首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The projections from the lateral (LPl), intermediate (LPi) and medial (LPm) subdivisions of the cat lateral posterior nucleus (n. LP) to visual areas 17, the posteomedial (PMLS) and posterolateral (PLLS) lateral suprasylvian and anterior ectosylvian (AEV) were studied using the retrograde labeling technique following concomitant injections of fluorescent dyes (Fast blue, Nuclear yellow, Evans blue and Rhodamine beta-isothiocyanate) into the different cortical loci. The results showed a medial-lateral topographical reversal of the visual n. LP-cortical connections: The ventral portion of LPl projects to area 17 whereas more dorsolateral regions of LPl and lateral LPi provide input to PMLS. Cells in medial LPi project mainly to the PLLS cortex and AEV receives afferents from the LPm. Areas of overlap were identified within the ventral LPl which projects to both area 17 and PMLS and within the LPi/LPm border region at the origin of connections to both PLLS and AEV. Furthermore, some single neurons within the areas of overlap were found to be double-labeled indicating divergent projections to their respective cortical targets via collateral axon branching. The data show that divergence and axonal branching are common features of the different n.LP-visual cortical subsystems and support the notion of the existence of families of thalamo-cortical systems which are distinct in their connection patterns and underlying functional properties.  相似文献   

2.
The cortical distribution of cells of origin of the corticotrigeminal projections to the nucleus caudalis of the cat was examined using the method of retrograde axonal transport of horseradish peroxidase (HRP). After injections of HRP into the nucleus caudalis, labeled cells were distributed densely in the anterior suprasylvian gyrus, the coronal gyrus, and the ventral part of the anterior sigmoid gyrus, and moderately in the rostral part of the anterior ectosylvian gyrus on the contralateral side. In the anterior suprasylvian gyrus, the distribution extended rostrocaudally from the lateral ansate sulcal level to about 4.0 mm caudal to this level and mediolaterally throughout the convex of the anterior suprasylvian gyrus. All cortical labeled cells were pyramidal cells of various sizes in layer V.  相似文献   

3.
In humans, damage to posterior parietal or frontal cortices often induces a severe impairment of the ability to redirect gaze to visual targets introduced into the contralateral field. In cats, unilateral deactivation of the posterior middle suprasylvian (pMS) sulcus in the posterior inferior parietal region also results in an equally severe impairment of visually mediated redirection of gaze. In this study we tested the contributions of the pMS cortex and 14 other cortical regions in mediating redirection of gaze to visual targets in 31 adult cats. Unilateral cooling deactivation of three adjacent regions along the posterior bend of the suprasylvian sulcus (posterior middle suprasylvian sulcus, posterior suprasylvian sulcus, and dorsal posterior ectosylvian gyrus at the confluence of the occipital, parietal, and temporal cortices) eliminated visually mediated redirection of gaze towards stimuli introduced into the contralateral hemifield, while the redirection of gaze toward the ipsilateral hemifield remained highly proficient. Additional cortical loci critical for visually mediated redirection of gaze include the anterior suprasylvian gyrus (lateral area 5, anterior inferior parietal cortex) and medial area 6 in the frontal region. Cooling deactivation of: 1) dorsal or 2) ventral posterior suprasylvian gyrus; 3) ventral posterior ectosylvian gyrus, 4) middle ectosylvian gyrus; 5) anterior or 6) posterior middle suprasylvian gyrus (area 7); 7) anterior middle suprasylvian sulcus; 8) medial area 5; 9) the visual portion of the anterior ectosylvian sulcus (AES); 10) or lateral area 6 were all without impact on the ability to redirect gaze. In summary, we identified a prominent field of cortex at the junction of the temporo-occipito-parietal cortices (regions pMS, dPE, PS), an anterior inferior parietal field (region 5L), and a frontal field (region 6M) that all contribute critically to the ability to redirect gaze to novel stimuli introduced into the visual field during fixation. These loci have several features in common with cortical fields in monkey and human brains that contribute to the visually guided redirection of the head and eyes.  相似文献   

4.
The thalamic and cortical projections to acoustically responsive regions of the anterior ectosylvian sulcus were determined by identifying retrogradely labelled cells after physiologically guided iontophoretic injections of horseradish peroxidase. The medial division of the medial geniculate nucleus, the intermediate division of the posterior nuclear group, the principal division of the ventromedial nucleus, and the lateroposterior complex were consistently labelled after these injections, although each animal showed slightly different patterns of labelling. The suprageniculate nucleus and the lateral and medial divisions of the posterior nuclear group were also labelled in most experiments. The cortex of the suprasylvian sulcus was the most consistently and densely labelled cortical region; each experiment showed a slightly different pattern of labelling throughout the suprasylvian sulcus, with an overall tendency for greater labelling in the ventral (lateral) bank of the middle region of the sulcus. Other cortical regions labelled less consistently included the anterior ectosylvian sulcus itself, the insular cortex of the anterior sylvian gyrus, and the posterior rhinal sulcus. In three experiments the contralateral cortex was examined and a small number of labelled cells was located in the anterior ectosylvian and suprasylvian sulci. Input from extralemniscal auditory thalamus is compatible with previously described auditory response properties of anterior ectosylvian sulcus neurons. The results also confirm the presence of input from visual and multimodal regions of thalamus and cortex, and therefore support claims of overlap of modalities within the sulcus. This overlap, as well as input from motor regions, suggests that the anterior ectosylvian sulcal field serves a sensorimotor role.  相似文献   

5.
The purpose of the present study was to define auditory cortical areas in the dog on the basis of thalamocortical connectivity patterns. Connections between the posterior thalamic region and auditory ectosylvian cortex were studied using axonally transported tracers: fluorochromes and biotinylated dextran amine. Cyto- and chemoarchitecture provided grounds for the division of the posterior thalamic region into three complexes, medial geniculate body (MGB), posterior nuclei (Po), and lateromedial and suprageniculate nuclei (LM-Sg). Distinctive cytoarchitectonic features and the distribution of dominant thalamocortical connections (determined quantitatively) allowed us to define four ectosylvian areas: middle (EM), anterior (EA), posterior (EP), and composite (CE). We found that each area was a place of convergence for projections from five to eleven nuclei of the three thalamic complexes, with dominant projections derived from one or two nuclei. Dominant topographical projections from the ventral nucleus to area EM confirmed physiological reports that it may be considered a primary auditory area (AI). We found the anterior part of the EM to be distinct in having unique strong connections with the deep dorsal MGB nucleus. Area EA, which receives dominant projections from the lateral Po (Pol) and medial MGB nuclei, as well as area EP, which receives dominant connections from the dorsal caudal MGB nucleus, compose two parasensory areas. Area CE receives dominant projections from the extrageniculate nuclei, anterior region of the LM-Sg, and Pol, supplemented with an input from the somatosensory VP complex, and may be considered a polymodal association area.  相似文献   

6.
Monteiro GA  Clemo HR  Meredith MA 《Neuroreport》2003,14(17):2139-2145
Recent studies have shown that the anterior ectosylvian sulcal cortex (AESc) and the rostral suprasylvian sulcal cortex (RSSSc) of the cat play integral roles in behavioral and collicular responses to multisensory stimuli. However, substantially more multisensory superior colliculus (SC) neurons are affected by blockade of the AESc than the RSSSc. Although both cortical regions project directly to the SC, a possible explanation for this differential effect is that the AESc may also relay an indirect corticotectal signal via the RSSSc that is reduced when the AESc is deactivated. This possibility was examined by placing orthograde tracer in the auditory field AES (FAES), visual AEV, or between these two regions of the AESc. FAES injections produced labeled boutons in the posterior-lateral bank of the RSSSc, while those placed in AEV failed to label the RSSSc. However, injections between the FAES and AEV regions revealed terminal label in both the posterior lateral bank and fundus. These observations and other studies showing connections between somatosensory portions of the AESc and RSSSc are consistent with the hypothesis that signals from the AESc can take both direct and indirect (through the RSSSc) corticotectal routes to influence processing in the SC.  相似文献   

7.
The organization of the cortical projections of the ventral medial thalamic nucleus (VM) was studied in the cat with retrograde tracers. The extent of the VM-cortical projections was first investigated with horseradish peroxidase injected in different cortical fields. The results obtained in the experiments indicated that the main target of VM efferents is represented by a large territory anterior to the cruciate sulcus involving area 6 and the gyrus proreus and extending into the anterior part of the medial cortical surface. The afferents to these precruciate fields arise from throughout the VM. In addition, the lateral third of VM projects upon the lateral precruciate cortex that is coextensive with the precruciate part of area 4, whereas VM efferents do not extend into the posterior sigmoid gyrus. A second major target of VM efferents is represented by the insular cortex in the anterior sylvian gyrus. VM projections also reach the prepyriform cortex and the cingulate gyrus. An anteroposterior decrease of density was found in the VM-cingulate projections. Sparse VM projections reach the temporal cortex, the adjacent posterior sylvian and ectosylvian fields, and the anterior ectosylvian gyrus. No VM projections were found either upon the visual areas 17 and 18 or upon the primary auditory cortex. The interrelations between some VM-cortical cell populations and their divergent collateralization were studied by using double retrograde labeling with fluorescent tracers. The results of these experiments demonstrated that a relatively high number (at least 20%) of VM cells projecting to the insula are also connected to the precruciate fields by means of axon collaterals. This finding indicates that VM is a highly collateralized structure of the cat's thalamus. Very few branched cells were found in the other combinations of cortical fields here examined (precruciate vs. posterior sylvian fields, lateral precruciate vs. proreal cortex, anterior vs. posterior cingulate fields). Altogether these data indicate that VM branched cells preferentially interconnect the two main cortical targets of the nucleus, i.e., precruciate and insular fields. The results of the present study are discussed in regard to the literature on the VM projections in the rat and the previously available data in the cat, to the afferent VM organization in the cat, to the relationships between VM and the nucleus submedius, and to the anatomical and functional role of VM in relation to the so-called "nonspecific" thalamocortical system.  相似文献   

8.
Intra- and interhemispheric connections between the anterior ectosylvian visual area (AEV) and other visual cortical areas including the lateral suprasylvian (LSS) were examined in the cat using the retrograde double-label fluorescence technique. The areal and laminar distributions of labeled neurons were mapped following injections of different tracers: Evans Blue (EB), Fast Blue (FB) and Nuclear Yellow (NY) made separately into AEV and LSS of the same or opposite hemispheres. The results indicated: (1) reciprocal and bilateral AEV-LSS connections stemming from layers V and VI in addition to a predominant efferent LSS projection upon AEV from both layer III and the posterior lateral (PLLS) subdivision of LSS; (2) homotopic interhemispheric connections to AEV arising from layers III, V and VI and from layersIII and V of ipsilateral areas 20 and 21a; (3) differential laminar distributions of the cell populations projecting to the two cortical sites injected including neurons in layer III of LSS which project to contralateral LSS and AEV of either hemisphere via collateral axon branching (double-labeled). The anatomical findings support the functional similarities between AEV and LSS and the possible role of AEV in interhemispheric transfer of visual information is discussed.  相似文献   

9.
The present paper describes the results of electrophysiological mapping experiments focused on the anterior limb of the ectosylvian gyrus of the ferret (Mustela putorius). The aim was to determine if the ferret possessed a homologous cortical area to the anterior ectosylvian visual area (AEV) of the domestic cat, but not clearly delineated in any other mammal studied to date. We were able to gather data on the visuotopic organization of a region that we consider to be a homologue of cat AEV. The visual map in this area showed a distinct visuotopic organization and covered a large extent of the visual field. Within the ferret AEV there were clusters of bimodal recording sites (somato-visual and audio-visual) that were located adjacent to surrounding unimodal cortical areas (such as the second somatosensory area and primary and secondary auditory areas). The ferret AEV, like that of the cat, was topographically isolated from other visual cortical areas by intervening auditory and somatosensory areas. Taken together these features suggest that the region described here as AEV in the ferret is indeed a direct homologue of the previously described cat AEV.  相似文献   

10.
The extent of a region containing acoustically responsive neurons within the anterior ectosylvian sulcus and its relationship to surrounding gyral auditory cortical fields was examined in chloralose-anaesthetized cats. Multiple microelectrode penetrations were made orthogonal to the middle and anterior ectosylvian gyral surfaces, and longer penetrations were made into the dorsal and ventral banks and fundus of the anterior ectosylvian sulcus. The quantitative and qualitative auditory response characteristics of neurons and neuron clusters in the sulcal banks and surrounding regions were mapped in detail, and the degree of overlap of auditory and visual neurons within the sulcus was determined by routinely testing for responsiveness to a gross light flash. The detailed results from three animals and a summary of all penetrations into the sulcus are presented. The anterior ectosylvian sulcal field (Field AES) lay deep within the banks and fundus of the posterior three quarters of the sulcus. A combination of changes in the auditory response characteristics of neurons (i.e., in optimal stimulus, latency, and frequency tuning), and the presence of visually responsive cells, distinguished this field from surrounding fields. The distinction between the anterior ectosylvian field and extensions of the nearby tonotopic fields (i.e., primary and anterior auditory fields) into the dorsal and ventral banks of the dorsoposterior sector of the sulcus was readily made on the basis of these characteristics. The distinction between the anterior ectosylvian field and extensions of the second auditory field into the ventral bank of the middle sector of the sulcus was more difficult and there were differences between animals in the transition between these fields. Anterior ectosylvian sulcal field responses did not extend into the dorsal bank in anterior parts of the sulcus but were restricted to fundal regions, an observation consistent with the presence of the fourth somatosensory field in the dorsal bank of this sector of the sulcus. The majority of penetrations into the sulcus revealed coextensive auditory and visual activity, an observation apparently at variance with the identification of a purely visual field in this region. Barbiturate anaesthesia, which has been used in experiments demonstrating an anterior ectosylvian visual area, was found to have a depressing effect on auditory responses within the anterior ectosylvian sulcal field.  相似文献   

11.
We have used anterograde and retrograde horseradish peroxidass tracing methods in this study. Peroxidase injections in the lateralis medialis thalamic nucleus (LIB of the cat resulted in labeled neurons in cortical and subcortical structures that averaged 71 % and 29%, respectively. Every LM sector receives abundant projections from the polymodal sylvian anterior cortical area, the reticular thalamic nucleus, and the stratum opticum and intermediate layer of the superior colliculus. Less abundant but consistent projections were detected in cingular, auditory II, lateral suprasylvian and anterior ectosylvian visual cortices, and cortical area 7. A topographical distribution of afferent connections to different LM sectors arising from other cortical and subcortical structures could be established. The ventromedial sector receives connections mainly from the insular agranular, limbic and prefrontal cortical areas, as well as from brain stem structures and the contralateral pretectal region. The dorsolateral sector is mainly related to cortical areas and subcortical strictures processing visual information. The existence of overlap among neuronal LM populations receiving and sending connections to and from various cortical areas suggests that this nucleus is an appropriate substrate for effective interaction between different and distant cortical areas.  相似文献   

12.
We have mapped out the ectosylvian visual area (EVA) of the cat in a series of single- and multiunit recording studies. EVA occupies 10-20 mm2 of cortex at the posterior end of the horizontal limb of the anterior ectosylvian sulcus. EVA borders on somatosensory cortex anteriorly, auditory cortex posteriorly, and nonresponsive cortex laterally. EVA exhibits limited retinotopic organization, as indicated by the fact that receptive fields shift gradually with tangential travel of the microelectrode through cortex. However, a point-to-point representation of the complete visual hemifield is not present. We have characterized the afferent and efferent connections of EVA by placing retrograde and anterograde tracer deposits in EVA and in other cortical visual areas. The strongest transcortical fiber projection to EVA arises in the lateral suprasylvian visual areas. Area 20, the granular insula, and perirhinal cortex provide additional sparse afferents. The projection from lateral suprasylvian cortex to EVA arises predominantly in layer 3 and terminates in layer 4. EVA projects reciprocally to all cortical areas from which it receives input. The projection from EVA to the lateral suprasylvian areas arises predominantly in layers 5 and 6 and terminates in layer 1. EVA is linked reciprocally to a thalamic zone encompassing the lateromedial-suprageniculate complex and the adjacent medial subdivision of the latero-posterior nucleus. We conclude that EVA is an exclusively visual area confined to the anterior ectosylvian sulcus and bounded by nonvisual cortex. EVA is distinguished from other visual areas by its physical isolation from those areas, by its lack of consistent global retinotopic organization, and by its placement at the end of a chain of areas through which information flows outward from the primary visual cortex.  相似文献   

13.
The insular areas of the cerebral cortex in carnivores remain vaguely defined and fragmentarily characterized. We have examined the cortical microarchitecture and thalamic connections of the insular region in cats, as a part of a broader study aimed to clarify their subdivisions, functional affiliations, and eventual similarities with other mammals. We report that cortical areas, which resemble the insular fields of other mammals, are located in the cat's orbital gyrus and anterior rhinal sulcus. Our data suggest four such areas: (a) a “ventral agranular insular area” in the lower bank of the anterior rhinal sulcus, architectonically transitional between iso- and allocortex and sparsely connected to the thalamus, mainly with midline nuclei; (b) a “dorsal agranular insular area” in the upper bank of the anterior rhinal sulcus, linked to the mediodorsal, ventromedial, parafascicular and midline nuclei; (c) a “dysgranular insular area” in the anteroventral half of the orbital gyrus, characterized by its connections with gustatory and viscerosensory portions of the ventroposterior complex and with the ventrolateral nucleus; and (d) a “granular insular area”, dorsocaudal in the orbital gyrus, which is chiefly bound to spinothalamic-recipient thalamic nuclei such as the posterior medial and the ventroposterior inferior. Three further fields are situated caudally to the insular areas. The anterior sylvian gyrus and dorsal lip of the pseudosylvian sulcus, which we designate “anterior sylvian area”, is connected to the ventromedial, suprageniculate, and lateralis medialis nuclei. The fundus and ventral bank of the pseudosylvian sulcus, or “parainsular area”, is associated with caudal portions of the medial geniculate complex. The rostral part of the ventral bank of the anterior ectosylvian sulcus, referred to as “ventral anterior ectosylvian area”, is heavily interconnected with the lateral posterior-pulvinar complex and the ventromedial nucleus. Present results reveal that these areas interact with a wide array of sensory, motor, and limbic thalamic nuclei. In addition, these data provide a consistent basis for comparisons with cortical fields in other mammals. J. Comp. Neurol. 384:456–482, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
The topographical distribution of the cortical afferent connections of the prefrontal cortex (PFC) in adult cats was studied by using the retrograde axonal transport of horseradish peroxidase technique. Small single injections of the enzyme were made in different locations of the PFC, and the areal location and density of the subsequent neuronal labeling in neocortex and allocortex were evaluated in each case. The comparison of the results obtained in the various cases revealed that four prefrontal sectors (rostral, dorsolateral, ventral, and dorsomedial) can be distinguished, each exhibiting a particular pattern of cortical afferents. All PFC sectors receive projections from the ipsilateral insular (agranular and granular subdivisions) and limbic (infralimbic, prelimbic, anterior limbic, cingular, and retrosplenial areas) cortices. These cortices provide the most abundant cortical projections to the PFC, and their various subdivisions have different preferential targets within the PFC. The premotor cortex and the following neocortical sensory association areas project differentially upon the various ipsilateral PFC sectors: the portion of the somatosensory area SIV in the upper bank of the anterior ectosylvian sulcus, the visual area in the lower bank of the same sulcus, the auditory area AII, the temporal area, the perirhinal cortex, the posterior suprasylvian area, area 20, the posterior ectosylvian area, the suprasylvian fringe, the lateral suprasylvian area (anterolateral and posterolateral subdivisions), area 5, and area 7. The olfactory peduncle, the prepiriform cortex, the cortico-amygdaloid transition area, the entorhinal cortex, the subiculum (ventral, posteroventral, and posterodorsal sectors), the caudomedial band of the hippocampal formation and the postsubiculum are the allocortical sources of afferents to the PFC. The dorsolateral PFC sector is the target of the largest insular, limbic, and neocortical sensory association projections. The dorsomedial and rostral sectors receive notably less abundant cortical afferents than the dorsolateral sector. Those to the dorsomedial sector arise from the same areas that project to the dorsolateral sector and are more abundant to the dorsal part, where the medial frontal eye field cortex is located. The rostral sector receives projections principally from all other PFC sectors, and from the limbic and insular cortices. The projections from the allocortex reach preferentially the ventral PFC sector. Intraprefrontal connections are most abundant within each PFC sector. Commissural interprefrontal connections are largest from the site homotopic to the HRP injection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Connections of the parahippocampal cortex. I. Cortical afferents   总被引:5,自引:0,他引:5  
In the present study in the cat the parahippocampal cortex denotes the caudoventral part of the limbic lobe and is composed of the entorhinal and perirhinal cortices. The cytoarchitecture of these areas and their borders with adjacent cortical areas are briefly discussed. The organization of the cortical afferents of the parahippocampal cortex was studied with the aid of retrograde and anterograde tracing techniques. In order to identify the source of cortical afferents, injections of retrograde tracers such as wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP), or the fluorescent substances fast blue or nuclear yellow, were placed in different parts of the parahippocampal cortex. In an attempt to further disclose the topographical and laminar organization of the afferent pathways, injections of tritiated amino acids were placed in cortical areas that were found to project to the parahippocampal cortex. The results of these experiments indicate that fibers from olfactory-related areas, the hippocampus, and other parts of the limbic cortex project only to the entorhinal cortex. The afferents from olfactory structures terminate predominantly superficially, whereas hippocampal and limbic cortical afferents are directed mainly to layers deep to the lamina dissecans. Paralimbic areas, including the anterior cingulate and the prelimbic cortices on the medial aspect, and the orbitofrontal and granular and agranular insular cortices on the lateral aspect of the hemisphere, project to the entorhinal cortex and medial parts of area 35 of the perirhinal cortex. These mostly mesocortical afferents terminate in both the superficial and deep layers of the entorhinal and perirhinal cortices. Parasensory association areas, which form part of the neocortex, do not project farther medially in the parahippocampal cortex than the perirhinal areas 35 and 36. These afferents mainly stem from a rather wide rim of neocortex that lies directly adjacent to area 36 and extends from the posterior sylvian gyrus via the posterior ectosylvian gyrus into the posterior suprasylvian gyrus. There is a rostrocaudal topographical arrangement in these projections such that rostral cortical areas distribute more rostrally and caudal parts project to more caudal parts of the perirhinal cortex. The cortex of the posterior suprasylvian gyrus contains the paravisual areas 20 and 21. The posterior sylvian gyrus most probably represents a para-auditory association area, whereas the most ventral part of the posterior ectosylvian gyrus may constitute a convergence area for visual and auditory inputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
This study describes the visual information coding ability of single neurons in the suprageniculate nucleus (Sg), and provides new data concerning the visual information flow in the suprageniculate/anterior ectosylvian pathways of the feline brain. The visual receptive fields of the Sg neurons have an internal structure rather similar to that described earlier in the anterior ectosylvian visual area (AEV). The majority of the Sg units can provide information via their discharge rate at the site of the visual stimulus within their large receptive fields. This suggests that they may serve as panoramic localizers. The sites of maximum responsivity of the Sg neurons are distributed over the whole investigated part of the visual field. There is no significant difference between the distributions of spatial location of maximum sensitivity of the AEV and the Sg neurons. The mean visual response latency of the Sg units was found to be significantly shorter than the mean latency of the AEV neurons, but there was no difference between the shortest latency values of the thalamic and the cortical single-units. This suggests that the visual information flows predominantly from the Sg to the AEV, though the cortico-thalamic route is also active. The Sg seems to represent a thalamic nucleus rather similar in function to both the first-order relays and the higher-order thalamic nuclei. These results, together with the fact that the superior colliculus provides the common ascending source of information to the suprageniculate/anterior ectosylvian pathway, suggest a unique function of the AEV and the Sg in sensorimotor integration.  相似文献   

17.
The topical organization of thalamic projections to the second and fourth somesthetic areas in the anterior ectosylvian gyrus of the cat has been studied using the technique of retrograde axonal transport of horseradish peroxidase. The projections of the posterolateral and posteromedial ventral nuclei (VPL, VPM) to the second somesthetic area (SII) are organized somatotopically. The posterior portion of SII (hindlimb area) receives fibers mainly from the dorsolateral part of VPL, the middle portion of SII (forelimb area) from the ventromedial part of VPL, and the anterior portion of SII (face area) from VPM. These topical projections are more loosely organized and less densely arranged than those to the first somesthetic area. The SII receives a few fibers from the medial geniculate nucleus, particularly its magnocellular and dorsal principal parts, and from the suprageniculate nucleus. The posterior part of SII lying near the secondary auditory area receives many fibers from the medial geniculate and suprageniculate nuclei, and only a few fibers from the lateral central and paracentral nuclei. The fourth somesthetic area (SIV), located in the dorsal bank of the anterior ectosylvian sulcus, receives fibers mainly from the dorsal principal and magnocellular parts of the medial geniculate nucleus, and from the suprageniculate nucleus. The SIV receives a fair number of fibers from VPL and VPM roughly in a somatotopical manner. The posterior portion of SIV receives fibers chiefly from the dorsolateral part of VPL, the middle portion of SIV from the ventromedial part of VPL, and the anterior portion from VPM. In addition, SIV receives a few fibers from the lateral central, paracentral, ventral lateral and ventral medial nuclei. The SIV, together with the most posterior part of SII, forms an auditory area, receiving many fibers from the medial geniculate and suprageniculate nuclei, and a few fibers from the intralaminar nuclei.  相似文献   

18.
Retrograde transport studies have shown that widespread areas of the cerebral cortex project upon the superior colliculus. In order to explore the organization of these extensive projections, the anterograde autoradiographic method has been used to reveal the distribution and pattern of corticotectal projections arising from 25 cortical areas. In the majority of experiments, electrophysiological recording methods were used to characterize the visual representation and cortical area prior to injection of the tracer. Our findings reveal that seventeen of the 25 cortical areas project upon some portion of the superficial layers (stratum zonale, stratum griseum superficiale, and stratum opticum, SO). These cortical regions include areas 17, 18, 19, 20a, 20b, 21a, 21b, posterior suprasylvian area (PS), ventral lateral suprasylvian area (VLS), posteromedial lateral suprasylvian area (PMLS), anteromedial lateral suprasylvian area (AMLS), anterolateral lateral suprasylvian area (ALLS), posterolateral lateral suprasylvian area (PLLS), dorsolateral lateral suprasyvian area (DLS), periauditory cortex, cingulate cortex, and the visual portion of the anterior ectosylvian sulcus. While some of these corticotectal projections target all superficial laminae and sublaminae, others are more discretely organized in their laminar-sublaminar distribution. Only the corticotectal projections arising from areas 17 and 18 are exclusively related to the superficial layers. The remaining 15 pathways innervate both the superficial and intermediate and/or deep layers. The large intermediate gray layer (stratum griseum intermedium; SGI) receives projections from almost every cortical area; only areas 17 and 18 do not project ventral to SO. All corticotectal projections to SGI vary in their sublaminar distribution and in their specific pattern of termination. The majority of these projections are periodic, or patchy, and there are elaborate (double tier, bridges, or streamers) modes of distribution. We have attempted to place these findings into a conceptual framework that emphasizes that the SGI consists of sensory and motor domains, both of which contain a mosaic of connectionally distinct afferent compartments (Illing and Graybiel, '85, Neuroscience 14:455-482; Harting and Van Lieshout, '91, J. Comp. Neurol. 305:543-558). Corticotectal projections to the layers ventral to SGI, (stratum album intermediale, stratum griseum profundum, and stratum album profundum) arise from thirteen cortical areas. While an organizational plan of these deeper projections is not readily apparent, the distribution of several corticotectal inputs reveals some connectional parcellation.  相似文献   

19.
Microelectrode mapping techniques were employed in the cat's auditory cortex to relate the best frequencies of a large population of neurons with their spatial loci. Based upon the best-frequency distribution, the auditory region was divided into four complete and orderly tonotopic representations and a surrounding belt of cortex in which the tonotopic organization was more complex. The four auditory fields occupy a crescent-shaped band of tissue which comprises portions of both the exposed gyral surfaces and sulcal banks of the ectosylvian cortex. The anterior auditory field (A) is situated most rostrally upon the anterior ectosylvian gyrus. It extends upon the ventral bank of the suprasylvian sulcus and upon the banks of the anterior ectosylvian sulcus. Adjoining field A caudally is the primary auditory field (AI), which extends across the middle ectosylvian gyrus and portions of both banks of the posterior ectosylvian sulcus. The representations of the highest best frequencies in fields A and AI are contiguous. Caudal and ventral to AI are located the posterior (P) and ventroposterior (VP) auditory fields. They lie mainly upon the caudal bank of the posterior ectosylvian sulcus but also extend upon the rostral bank and upon the posterior ectosylvian gyrus. The low best-frequency representations of fields AI and P are contiguous, whereas the low best-frequency representation of field VP lies near the ventral end of the posterior ectosylvian sulcus. Fields P and VP are joined along their middle and high best-frequency representations. Within each auditory field isofrequency lines defined by the spatial loci of neurons with similar best frequencies are oriented orthogonal to the low-to-high best-frequency gradients.  相似文献   

20.
The projection from the lateral suprasylvian visual areas to the superior colliculus was investigated in cats using both anterograde and retrograde tracing techniques. The retrograde transport of horseradish peroxidase (HRP) or wheat germ agglutinin-HRP (WGA-HRP) from their site of deposit in the superior colliculus indicates that all divisions of the lateral suprasylvian visual areas project to both the superficial and deep layers of the superior colliculus. However, following tracer deposits in the superior colliculus that are confined to the layers below the stratum opticum (deep layers), more neurons are labeled along the lateral bank than along the medial bank of the middle suprasylvian sulcus. Conversely, tracer deposits in the superior colliculus dorsal to and including the stratum opticum label more cells in the medial than the lateral bank. These retrograde experiments also confirm that the visual cortex along the lateral gyrus (areas 17 and 18) projects to the superficial, but apparently not to the deep layers. The visual area in the cortex surrounding the caudal two-thirds of the anterior ectosylvian sulcus projects to the deep, but not to the superficial layers. The laminar and areal patterns of anterograde axon labeling in the superior colliculus were examined after single deposits of 3H-amino acids (autoradiography), HRP, or WGA-HRP in the lateral suprasylvian cortical regions, or combined isotope and WGA-HRP deposits. Axon labeling in the superior colliculus is generally densest in the stratum opticum and extends either dorsally into the superficial layers or ventrally into the intermediate gray layer. Specifically, the anterior divisions of the lateral suprasylvian cortex project primarily to the lateral portion of the superior colliculus, with the projection from the medial bank biased toward the superficial layers and axons from the lateral bank aimed mainly at the intermediate gray layer with some axons even reaching the deepest gray layer of the superior colliculus. Both the posteromedial and posterolateral divisions of the lateral suprasylvian cortex project to more extensive portions of the mediolateral and rostrocaudal dimensions of the superior colliculus than the anterior divisions. However, the posterolateral division projects more heavily to the intermediate gray layer than the posteromedial division; from the latter, axons distribute more superficially in the superior colliculus. Finally, the cortex surrounding the posterior suprasylvian sulcus projects primarily to the medial part of the superficial layers of the superior colliculus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号