首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increased susceptibility of hypertrophied myocardium to ischemic injury is well known. Hypertrophied hearts possess lower preischemic high energy phosphate stores and develop ischemic contracture following a shorter ischemic interval than normal hearts. The purpose of this study was to determine the ability of preischemic, arrested perfusion of the hypertrophied rat heart with oxygenated, glucose-containing perfluorocarbon cardioplegia (FC-43) to restore myocardial ATP stores to normal and prolong the duration of global ischemia prior to contracture initiation. Hearts from normal (NL) rats and hypertrophied hearts from spontaneously hypertensive rats (SHR) were subjected to 2 or 15 min of preischemic, arrested perfusion with FC-43 utilizing a modified Langendorff preparation. ATP was determined via HPLC and time to initiation of ischemic contracture was measured. Two minutes of FC-43 perfusion restored ATP in the SHR group to normal levels (P = NS compared to normal controls) and prolonged the time to initiation of ischemic contracture by 107%. Perfluorocarbons, with their unique oxygen-carrying properties, may be an ideal vehicle for intervention designed to enhance the tolerance of hypertrophied hearts to ischemia.  相似文献   

2.
To determine whether continuous infusion of cardioplegia retrograde through the coronary sinus could improve the salvage of infarcting myocardium, 54 pigs were utilized in a region at risk model. All hearts underwent 30 minutes of reversible coronary artery occlusion, and were divided into six groups. Group 1 served as controls and underwent two hours of coronary reflow without global ischemic arrest. The remaining five groups were subjected to 45 minutes of cardioplegia-induced hypothermic arrest followed by two hours of normothermic reflow. Group 2 had a single infusion of crystalloid cardioplegia, and Group 3 received an oxygenated perfluorocarbon cardioplegic solution initially and again after 20 minutes of ischemia. After initial cardiac arrest with crystalloid cardioplegia, all hearts in Groups 4, 5, and 6 underwent a continuous infusion of a cardioplegic solution retrograde through the coronary sinus. Group 4 received a nonoxygenated crystalloid cardioplegic solution, Group 5 received an oxygenated crystalloid cardioplegic solution, and Group 6 received an oxygenated perfluorocarbon cardioplegic solution. With results expressed as the percent of infarcted myocardium within the region at risk, Group 2 hearts, which received only antegrade cardioplegia, had a mean infarct size of 44.8 +/- 6.3%, a 2.2-fold increase over controls (p less than 0.05). While antegrade delivery of oxygenated perfluorocarbon cardioplegia (Group 3) and coronary sinus perfusion with nonoxygenated crystalloid cardioplegia (Group 4) limited infarct size to 33.6 +/- 4.7% and 35.3 +/- 5.4%, respectively, only oxygenated cardioplegia delivered retrograde through the coronary sinus (Groups 5 and 6) completely prevented infarct extension during global ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We sought to determine the relative efficacy of administering cardioplegia by the pressurized bag versus roller pump technique. Fourteen dogs were placed on cardiopulmonary bypass at 30°C and subjected to 2 hours of cardioplegic arrest. Group 1 (7 dogs) was administered cardioplegic solution from a plastic bag under pressure into the ascending aorta every 20 minutes for the 2-hour period, and Group 2 (7 dogs) was given cardioplegia by means of a roller pump.Myocardial temperature decreased in Group 1 to 13.4°C following administration of the cardioplegic solution, and to 13.1°C in Group 2 (not significant). These temperatures were reached in 3.0 minutes in Group 1 and 1.9 minutes in Group 2 (p < 0.03). Aortic root pressures during cardioplegic infusion were 31 ± 2 mm Hg in Group 1 versus 46 ± 2 mm Hg in Group 2 (p < 0.01). No significant differences between groups were noted in myocardial distribution of cardioplegia, myocardial blood flow or metabolism, or left ventricular hemodynamics.We conclude that both methods of administering cardioplegia lowered myocardial temperature adequately and protected the myocardium for a period of 2 hours in these normal hearts. The roller pump method facilitated faster cooling and produced significantly higher aortic perfusion pressures, however, which may be important in hearts with coronary stenosis.  相似文献   

4.
In pediatric cardiac operations, a high proportion of hospital deaths are believed to result from inadequate myocardial protection during the period of global ischemia. To investigate whether this may be due to an inherently lower resistance to myocardial ischemia or to the failure of conventional cardioplegia to afford adequate protection in the immature heart, we have conducted a series of studies with isolated hearts from neonatal (3 to 5 days old, body weight 6.3 to 13.4 gm) and adult (84 to 112 days old, 260 to 340 gm) rats. The efficacy of cardioplegia was assessed in neonatal hearts (n = 6 per group) subjected to various durations of normothermic ischemia, with and without a 2-minute preischemic infusion of the St. Thomas' Hospital cardioplegic solution. At all times studied, the use of cardioplegia resulted in a greater postischemic recovery of left ventricular developed pressure and first derivative of left ventricular pressure. After periods of ischemia lasting 30, 60, 90, 120, and 150 minutes in the absence of cardioplegia, left ventricular developed pressure recovered to 80% +/- 10%, 66% +/- 11%, 53% +/- 7%, 33% +/- 6%, and 21% +/- 4% of preischemic values, respectively; in the presence of cardioplegia, the values were 89% +/- 6%, 83% +/- 8%, 74% +/- 6% (p less than 0.05), 58% +/- 5% (p less than 0.05), and 41% +/- 7% (p less than 0.05), respectively. The corresponding values for first derivative of left ventricular pressure were 78% +/- 9%, 67% +/- 12%, 54% +/- 7%, 30% +/- 5%, and 19% +/- 3% in the absence of cardioplegia and 92% +/- 7%, 88% +/- 8%, 75% +/- 8%, 56% +/- 5% (p less than 0.05) and 39% +/- 6% (p less than 0.05) in the presence of cardioplegia. In the noncardioplegia groups, 90% of hearts exhibited ischemic contracture (mean time to onset = 24.7 +/- 1.1 minutes), whereas in the cardioplegia groups, only 63% exhibited contracture, and of a significantly delayed onset (37.0 +/- 1.5 min, p less than 0.05). Adult hearts (n = 5) subjected to 30 minutes of normothermic ischemic arrest, in the absence of cardioplegia, recovered 36% +/- 7% of the preischemic left ventricular developed pressure and 37% +/- 9% of the preischemic first derivative of left ventricular pressure on reperfusion; 100% of these hearts exhibited some degree of contracture (mean time to onset = 15.4 +/- 1.1 minutes) by the end of the ischemic period.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Inadequate cardioplegic protection with obstructed coronary arteries.   总被引:5,自引:0,他引:5  
To determine the contribution of complete cardioplegia to the preservation of left ventricular (LV) function, we put ultrasonic transducers in the anterior and posterior walls of the left ventricle in 18 dog hearts. The dogs were subjected to global ischemia for 60 minutes at 28°C, and the speed of segment shortening (dl/dt) and percent of systolic shortening of the two wall regions before and after ischemic manipulations were measured. When cardioplegic perfusion was uniform, there was no significant difference between the anterior and posterior walls in any of the variables measured, and global LV function (stroke work) was well preserved. However, when the left anterior descending coronary artery was occluded during cardioplegic infusion, there was significant dysfunction after reperfusion of the anterior wall: without perfusion, the anterior segments recovered only 41% (5.9/14.3 mm/sec) of preischemic dl/dt, while the perfused anterior segments retained 78% (11.4/14.6 mm/sec) of control dl/dt (p < 0.05). The experimental anterior regions regained only 36% of preischemic systolic shortening, while the anterior segments in the homogeneously perfused hearts were indistinguishable from internal controls (p < 0.01).Regionally inadequate cardioplegic protection during coronary artery bypass graft operation may contribute to perioperative infarction and LV dysfunction, and appropriate timing of anastomoses to ensure early cardioplegic perfusion of all ischemic myocardium is important.  相似文献   

6.
Myocardial high-energy phosphate and glucose-6-phosphate levels were determined in the in vivo pig heart model during ischemic arrest and reperfusion to determine the effectiveness of potassium cardioplegia in myocardial protection. Thirty-five pigs were divided into six experimental groups consisting of 2-hour normothermic arrest, 2-hour hypothemic arrest, 2-hour normothermic cardioplegic arrest, and 1-, 2-, and 3-hour hypothermic cardioplegic arrest. Myocardial biopsies from the left ventricle were obtained prior to arrest, every 30 minutes during the arrest interval, and at 30 and 60 minutes of reperfusion. The measurement of adenosine triphosphate and creatine phosphate showed that (1) cardioplegic arrest requires hypothermia to preserve high-energy phosphate levels in myocardial tissue; (2) hypothermia, while not completely protective alone, is more effective than potassium cardioplegia alone in providing myocardial preservation during 2-hour ischemic arrest; (3) the combination of potassium cardioplegia and hypothermia is additive in providing an effective means of maintaining myocardial high-energy phosphate stores during 1, 2, and 3 hours of ischemic arrest; (4) myocardial reperfusion does not allow a return to preischemic adenosine triphosphate (ATP) levels after 2 hours of arrest, except following hypothermic cardioplegia; and (5) extension of the duration of ischemic arrest to 3 hours using hypothermic cardioplegia prevents recovery of high-energy phosphate stores to preischemic levels during reperfusion. Optimal preservation can be achieved during 2 hours of ischemic arrest by using hypothermic potassium cardioplegia. The effects of myocardial reperfusion, however, prevent full ATP and creatine phosphate (CP) recovery following 3 hours of arrest. No other technique studied was as effective in providing myocardial preservation.  相似文献   

7.
Persistence of impaired ventricular function after repair of cyanotic congenital heart defects may be due to previous exposure to chronic hypoxemia or to perioperative ischemic injury. Clarification of this phenomenon was sought in a canine model of cyanotic cardiovascular disease (Group I), in which the left atrium was anastomosed proximal to the banded pulmonary artery. Animals that had pulmonary artery banding alone (Group II) or no prior surgical intervention (Group III) served as controls. All Group I animals became cyanotic during the study period (arterial oxygen tension, 38 ± 4 mm Hg; hematocrit, 55 ± 5%). Radionuclide-determined ejection fractions performed three months after operation showed significant depression of global biventricular function by 16 to 29% (p < 0.05) compared with groups II and III. On cardiopulmonary bypass, all hearts were subjected to 4°C potassium cardioplegic arrest and reperfusion with serial assays for myocardial adenosine triphosphate (ATP) and creatine phosphate (CP) levels. The ATP and CP stores in each ventricle were similar at all sampling intervals, and preischemic levels were comparable in cyanotic and control groups. However, ATP levels were significantly depressed 37 to 43% from preischemic levels (p < 0.02) after arrest and reperfusion in cyanotic dogs, but they were preserved in Groups II and III. During ischemia, CP stores were depleted to 27% of preischemic values in Group I but only to 46 to 63% of preischemic levels in the control groups (p < 0.05). These data indicate that chronic hypoxemia impairs global ventricular function and predisposes to the accelerated depletion of high-energy phosphates during cardioplegic arrest. The formulation of new intracoronary perfusates for the cyanotic myocardium seems warranted.  相似文献   

8.
Optimal methods of myocardial preservation in the neonate remain unknown. Hypothermia and cardioplegia have been shown to protect neonatal hearts, but few studies have examined the effects of cardioplegia when administered at normothermia. Accordingly, the role of 37 degrees C St. Thomas' cardioplegic solution in protecting the neonatal heart during 1 hour of ischemia in an isolated working rabbit heart model was examined. Both oxygenated and nonoxygenated cardioplegic solutions (CSs) were evaluated and compared with an oxygenated physiological saline solution (PSS). Following ischemia, control hearts were characterized by severely impaired left ventricular function, whereas all three treatment groups recovered well, indicating that the treatments provided substantial protection. Aortic flow recovered to 62, 63, and 57% of preischemic values for the oxygenated CS, nonoxygenated CS, and oxygenated PSS groups, respectively. Similarly, rate of change of pressure recovered to 76, 80, and 76% of preischemic values for oxygenated CS, nonoxygenated CS, and oxygenated PSS groups. All values were significantly greater than those for the control group. Recovery of developed pressure was significantly improved in all three groups. End-diastolic pressure rose markedly following ischemia in control hearts, was not increased after ischemia in hearts receiving oxygenated and nonoxygenated CS, but was increased in the oxygenated PSS group. These data indicate that crystalloid cardioplegia and oxygenated PSS provide substantial protection in neonatal rabbit hearts, even when delivered at 37 degrees C. No additional benefit was seen when the cardioplegic solution was oxygenated. Therefore, either method of balancing the oxygen supply/demand ratio appears to be beneficial: supplying oxygen intermittently during ischemia (oxygenated PSS group) or decreasing oxygen demand during the ischemic period (cardioplegia groups).  相似文献   

9.
The use of an oxygenated crystalloid cardioplegic solution to improve myocardial preservation during elective cardiac arrest was evaluated with the isolated perfused rat heart used as a model. Experiments were conducted at 4 degrees C and 20 degrees C. The oxygen tension of the nonoxygenated and oxygenated cardioplegic solutions averaged 117 and 440 mm Hg, respectively. At 4 degrees C, the adenosine triphosphate content of hearts subjected to 120 minutes of oxygenated cardioplegia was significantly higher than that of the nonoxygenated cardioplegia group. However, functional recovery during reperfusion was similar for both groups. At 20 degrees C, the myocardial adenosine triphosphate concentration decreased at a significantly faster rate during ischemia in the group receiving nonoxygenated cardioplegia compared with the oxygenated cardioplegia group. Hearts subjected to 180 minutes of ischemia with oxygenated cardioplegia had a normal ultrastructural appearance whereas hearts subjected to 120 minutes of nonoxygenated cardioplegia showed severe ischemic damage. Myocardial functional recovery in the group receiving oxygenated cardioplegia exceeded that of the group receiving nonoxygenated cardioplegia. The use of myocardial adenosine triphosphate concentration at the end of the ischemic period to predict subsequent cardiac output, peak systolic pressure, and total myocardial work showed significant positive correlations.  相似文献   

10.
Inadequate myocardial preservation continues to be an important cause of postoperative morbidity and mortality after pediatric cardiac operations. To investigate methods of improving preservation in neonatal myocardium, we compared three cardioplegic solutions with topical hypothermia during 120 minutes of ischemic arrest in isolated, blood-perfused, neonatal rabbit hearts. Topical hypothermia (15 degrees C) without cardioplegia resulted in 71% +/- 5% recovery of preischemic contractile function. A high potassium (30 mEq/L) cardioplegic solution resulted in a 76% +/- 6% recovery of function, not significantly different from that obtained with hypothermia alone. In contrast, the St. Thomas' Hospital and H?pital Lariboisiere cardioplegic solutions resulted in recoveries of 89% +/- 6% and 88% +/- 7%, respectively, both of which were significantly greater (p less than 0.001) than recoveries obtained with the high potassium solution or hypothermia alone. Thus the cardioplegic solutions used at St. Thomas' Hospital and H?pital Lariboisiere provided excellent protection during 2 hours of hypothermic ischemic arrest in neonatal rabbit hearts and resulted in functional recovery superior to that achieved with hypothermia alone or with the high potassium cardioplegic solution.  相似文献   

11.
30只白兔等分3组后制务墩体心脏模型。分别以晶体(CR)、氧全晶体(CO)、氧合稀释血搏液dBC灌注相应各组,停搏120min。每15重复灌注一次。高压液相色谱(HPLC)测定心肌缺血前、60.120min及再灌注30min的腺苷酸与肌酸磷酸(CP)含量;于再灌注30min时取左室少许心肌制备光、电交易标本。实验结果:Cr组见轻度线粒体(Mit)改变,CO组可见心肌内血管改变,而dBC组则未见明显  相似文献   

12.
The increased susceptibility of hypertrophied hearts to ischemic injury during cardiac operations has long been recognized. Although the imbalances in oxygen supply and demand which may occur with hypertrophy during hypotension, ventricular fibrillation, or reperfusion have been extensively studied, the biochemical response of hypertrophied myocardium to ischemia has not been fully elucidated. In the present investigation, rat hearts in which hypertrophy was induced by chronic pressure overload were used to examine the relationship of the physiological parameter, ischemic contracture, to high-energy phosphate content and mitochondrial function during global ischemia. Hypertrophied hearts developed ischemic contracture after significantly shorter duration of ischemia than did normal hearts (5.8 +/- 0.3 minutes versus 10.1 +/- 0.7 minutes). High-energy phosphate content was lower in hypertrophied hearts at control and at ischemic contracture initiation and completion than in normal hearts, whereas mitochondrial function was consistently greater in the hypertrophy group. This investigation demonstrates that the hypertrophied myocardium, independent of flow-related events, is more vulnerable to ischemic injury than normal myocardium and suggests that the increased susceptibility may result from lower high-energy phosphate stores present at the onset of ischemia. The results emphasize the need for rapid cardiac arrest with the induction of ischemia in hypertrophied myocardium and suggest the potential for increasing myocardial high-energy phosphate content in the hypertrophied ventricle by interventions such as arrested perfusion with substrate containing oxygenated cardioplegic solutions prior to the onset of planned ischemia.  相似文献   

13.
OBJECTIVE: We previously showed that arrest with multidose infusions of high-dose (1 mmol/L) esmolol (an ultra-short-acting beta-blocker) in oxygenated Krebs-Henseleit buffer (esmolol cardioplegia) provided complete myocardial protection after 40 minutes of normothermic (37 degrees C) global ischemia in isolated rat hearts. In this study we investigated the importance of oxygenation for protection with esmolol cardioplegia, compared it with that of St Thomas' Hospital cardioplegia, and determined the protective efficacy of multidose esmolol cardioplegia for extended ischemic durations. METHODS: Isolated rat hearts (n = 6/group) were perfused in the Langendorff mode at constant pressure (75 mm Hg) with oxygenated Krebs-Henseleit bicarbonate buffer at 37 degrees C. The first part of the first study had four groups: (i) multidose (every 15 minutes) oxygenated (95% oxygen/5% carbon dioxide) Krebs-Henseleit buffer during 60 minutes of global ischemia, (ii) multidose deoxygenated (95% nitrogen/5% carbon dioxide) Krebs-Henseleit buffer during 60 minutes of global ischemia, (iii) multidose oxygenated esmolol cardioplegia during 60 minutes of global ischemia, and (iv) multidose deoxygenated esmolol cardioplegia during 60 minutes of global ischemia. The second part of the first study had three groups: (v) multidose St Thomas' Hospital solution during 60 minutes of global ischemia, (vi) multidose oxygenated St Thomas' Hospital solution during 60 minutes of global ischemia, and (vii) multidose oxygenated esmolol cardioplegia during 60 minutes of global ischemia. In the second study, hearts were randomly assigned to 60, 75, 90, or 120 minutes of global ischemia and at each ischemic duration were subjected to multidose oxygenated constant flow or constant pressure infusion of (i) Krebs-Henseleit buffer (constant flow), (ii) Krebs-Henseleit buffer (constant pressure), (iii) esmolol cardioplegia (constant flow), or (iv) esmolol cardioplegia (constant pressure). All hearts were reperfused for 60 minutes, and recovery of function was measured. RESULTS: Multidose infusion of oxygenated esmolol cardioplegia completely protected the hearts (97% +/- 5%) after 60 minutes of 37 degrees C global ischemia. Deoxygenated esmolol cardioplegia was significantly less protective (45% +/- 8%). Oxygenation of St Thomas' Hospital solution did not alter its protective efficacy in this study (70% +/- 4% vs 69% +/- 7%). Infusion of esmolol cardioplegia at constant pressure provided complete protection for 60, 75, and 90 minutes (104% +/- 5%, 95% +/- 5%, and 95% +/- 3%, respectively), whereas protection with constant-flow esmolol cardioplegic infusion was significantly decreased at ischemic durations longer than 60 minutes. This decrease in efficacy of constant-flow esmolol cardioplegia was associated with increasing coronary perfusion pressure leading to myocardial injury. CONCLUSIONS: Oxygenation of esmolol cardioplegia (Krebs-Henseleit buffer plus 1.0 mmol/L esmolol) was essential for optimal myocardial protection. Multidose infusion of oxygenated esmolol cardioplegia provided good myocardial protection during extended periods of normothermic ischemia. Esmolol cardioplegia may provide an efficacious alternative to hyperkalemia.  相似文献   

14.
BACKGROUND: Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. METHODS: Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. RESULTS: After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p < 0.001), higher left ventricular developed pressure (p < 0.01), and lower coronary perfusion pressure (p < 0.001) compared to the control group. After reperfusion, hearts receiving defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p < 0.01), lactate dehydrogenase (p < 0.001), and higher levels of 6-keto-PGF1alpha (p < 0.001) compared to the control group. Furthermore, when defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p < 0.05) to that obtained when defibrotide was given in cardioplegia. CONCLUSIONS: Defibrotide confers to conventional crystalloid cardioplegia a potent concentration-dependent protective effect on the recovery of isolated rat heart undergoing ischemia/reperfusion injury. The low cost and the absence of contraindications (cardiac toxicity and hemodynamic effects) make defibrotide a promising augmentation to cardioplegia.  相似文献   

15.
The known benefits of hypothermic pharmacological cardioplegia in protecting the ischemic adult heart may not extend to children. Protection of the ischemic immature rabbit heart with hypothermic Krebs-Henseleit bicarbonate buffer is better than with hypothermic St. Thomas' II cardioplegic solution. We investigated whether the availability of oxygen in the preischemic perfusate is responsible for the increased tolerance to ischemia of immature (7- to 10-day-old) hearts perfused with Krebs buffer in comparison with St. Thomas' II solution immediately before ischemia. After obtaining preischemic control data in the "working" mode, we perfused hearts (n = 8 per group) for 3 minutes with hypothermic (14 degrees C) Krebs buffer or hypothermic St. Thomas' II solution saturated with 0%, 25%, or 95% oxygen. This was followed by 2 hours of global ischemia at 14 degrees C. Hearts were reperfused for 15 minutes in the Langendorff mode and 35 minutes in the working mode, and recovery of function was measured. For preischemic oxygen concentrations of 0%, 25%, and 95%, recovery of aortic flow in hearts protected by hypothermia alone during ischemia was 74% +/- 9%, 82% +/- 4%, and 99% +/- 2% of preischemic values, respectively. In hearts protected by hypothermia plus cardioplegia, the values were 69% +/- 6%, 72% +/- 3%, and 86% +/- 5%, respectively. Thus, at equal oxygen concentrations, recovery of postischemic function was better in hearts protected by hypothermia alone compared with hypothermia plus cardioplegia. We conclude that factors other than oxygen availability are responsible for the damaging effect of St. Thomas' II solution on the ischemic immature rabbit heart.  相似文献   

16.
The protective effect of cardioplegia upon neonatal myocardium during ischemia has not been clearly established. This study evaluated the effects of cardioplegia on left ventricular function in isolated working neonatal rabbit hearts (aged 1 week) subjected to 120 minutes of global ischemia at 28 degrees C. Four groups were studied: Group 1, hypothermia alone; Group 2, intermittent washout with an oxygenated noncardioplegic solution; Group 3, multidose cardioplegia; Group 4, single-dose cardioplegia. After ischemia, cardiac output was reduced to 72% +/- 5% (mean +/- standard error of the mean) of control (p less than 0.02) in Group 1 and to 56% +/- 4% in Group 2 (p less than 0.001). In contrast, there was no significant reduction from baseline cardiac output in those animals receiving cardioplegic solution (Group 3, 93% +/- 6%, and Group 4, 97% +/- 4%). Group 2 hearts demonstrated significantly worse recovery of cardiac output and stroke volume than all other groups. After ischemia, the first derivative of left ventricular pressure fell to 73% +/- 13% of control in Group 1 (p less than 0.1) and to 89% +/- 5% in Group 2 (p less than 0.05). However, the first derivative of left ventricular pressure was restored to control values in Group 3 (118% +/- 11%) and Group 4 (114% +/- 9%). When compared to baseline, creatine kinase was higher 30 minutes after reperfusion in Group 1 (40 +/- 8 versus 143 +/- 32 IU/L/gm, p less than 0.05) and in Group 2 (39 +/- 7 versus 163 +/- 33 IU/L/gm, p less than 0.05). Creatine kinase remained unchanged from baseline in Groups 3 and 4. This study demonstrates excellent preservation of left ventricular function in the neonatal rabbit heart protected with cardioplegic solution. In contrast, neither hypothermia alone nor intermittent washout with an oxygenated noncardioplegic solution was effective in preventing myocardial dysfunction. As in adults, the administration of cardioplegic solution preserves ventricular function during ischemia in neonatal hearts.  相似文献   

17.
The purpose of this study was to evaluate whether the addition of verapamil hydrochloride to oxygenated glucose-rich cardioplegic solution would improve myocardial preservation. The Langendorff preparation of the isolated rat heart was used. Groups of normal (WKY) and hypertrophied (SHR) hearts were treated by five different cardioplegic methods and subjected to 90 or 30 minutes of ischemia at 28 degrees to 29 degrees C and reperfusion at 37 degrees C. The following cardioplegic solutions were used: Group A, cold (16 degrees C) Krebs-Henseleit (KH) glucose free only; Group B, KH with KCL (30 mEq/L) (16 degrees C); Group C, same as B with verapamil (10 microM); Group D, perfusion with oxygenated KH solution containing KCL (30 mEq/L) for 15 minutes prior to ischemia; and Group E, same as D with verapamil (10 microM). Recovery of contraction amplitude, ischemic contracture, coronary perfusate volume, the amount of creatine kinase in the coronary perfusate, heart rate, time of revival, O2 consumption, and ischemic contracture were measured. After 30 minutes of ischemia, we did not find any significant difference among the combinations tested with respect to contraction amplitude recovery. The hearts recovered fully. After 90 minutes of ischemia, we found that the best-protected groups in the normal hearts were Groups D and E. In the hypertrophied hearts, the addition of verapamil to the enhancement solution was harmful. The use of enhancement solution without verapamil prior to ischemia provided the best myocardial protection in the hypertrophied hearts.  相似文献   

18.
We evaluated myocardial protection with Hamburg oxygenated crystalloid cardioplegic solution in a double study. Part I was a prospective metabolic study, measuring myocardial adenosine triphosphate (ATP) and creatine phosphate (CP) contents before and after ischemia in 30 coronary bypass (CABG) patients. During ischemia, CP levels decreased significantly, whereas ATP did not. After 10 minute of reperfusion, mean ATP contents were 90% of preischemic values and CP levels increased to 85% of preischemic values. Spontaneous myocardial defibrillation was seen in 93.3% of patients. Part II included evaluation of early postischemic myocardial function in 228 patients, 48 with multiple valve replacement (MUVR) and 180 with CABG. Spontaneous myocardial defibrillation was seen in 90.3%. Cardiac index, measured before and 1 and 12 hours after surgery, increased significantly in the postischemic period (from 1.95 +/- 0.9 to 2.5 +/- 0.7 l/min m2 in MUVR, p 0.04; from 2.2 +/- 0.6 to 2.7 +/- 0.7 l/min/m2 in CABG, p 0.01). Myocardial infarction frequency was 3% among CABG patients, and unrelated to the number of distal anastomosis or to aortic cross-clamp time. Early postoperative mortality was 6.2% for MUVR and 0.5% for CABG. Thus, oxygenated cardioplegia with Hamburg solution preserves high-energy phosphate compounds and prevents ischemic injury, with excellent short-term clinical results.  相似文献   

19.
A study was carried out to evaluate the best method of myocardial preservation in the pig-heart model. Two techniques for employing hypothermic potassium cardioplegia during prolonged ischemic arrest were compared. One entailed three one-hour periods of arrest interrupted with 30-minute intervals of reperfusion (intermittent arrest), and the other involved a single period of continuous hypothermic cardioplegic arrest (continuous arrest) of three hours' duration. In order to evaluate intermittent versus continuous cardioplegic arrest, prearrest and postarrest contractility, compliance, myocardial perfusion, and left ventricular adenosine triphosphate (ATP) and creatine phosphate (CP) levels were compared in 28 animals.The results show significant deterioration in myocardial contractility and compliance following three-hour cardioplegic arrest whether the arrest was intermittent or continuous. However, there were significant differences between the two groups studied. The animal having continuous arrest had less functional impairment than the animal having intermittent arrest. Myocardial perfusion 30 minutes following continuous arrest returned to prearrest levels whereas there was significant depression in perfusion in the group with intermittent arrest. This represented severe coronary vasoconstriction. The ATP level after completion of arrest is significantly higher in the group having continuous arrest and remains higher throughout the final reperfusion period.On the basis of these studies, it is thought that intermittent reperfusion may lead to a reperfusion injury, which is primarily reflected in decreased perfusion, contractility, and compliance. While hypothermic potassium cardioplegia does not optimally protect the myocardium during prolonged (three hour) ischemic arrest, the alternative of intermittent arrest provides poorer myocardial preservation.  相似文献   

20.
Effects of supplemental L-arginine during warm blood cardioplegia.   总被引:8,自引:0,他引:8  
OBJECTIVES: Effects of supplemental L-arginine, nitric oxide precursor, during warm blood cardioplegia were assessed in the blood perfused isolated rat heart. METHODS: The isolated hearts were perfused with blood at 37 degrees C from a support rat. After 20 minutes of aerobic perfusion, the hearts were arrested for 60 minutes with warm blood cardioplegia given at 20-minute intervals. This was followed by 60 minutes of reperfusion. The hearts were divided into the following three groups according to the supplemental drugs added to the cardioplegic solution. The control group (n = 10) received standard warm blood cardioplegia. The L-ARG group (n = 10) received warm blood cardioplegia supplemented with L-arginine (3 mmol/l). The L-NAME group (n = 10) received warm blood cardioplegia supplemented with L-arginine (3 mmol/l) and L-nitro-arginine methyl ester, a competitive inhibitor of nitric oxide synthase (1 mmol/l). After 60 minutes of cardioplegic arrest, cardiac function, myocardial metabolism and myocardial release of circulating adhesion molecules were measured during reperfusion. RESULTS: Left ventricular end-diastolic pressure was significantly lower (p<0.05) in the L-ARG group than in the control group and the L-NAME group during reperfusion. Isovolumic left ventricular developed pressure, dp/dt and coronary blood flow were significantly greater (p< 0.05) in the L-ARG group during reperfusion. The L-ARG group resulted in early recovery of lactate metabolism during reperfusion. Myocardial release of circulating intercellular adhesion molecule-1 (ICAM-1) and E-selectin were significantly less (p<0.05) in the L-ARG group at 15 minutes of reperfusion. CONCLUSIONS: The results suggest that augmented nitric oxide by adding L-arginine to warm blood cardioplegia can preserve left ventricular function and ameliorate endothelial inflammation. The technique can be a novel cardioprotective strategy in patients undergoing cardiac surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号