首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Receptive fields of perifoveal ganglion cells have been measured by determining threshold for eliciting a just detectable response using either concentric spot stimuli centred on the receptive field or small spot stimuli in different parts of the receptive field at various states of retinal adaptation and with stimuli selected to separate rod from cone function.2. Light-adaptation decreases the sensitivity, latency and duration of threshold responses throughout the receptive field of a ganglion cell.3. With all patterns of retinal stimulation and states of adaptation, threshold signals of the rods reach a ganglion cell later and those of the cones earlier than approximately 50 msec after a light stimulus.4. In the more dark-adapted retina threshold rod and cone signals can be transmitted to the brain by the same or by neighbouring ganglion cells but not simultaneously; in the light-adapted state only the cone signal is transmitted.  相似文献   

2.
Correlated firing in rabbit retinal ganglion cells   总被引:2,自引:0,他引:2  
A ganglion cell's receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina using multiple electrodes have challenged this view of independent firing by showing that neighboring ganglion cells have an increased tendency to fire together within +/-5 ms. However, there is still uncertainty about which types of ganglion cells fire together, the mechanisms that produce coordinated spikes, and the overall function of coordinated firing. To address these issues, the responses of up to 80 rabbit retinal ganglion cells were recorded simultaneously using a multielectrode array. Of the 11 classes of rabbit ganglion cells previously identified, coordinated firing was observed in five. Plots of the spike train cross-correlation function suggested that coordinated firing occurred through two mechanisms. In the first mechanism, a spike in an interneuron diverged to produce simultaneous spikes in two ganglion cells. This mechanism predominated in four of the five classes including the ON brisk transient cells. In the second mechanism, ganglion cells appeared to activate each other reciprocally. This was the predominant pattern of correlated firing in OFF brisk transient cells. By comparing the receptive field profiles of ON and OFF brisk transient cells, a peripheral extension of the OFF brisk transient cell receptive field was identified that might be produced by lateral spike spread. Thus an individual OFF brisk transient cell can respond both to a light stimulus directed at the center of its receptive field and to stimuli that activate neighboring OFF brisk transient cells through their receptive field centers.  相似文献   

3.
In view of the reported involvement of the retinae in mediating magnetic field effects on pineal function in rats, the present study sought to test the hypothesis - based on theoretical calculations - that dim light activation of photoreceptors is necessary for magnetoreception by the retinae. Adult male rats were exposed to a single nocturnal inversion of the earth's magnetic field in the presence or absence of dim red light. Pineal gland N-acetyltransferase and hydroxyindole-O-methyltransferase activities were measured as indices of magnetosensitivity. In animals exposed to dim red light, pineal enzyme activities were inhibited significantly by the magnetic stimulus in comparison to controls (dim red light only). In contrast, the pineal response to a magnetic stimulus was absent in total darkness. These results support the notion that photoreceptor stimulation by dim light is necessary for the perception of weak magnetic fields.  相似文献   

4.
Sharpness of vision depends on the resolution of details conveyed by individual neurons in the visual pathway. In the dorsal lateral geniculate nucleus (LGN), the neurons have receptive fields with center-surround organization, and spatial resolution may be measured as the inverse of center size. We studied dynamics of receptive field center size of single LGN neurons during the response to briefly (400-500 ms) presented static light or dark spots. Center size was estimated from a series of spatial summation curves made for successive 5-ms intervals during the stimulation period. The center was wide at the start of the response, but shrank rapidly over 50-100 ms after stimulus onset, whereupon it widened slightly. Thereby, the spatial resolution changed from coarse-to-fine with average peak resolution occurring approximately 70 ms after stimulus onset. The changes in spatial resolution did not follow changes of firing rate; peak firing appeared earlier than the maximal spatial resolution. We suggest that the response initially conveys a strong but spatially coarse message that might have a detection and tune-in function, followed by transient transmission of spatially precise information about the stimulus. Experiments with spots presented inside the maximum but outside the minimum center width suggested a dynamic reduction in number of responding neurons during the stimulation; from many responding neurons initially when the field centers are large to fewer responding neurons as the centers shrink. Thereby, there is a change from coarse-to-fine also in the recruitment of responding neurons during brief static stimulation.  相似文献   

5.
To explore the brain response to sacral surface therapeutic electrical stimulation (SSTES) for the treatment of refractory urinary incontinence and frequent micturition, evoked magnetic fields were measured in six healthy males. Electrical stimuli were applied between bilateral surface electrodes over the second through fourth posterior sacral foramens with intensity just below the pain threshold. Somatosensory evoked magnetic fields (SEFs) for the bilateral median (MN) and posterior tibial nerves (PTN) were also measured for the comparison. Sources of the early SEF peaks were superimposed on individual magnetic resonance images. The first peak latency for sacral stimuli, M30, occurred at 30.2+/-0.8 ms (mean+/-standard deviation, N=6), with shorter latency than those for PTN stimulus (39.3+/-1.4 ms, N=12) and longer latency than those for MN stimulus (21.0+/-0.9 ms, N=12). The second peak latency for sacral stimuli, M50, occurred at 47.2+/-2.9 ms (N=6). Both M30 and M50 peaks showed a single dipole pattern over the vertex in the isofield maps. The equivalent current dipoles of M30 and M50 were both estimated near the medial end of the central sulcus with approximately posterior current direction. These results suggest that the sacral M30 and M50 are responses from the primary somatosensory cortex. The relatively long time lag between the onset and peak of M30 suggests that SSTES directly affects both the cauda equina and cutaneous nerve of the sacral surface.  相似文献   

6.
Summary Microelectroneurographic studies in man allow the comparison of stimulus induced activity in the single peripheral nerve unit with the subject's ratings of sensation. Relationships between stimulus intensity, single unit discharges, and pain ratings were investigated using a CO2 laser stimulator which delivers radiant heat pulses of 50 ms duration. Recordings were performed percutaneously from the radial nerve at the wrist. Receptor types were identified by their response to different stimulus modalities and by their reaction delay to electrical test stimuli within the receptive field. Receptive fields of identified units were stimulated with randomised series of different radiant heat intensities between half and double the individual pain threshold (5 to 20 W; stimulation area 64 mm2).The largest receptor class observed to be activated by CO2 laser stimuli were polymodal C-nociceptors. None of them was spontaneously active. High discharge rates up to 75/s were not necessarily associated with pain but, if pain was felt, the impulse trains usually lasted for more than 60 ms. Inter-spike intervals were distributed over a wide range between 8 and 145 ms with a peak at about 25 ms. This peak was only slightly shifted by increasing the stimulus intensity. Higher correlations were found between the number of spikes and stimulus intensity. Measures of Signal Detection Theory indicated that the single unit discharges discriminated stimulus intensities better than the subjects' ratings. These findings underline the importance of temporal summation in the processing of C-fibre input with a considerable loss of information in the nociceptive system.  相似文献   

7.
 Electromyographic (EMG) responses evoked in hand muscles by a magnetic test stimulus over the motor cortex can be suppressed if a conditioning stimulus is applied to the opposite hemisphere 6–30 ms earlier. In order to define the mechanism and the site of action of this inhibitory phenomenon, we recorded descending volleys produced by the test stimulus through high cervical, epidural electrodes implanted for pain relief in three conscious subjects. These could be compared with simultaneously recorded EMG responses in hand muscles. When the test stimulus was given on its own it evoked three waves of activity (I-waves) in the spinal cord, and a small EMG response in the hand. A prior conditioning stimulus to the other hemisphere suppressed the size of both the descending spinal cord volleys and the EMG responses evoked by the test stimulus when the interstimulus interval was greater than 6 ms. In the spinal recordings, the effect was most marked for the last I-wave (I3), whereas the second I2-wave was only slightly inhibited, and the first I-wave (I1) was not inhibited at all. We conclude that transcranial stimulation over the lateral part of the motor cortex of one hemisphere can suppress the excitability of the contralateral motor cortex. Received: 31 August 1998 / Accepted: 26 October 1998  相似文献   

8.
This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10–25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50–60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.  相似文献   

9.
1. Medullary raphespinal neurons antidromically activated from the T2-T5 segments were tested for responses to electrical stimulation of cervical vagal and thoracic sympathetic afferents (by stimulating the left stellate ganglion), somatic probing, auditory stimuli, and visual stimuli in cats anesthetized with alpha-chloralose. A total of 99 neurons in the raphe nuclei were studied; the locations of 76 cells were histologically confirmed. Neurons were located in raphe magnus (RM, 65%), raphe obscurus (RO, 32%), and raphe pallidus (RPa, 4%). The mean conduction velocity of these neurons was 62 +/- 2.9 (SE) m/s with a range of 1.1-121 m/s. 2. A total of 60/99 tested neurons responded to electrical stimulation of sympathetic afferents. Quantitation of responses was obtained for 55 neurons. With one exception, all responsive neurons were excited and exhibited an early burst of spikes with a mean latency of 16 +/- 1.2 ms. From a spontaneous discharge rate of 5.2 +/- 1.2 spikes/s, neuronal activity increased by 2.9 +/- 0.3 spikes/stimulus. In addition to an early peak, 15 neurons (25%) exhibited a late burst of spikes with a latency of 182 +/- 12.9 ms; neuronal activity increased by 5.0 +/- 1.3 spikes/stimulus. Duration of the late peak (130 +/- 18.5 ms) was longer than for the early peak (18 +/- 0.7 ms), but threshold voltages for eliciting each peak were comparable. Sixteen of 29 spontaneously active neurons exhibited a postexcitatory depression of activity that lasted for 163 +/- 19.1 ms. All but one tested neuron in RO responded to stimulation of sympathetic afferents, but 65% of neurons in RM responded to this stimulus. 3. In response to vagal afferent stimulation, 19% of 57 neurons exhibited inhibition only, 11% were only excited, and 9% were either excited or inhibited, depending on the stimulus paradigm used; the remaining 61% of neurons were unresponsive. From a spontaneous rate of 7.9 +/- 3.8 spikes/s, excited cells increased their discharge rate by 1.6 +/- 0.3 spikes/stimulus. Activity of inhibited cells was reduced from 21.3 +/- 5.8 to 7.8 +/- 3.1 spikes/s. The conditioning-test (CT) technique was used to assess 11 neurons' responses. Stellate ganglion stimulation was the test stimulus, and vagal stimulation the conditioning stimulus. Vagal stimulation reduced the neuronal responses to stellate ganglion stimulation by an average of 50% with a CT interval of 60-100 ms, and cell responses returned to control after 300 ms. With spontaneous cell activity, low frequencies of vagal stimulation were generally excitatory, and high frequencies (10-20 Hz) inhibitory.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A retinal ganglion cell receptive field is made up of an excitatory center and an inhibitory surround. The surround has two components: one driven by horizontal cells at the first synaptic layer and one driven by amacrine cells at the second synaptic layer. Here we characterized how amacrine cells inhibit the center response of on- and off-center Y-type ganglion cells in the in vitro guinea pig retina. A high spatial frequency grating (4-5 cyc/mm), beyond the spatial resolution of horizontal cells, drifted in the ganglion cell receptive field periphery to stimulate amacrine cells. The peripheral grating suppressed the ganglion cell spiking response to a central spot. Suppression of spiking was strongest and observed most consistently in off cells. In intracellular recordings, the grating suppressed the subthreshold membrane potential in two ways: a reduced slope (gain) of the stimulus-response curve by approximately 20-30% and, in off cells, a tonic approximately 1-mV hyperpolarization. In voltage clamp, the grating increased an inhibitory conductance in all cells and simultaneously decreased an excitatory conductance in off cells. To determine whether center response inhibition was presynaptic or postsynaptic (shunting), we measured center response gain under voltage-clamp and current-clamp conditions. Under both conditions, the peripheral grating reduced center response gain similarly. This result suggests that reduced gain in the ganglion cell subthreshold center response reflects inhibition of presynaptic bipolar terminals. Thus amacrine cells suppressed ganglion cell center response gain primarily by inhibiting bipolar cell glutamate release.  相似文献   

11.
A magnetic transcranial conditioning stimulus given over the motor cortex at intensities below threshold for obtaining electromyographical (EMG) responses in active hand muscles can suppress responses evoked in the same muscles at rest by a suprathreshold magnetic test stimulus given 1–5 ms later. In order to define the mechanism of this inhibitory effect, we recorded descending volleys produced by single and paired magnetic transcranial stimulation of motor cortex through high cervical, epidural electrodes implanted for pain relief in two conscious subjects with no abnormality of the central nervous system. The conditioning stimulus evoked no recognisable descending activity in the spinal cord, whilst the test stimulus evoked 3–4 waves of activity (I-waves). Conditioning stimulation suppressed the size of both the descending spinal cord volleys and the EMG responses evoked by the test stimulus. Inhibition of the descending spinal volleys was most pronounced at ISI 1 ms and had disappeared by ISI 5 ms. It was evident for all components following the I1-wave, while the I1-wave itself was not inhibited at all. We conclude that a small conditioning magnetic stimulus can suppress the excitability of human motor cortex, probably by activating local cortico-cortical inhibitory circuits. Received: 24 September 1997 / Accepted: 25 October 1997  相似文献   

12.
 The short-latency electromyographic response evoked by transcranial magnetic stimulation (MEP) increases in size during fatigue, but the mechanisms are unclear. Because large changes occur in the muscle action potential, we tested whether changes in the response to stimulation of the peripheral motor nerve could fully account for the increase in the MEP. Subjects (n=8) performed sustained maximal voluntary contractions (MVCs) of the right elbow flexors for 2 min. During the contraction, the MEP and the response to supramaximal stimulation of motor-nerve fibres in the brachial plexus were alternately recorded. During the contraction, responses to motor-nerve stimulation increased in area by 87±35% (mean±SD) in the biceps brachii and 74±30% in the brachioradialis, but the area of the MEPs increased by 153±86% and 175±122%, respectively. Thus, the increase in the MEP was greater than the increase in the peripheral M-wave. The onset latency of the MEP in the biceps brachii increased by 0.7±0.6 ms (range: –0.2 to 1.9 ms) during the sustained contraction. A smaller increase occurred in response to peripheral nerve stimulation (0.3±0.3 ms; from –0.3 to 0.9 ms). In the contralateral elbow flexors, neither responses to transcranial magnetic stimulation nor responses to motor-nerve stimulation changed in size or latency. During the sustained contraction, the short silent period after stimulation of the peripheral nerve (48±5 ms in biceps brachii and 48±4 ms in brachioradialis) increased in duration by about 12 ms (to 61±12 ms and 60±9 ms, respectively), whereas the silent period following transcranial magnetic stimulation increased from 238±39 ms in biceps brachii and 243±34 ms in brachioradialis to 325±41 ms and 343±42 ms, respectively. During a sustained MVC, while the motor responses to peripheral and to cortical stimulation grow concurrently, growth of the MEP cannot be entirely accounted for by changes in the muscle action potential. Hence, some of the increase in MEP size during fatigue must reflect changes in the central nervous system. Increased latency of the MEPs and lengthening of the peripherally evoked silent period are consistent with decreased excitability of the alpha motoneurone pool. Thus, an increased response from the motor cortex to the magnetic stimulus remains a likely contributor to the increase in the size of the MEP in fatigue. Received: 11 September 1998 / Accepted: 28 January 1999  相似文献   

13.
Summary The characteristics of visually evoked unit responses in area PG of the infraparietal lobule were studied in the awake trained Rhesus monkey. These responses are shown to be significantly modified by pairing the visual stimulus with pre-conditioning stimulation of targets in the LP Pulvinar complex. Pre-conditioning stimuli were either single pulses, or a 50 ms train of pulses at 100 Hz delivered through bipolar electrodes 20 ms prior to, simultaneously with, or 50 ms following the visual stimulus. In some cases, modifications of the visual responses appeared as more massive discharges; in others they became bursts of constant latencies, pattern and duration, that contained high frequency discharges. A preconditioning single stimulus delivered simultaneously to a few sites in the LP, medial and lateral pulvinar was more effective than stimulation at a single electrode site, and produced an enhancement that appeared like an additive effect of several inputs. In the enhanced condition, repetition of single pulse preconditioning stimulation resulted in a considerable build-up of the enhancement. A pre-conditioning train of stimuli delivered during enhancement resulted in a further increase in the constancy of response durations and patterns. These changes, lasting as long as five minutes, manifested hysteresis: when recovery was allowed without any pre-conditioning stimulation, the various response patterns appeared in a reverse order. It is proposed that this dependence of the responses on the neural state is based on a complex network of inputs to cells of area 7.  相似文献   

14.
Averaged magnetoencephalography (MEG) following somatosensory stimulation, somatosensory evoked magnetic field(s) (SEF), in humans are reviewed. The equivalent current dipole(s) (ECD) of the primary and the following middle-latency components of SEF following electrical stimulation within 80-100 ms are estimated in area 3b of the primary somatosensory cortex (SI), the posterior bank of the central sulcus, in the hemisphere contralateral to the stimulated site.Their sites are generally compatible with the homunculus which was reported by Penfield using direct cortical stimulation during surgery. SEF to passive finger movement is generated in area 3a or 2 of SI, unlike with electrical stimulation. Long-latency components with peaks of approximately 80-120 ms are recorded in the bilateral hemispheres and their ECD are estimated in the secondary somatosensory cortex (SII) in the bilateral hemispheres.We also summarized (1) the gating effects on SEF by interference tactile stimulation or movement applied to the stimulus site, (2) clinical applications of SEF in the fields of neurosurgery and neurology and (3) cortical plasticity (reorganization) of the SI. SEF specific to painful stimulation is also recorded following painful stimulation by CO(2) laser beam. Pain-specific components are recorded over 150 ms after the stimulus and their ECD are estimated in the bilateral SII and the limbic system. We introduced a newly-developed multi (12)-channel gradiometer system with the smallest and highest quality superconducting quantum interference device (micro-SQUID) available to non-invasively detect the magnetic fields of a human peripheral nerve. Clear nerve action fields (NAFs) were consistently recorded from all subjects.  相似文献   

15.
Transcranial magnetic stimulation activates corticospinal neurones directly and transsynaptically and hence, activates motoneurones and results in a response in the muscle. Transmastoid stimulation results in a similar muscle response through activation of axons in the spinal cord. This study was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from −6 ms (magnet before transmastoid) to 5 ms were investigated. When responses to the individual stimuli were set at 10-15 % of the maximal M-wave, responses to the paired stimuli were larger than expected at ISIs of −6 and −5 ms but were reduced in size at ISIs of −2 to 1 ms and at 3 to 5 ms. With individual responses of 3-5 % of maximal M-wave, facilitation still occurred at ISIs of −6 and −5 ms and depression of the paired response at ISIs of 0, 1, 4 and 5 ms. The interaction of the response to transmastoid stimulation with the multiple descending volleys elicited by magnetic stimulation of the cortex is complex. However, depression of the response to the paired stimuli at short ISIs is consistent with an occlusive interaction in which an antidromic volley evoked by the transmastoid stimulus collides with and annihilates descending action potentials evoked by the transcranial magnetic stimulus. Thus, it is consistent with the two stimuli activating some of the same corticospinal axons.  相似文献   

16.
OBJECTIVE: We recorded event-related magnetic fields following a target stimulus followed by a masking stimulus to investigate the visual backward masking effect using a helmet-type magnetoencephalography system in humans. METHODS: In the target stimulus with masking stimulus conditions, duration of the target stimulus was constant at 16 ms, and duration of the masking stimulus was altered (16, 48 and 144 ms). The target stimulus was masked by the 144-ms masking stimulus, but not by the 16-ms masking stimulus, and was obscured by the 48-ms masking stimulus. For control conditions (Single-condition), event-related magnetic fields were recorded following the sole presentation of the masking stimulus for 32, 64 or 160 ms. RESULTS: One major response was obtained at 180 ms after the onset of the stimulation in each condition. The equivalent current dipole of one major response was estimated to lie in the occipital lobe, but there was a relatively large inter-individual difference. There was no significant difference in latency between the target stimulus with masking stimulus conditions and Single-conditions. In the target stimulus with masking stimulus conditions with the 48- and 144-ms masking stimulus, the root mean square value did not differ from that in the respective Single-condition, while the root mean square value for the target stimulus with masking stimulus conditions with the 16-ms masking stimulus was significantly smaller than that in the Single-condition with the 32-ms masking stimulus, but not different from that in the Single-condition with the 16-ms masking stimulus. CONCLUSIONS: The peak latency of one major response depended on the onset of the first stimulus for both the target stimulus with masking stimulus conditions and Single-condition, but the root mean square value depended on the duration of the masking stimulus. We concluded that the temporal information for the target stimulus was preserved during the masking effect, while the figural information was interrupted by the masking stimulus. Our results suggested that temporal factors for the stimulus were processed differently from those responsible for the object's recognition during backward masking.  相似文献   

17.
The posterior parietal cortex (PPC) is strongly related to task performance by evaluating sensory cues and visually guided movements. Sensorimotor processing is improved by task repetition as indicated by reduced response time. We investigated practice-induced changes in PPC visuomotor processing during a Go/NoGo task in humans using 306-channel magnetoencephalography. Eleven healthy adult males were instructed to extend the right index finger when presented with the Go stimulus (a red circle), but not to react to the NoGo stimulus (a green circle or a red square). Magnetic fields over the visual, posterior parietal, and sensorimotor cortices were measured before and after 3 days of task practice. The first peak of the visual-evoked field (VEF) occurred at approximately 80 ms after presentation of either the Go or NoGo stimulus, while a PPC response, with latency to a peak of 175.8 ± 26.7 ms, occurred only after the Go stimulus. No significant change in the first peak of VEF was measured after 3 days of task practice, but there was a significant reduction in the latency to peak PPC activity (160.1 ± 27.6 ms) and in the time from peak PPC activity to electromyogram onset. In all participants, practice resulted in a significant reduction in reaction time. These results demonstrate that practicing a sensorimotor task induces neuroplastic changes in PPC that accelerate sensorimotor processing and reduce motor response times.  相似文献   

18.
Transcranial magnetic stimulation (TMS) was used to study visuospatial attention processing in ten healthy volunteers. In a forced choice recognition task the subjects were confronted with two symbols simultaneously presented during 120 ms at random positions, one in the left and the other in the right visual field. The subject had to identify the presented pattern out of four possible combinations and to press the corresponding response key within 2 s. Double-pulse TMS (dTMS) with a 100-ms interstimulus interval (ISI) and an intensity of 80% of the stimulator output (corresponding to 110-120% of the motor threshold) was applied by a non-focal coil over the right or left posterior parietal cortex (PPC, corresponding to P3/P4 of the international 10-20 system) at different time intervals after onset of the visual stimulus (starting at 120 ms, 270 ms and 520 ms). Double-pulse TMS over the right PPC starting at 270 ms led to a significant increase in percentage of errors in the contralateral, left visual field (median: 23% with TMS vs 13% without TMS, P=0.0025). TMS applied earlier or later showed no effect. Furthermore, no significant increase in contra- or ipsilateral percentage of errors was found when the left parietal cortex was stimulated with the same timing. These data indicate that: (1) parietal influence on visuospatial attention is mainly controlled by the right lobe since the same stimulation over the left parietal cortex had no significant effect, and (2) there is a vulnerable time window to disturb this cortical process, since dTMS had a significant effect on the percentage of errors in the contralateral visual hemifield only when applied 270 ms after visual stimulus presentation.  相似文献   

19.
Goldfish retinal ganglion cells with unusual response properties are described. Each cell was classified as either Y-like or W-like, based upon its responses to sinusoidally modulated contrast-reversal gratings presented at various positions across the cell's receptive field. The unusual responses of the cells (which distinguish them from typical Y-like and W-like cells) occurred when sinusoidal gratings were drifted across the receptive field at a constant temporal rate. These cells responded at double the stimulus temporal rate to low-spatial-frequency gratings; a Fourier decomposition of the response revealed a large second harmonic component. However, to high-spatial-frequency stimuli, the response modulated at the temporal frequency of the stimulus; the Fourier fundamental component dominated the response. To examine the underlying receptive field mechanisms of these cells, each cell's response was analyzed using several different response measures. The results suggest that the receptive field properties of these unusual cells differ from the typical center/surround organization and confirm recent findings that the receptive fields of goldfish ganglion cells consist of inhomogeneities and subareas.  相似文献   

20.
Summary A conventional equivalent current dipole estimation provides one of the quantitative measures to evaluate the discrepancy between two single-dipole-like magnetic field patterns, though there is one problem; all stimulus positions in the visual field do not necessarily contribute to the generation of a single-dipole-like magnetic field. Another important problem occurs when the field pattern is complex and cannot be approximated by a dipole. This makes it difficult to evaluate the discrepancy between two magnetic field patterns by the dipole parameters. In this paper, we determined the stimulus positions adequate for generating single-dipole-like magnetic field patterns by evaluating the magnetic field's goodness-of-fit to the field generated by a single dipole. We propose to use a similarity (SIM) as a quantitative measure of the discrepancy between two complex magnetic field patterns. The SIM is defined as an angle between two magnetic field vectors. We evaluated the discrepancy between the 100 ms post-stimulus responses to pattern-reversal (Rv) stimulus, pattern-onset (Pat) stimulus, and luminance-onset (Lumi) stimulus. The following results were obtained: (1) Stimulation of some of the octants in the fovea, far from the vertical meridian, elicited a single-dipole-like magnetic field pattern at a latency of 100 ms, though stimulation of the central part of the fovea, and stimulation of the octants along the vertical meridian, did not elicit a single-dipole-like magnetic field pattern; (2) The discrepancy between responses was quantitatively evaluated by the SIM even if the field patterns were complex; (3) The SIM analysis showed that the discrepancy between the responses to the Rv and the Lumi stimuli, as well as that between the responses to the Pat and the Lumi stimuli, were greater than that between the responses to the Rv and the Pat stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号