首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Differential expression of two rainbow trout CYP1A genes was measured in vivo and in vitro in response to treatment with the model CYP1A inducers beta-naphthoflavone (BNF), 3-methylcholanthrene (3-MC), isosafrole (ISF), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, only in vitro). Originally described by Berndtson and Chen (Arch. Biochem. Biophys. 310, 187-195, 1994) as CYP1A1 and CYP1A2, these genes were renamed CYP1A3 and CYP1A1, respectively, by the P450 nomenclature committee. A significant, differential, inducer-dependent induction of the two CYP1A mRNAs, as measured by RNase protection assay, was observed in vivo. CYP1A3 and CYP1A1 mRNA levels in liver were significantly induced 50- and 18-fold, respectively, following ip injection with BNF. Conversely, CYP1A3 and CYP1A1 mRNA levels were significantly induced 5- and 66-fold, respectively, following ip injection with 3-MC. Isosafrole had no significant effect on in vivo induction of CYP1A mRNA levels. In primary cultures of hepatocytes, BNF, 3-MC, ISF, as well as TCDD all significantly induced CYP1A3 and CYP1A1 mRNA levels compared to controls. The differential induction of the two CYP1A genes was not as evident in vitro as in vivo. In addition, reanalysis and sequence comparison of the these two trout CYP1A genes with the first trout CYP1A cDNA described by Heilmann et al. (DNA 7, 379-387, 1988) indicate that the Heilmann cDNA is a hybrid of the two trout genes. The 5' portion of the cDNA sequence (212 bp) was determined by sequencing of a genomic clone and is 100% identical to the trout CYP1A3 gene. The majority of the cDNA sequence (2377 bp), however, was sequenced from a partial cDNA clone and is 99.2% identical to trout CYP1A1. Although the nomenclature of these two trout CYP1A genes is undergoing revision, these results demonstrate a differential, inducer-dependent response to model mammalian CYP1A inducers.  相似文献   

3.
豆腐果苷对人孕烷X受体介导的CYP3A4和MDR1的转录调节作用   总被引:1,自引:0,他引:1  
目的:建立和验证人孕烷X受体(human pregnant X receptor,hPXR)介导的CYP3A4、MDR1药物诱导剂的体外筛选体系,考察豆腐果苷对hPXR介导的CYP3A4、MDR1的转录调节作用。方法:利用构建的双荧光素酶报告基因系统,将表达载体和报告载体共转染HepG2细胞,以10μmol/L利福平为阳性对照,用不同浓度(0.004、0.04、0.4μmol/L)豆腐果苷处理48h后裂解细胞进行双荧光素酶活性检测。结果:不同浓度的豆腐果苷均不能通过激活hPXR来介导CYP3A4和MDR1表达上调,各浓度处理组的双荧光素酶比活性值与DMSO溶媒组差异无统计学意义(P>0.05)。结论:成功构建了hPXR介导的CYP3A4和MDR1药物诱导剂的体外筛选体系,并发现豆腐果苷不能通过激活hPXR介导CYP3A4和MDR1的表达上调。  相似文献   

4.
5.
6.
Aromatic hydrocarbon (AH) effects are mediated by binding of the AH receptor and its heterodimeric partner aromatic hydrocarbon nuclear translocator to specific response elements on DNA (AHREs). CYP1A2 expression is induced by AHs, yet AHREs have been identified in CYP1A2 genes of only two species and their functional role assessed only in the human gene. There have been few analyses of CYP1A2 gene regulation in nonhepatic cells. To gain further insight into CYP1A2 regulation, we cloned the initial 1.2 kilobases (kb) of the guinea pig CYP1A2 gene 5'-flanking region and characterized CYP1A2 expression in guinea pig colon adenocarcinoma cells (GPC16). Two putative AHRE sites were identified (-830 and -575 bp). They are considerably more proximal than the functional AHRE found in the human CYP1A2 gene (-2.5 kb). GPC16 cells expressed CYP1A2 after treatment with AH, enabling characterization of the putative AHRE sites in a homologous cell line. Double-stranded oligonucleotide probes, corresponding to each putative AHRE, bound in an AH-induced and specific manner to nuclear proteins prepared from GPC16 cells. In transfection analyses, only the distal site mediated AH-induced reporter gene activity. Mutation of this site suppressed AH-induced activity, supporting the concept that it is involved in AH-mediated induction of CYP1A2. However, the low level of AH-induction by the wild type suggests that other factors modulate AH-response by the CYP1A2 gene.  相似文献   

7.
8.
Kim HG  Han EH  Jeong HG 《Toxicology》2008,246(2-3):166-171
Several peroxisome proliferators enhance CYP1A1 activity, but the mechanisms involved in this enhancement remain unknown. In this study, we examined the effect of troglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, on CYP1A1 gene expression and explored the mechanisms involved in these effects. Troglitazone increased gene expression of CYP1A1 mRNA and also increased CYP1A1-specific 7-ethoxyresorufin-O-deethylase (EROD) activity in a dose-dependent manner. Moreover, concomitant treatment with troglitazone and GW9662, a PPAR antagonist, markedly reduced the troglitazone-inducible EROD activity. Luciferase reporter assays using Hepa-1c1c7 cells showed a significant transactivation by troglitazone with a reporter plasmid containing a region from -1395 to +7 of the CYP1A1 gene. We found that a putative peroxisome proliferator-response element (PPRE) between -521 and -500 is located in the CYP1A1 gene promoter. Their inactivation by deletion mutagenesis suppressed the inductive effect of troglitazone on CYP1A1 promoter activation. Electrophoretic mobility shift assay revealed that troglitazone induced the activation of the PPAR-gamma to a form capable of binding specifically to the PPRE sequence of the CYP1A1 gene promoter. Furthermore, troglitazone increased the formation of the benzo[a]pyrene (BaP)-DNA adduct. Overall, our results suggest that troglitazone induces CYP1A1 enzyme activity and gene expression through PPAR-gamma activation, and may be involved in carcinogenesis.  相似文献   

9.
10.
2'-Amino-3'-methoxyflavone (PD98059), an MKK1 inhibitor, negatively regulates the induction of the CYP1A1 gene by polycyclic aromatic hydrocarbons. In view of the observations that PD98059 inhibits AhR-mediated CYP1A1 induction and has the capability to activate C/EBPbeta, the study investigated whether the inhibition by PD98059 of 3-MC induction of CYP1A1 results from C/EBP activation. 3-MC induction of the CYP1A1 and the CYP1A1 promoter-luciferase gene were inhibited by treatment of H4IIE cells with PD98059. PD98059 treatment inhibited 3-MC-induced AhR binding to the XRE, but increased protein binding to the CYP1A1 C/EBP binding site. PD98059 inhibited 3-MC induction of CYP1A1 in cells stably transfected with a dominant negative mutant of MKK1, indicating that PD98059 represses CYP1A1 induction by 3-MC irrespective of its MKK1 inhibition. The role of C/EBP activation by PD98059 in repressing CYP1A1 induction was supported by the observation that a dominant-negative mutant C/EBP abolished the ability of PD98059 to suppress 3-MC induction of CYP1A1.  相似文献   

11.
2′-Amino-3′-methoxyflavone (PD98059), an MKK1 inhibitor, negatively regulates the induction of the CYP1A1 gene by polycyclic aromatic hydrocarbons. In view of the observations that PD98059 inhibits AhR-mediated CYP1A1 induction and has the capability to activate C/EBPβ, the study investigated whether the inhibition by PD98059 of 3-MC induction of CYP1A1 results from C/EBP activation. 3-MC induction of the CYP1A1 and the CYP1A1 promoter-luciferase gene were inhibited by treatment of H4IIE cells with PD98059. PD98059 treatment inhibited 3-MC-induced AhR binding to the XRE, but increased protein binding to the CYP1A1 C/EBP binding site. PD98059 inhibited 3-MC induction of CYP1A1 in cells stably transfected with a dominant negative mutant of MKK1, indicating that PD98059 represses CYP1A1 induction by 3-MC irrespective of its MKK1 inhibition. The role of C/EBP activation by PD98059 in repressing CYP1A1 induction was supported by the observation that a dominant-negative mutant C/EBP abolished the ability of PD98059 to suppress 3-MC induction of CYP1A1.  相似文献   

12.
INTRODUCTION: Enzyme induction is undesirable in new drug discovery process, with consequences spanning from auto-induction to toxicity. Cytochrome P450 (CYP) 1A1 has long been known to be one of the metabolic enzymes involved in activating many procarcinogens, the first step toward tumor formation during chemical carcinogenesis. Induction of CYP1A1 during drug treatment may predispose the patients to some risk of chemical carcinogenesis. METHODS: Based on the signal-transduction mechanism of CYP1A1 induction, a high-throughput reporter-gene system was established by stable transformation of H4IIE cells to incorporate the luciferase gene under control of CYP1A1 promoter. This stable cell line was validated with known CYP1A1 inducers, such as 3-methylcholanthrene (3-MC), beta-naphthoflavone (beta-NF), alpha-naphthoflavone (alpha-NF) and 3-indocarbinol. Thirty in-house new chemical entities (NCEs) were then screened with this reporter-gene system, and also administered to rats to evaluate in vivo CYP1A1 induction. RESULTS: CYP1A1 reporter gene system can be used to identify strong inducers, such as 3-MC, beta-NF and alpha-NF, and weak inducers, such as 3-indocarbinol. In vitro induction of 30 in-house compounds in reporter gene system did not correlate with in vivo induction in rat liver microsome measured by ethoxyresorufin-O-dealkylation (EROD) activity, but had a reasonable correlation with Western blot signals. DISCUSSION: This reporter-gene system may be useful in eliminating compounds that can cause CYP1A1 induction at an early stage of drug discovery.  相似文献   

13.
14.
15.
16.
17.
The sequence and organization of the CYP1A cluster on human chromosome 15 was determined. A human genomic clone from a BAC library, containing both CYP1A1 and CYP1A2 genes, was isolated and sequenced. The results of Southern blot analysis using human genomic DNA were compatible with the structure of the BAC clone. The CYP1A1 and CYP1A2 genes are separated by a 23 kb segment that contains no other open reading frames. The CYP1A1 and CYP1A2 genes are in opposite orientation, revealing that the 5' flanking region is in common between the two genes. Analysis of the sequence obtained revealed the presence of xenobiotic response elements (XREs) previously reported for CYP1A1 and CYP1A2 and several additional consensus sequences for putative XREs. The presence of all the XREs upstream of both genes suggest that some of the regulatory elements known to control CYP1A1 gene expression, could also control CYP1A2 gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号