptic connection is glutamatergic and the release of glutamate is detected by both N-methyl-D-asparate (NMDA) and amino-methyl proprionic acid/kainate (AMPA/KA) iontotropic glutamate receptors (GluRs). It is well established that NMDA GluRs play a critical role in mediating the effects of light on the circadian system; however, the role of AMPA/KA GluRs has received less attention. In the present study, we sought to better understand the contribution of AMPA/KA-mediated currents in the circadian system based in the SCN. First, whole cell patch-clamp electrophysiological techniques were utilized to measure spontaneous excitatory postsynaptic currents (sEPSCs) from SCN neurons. These currents were widespread in the SCN and not just restricted to the retino-recipient region. The sEPSC frequency and amplitude did not vary with the daily cycle. Similarly, currents evoked by the exogenous application of AMPA onto SCN neurons were widespread within the SCN and did not exhibit a diurnal rhythm in their magnitude. Fluorometric techniques were utilized to estimate AMPA-induced calcium (Ca(2+)) concentration changes in SCN neurons. The resulting data indicate that AMPA-evoked Ca(2+) transients were widespread in the SCN and that there was a daily rhythm in the magnitude of AMPA-induced Ca(2+) transients that peaked during the night. By itself, blocking AMPA/KA GluRs with a receptor blocker decreased the spontaneous firing of some SCN neurons as well as reduced resting Ca(2+) levels, suggesting tonic glutamatergic excitation. Finally, immunohistochemical techniques were used to describe expression of the AMPA-preferring GluR subunits GluR1 and GluR2/3s within the SCN. Overall, our data suggest that glutamatergic synaptic transmission mediated by AMPA/KA GluRs play an important role throughout the SCN synaptic circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号