首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain is susceptible to oxidative stress, which is associated with age-related brain dysfunction, because of its high content of peroxidizable unsaturated fatty acids, high oxygen consumption per unit weight, high content of key components for oxidative damage, and the relative scarcity of antioxidant defense systems. Protein oxidation, which results in functional disruption, is not random but appears to be associated with increased oxidation in specific proteins. By using a proteomics approach, we have compared the protein levels and specific protein carbonyl levels, an index of oxidative damage in the brains of old mice, to these parameters in the brains of young mice and have identified specific proteins that are altered as a function of aging. We show here that the expression levels of dihydropyrimidinase-like 2 (DRP2), alpha-enolase (ENO1), dynamin-1 (DNM1), and lactate dehydrogenase 2 (LDH2) were significantly increased in the brains of old versus young mice; the expression levels of three unidentified proteins were significantly decreased. The specific carbonyl levels of beta-actin (ACTB), glutamine synthase (GS), and neurofilament 66 (NF-66) as well as a novel protein were significantly increased, indicating protein oxidation, in the brains of old versus young mice. These results were validated by immunochemistry. In addition, enzyme activity assays demonstrated that oxidation was associated with decreased GS activity, while the activity of lactate dehydrogenase was unchanged in spite of an up-regulation of LDH2 levels. Several of the up-regulated and oxidized proteins in the brains of old mice identified in this report are known to be oxidized in neurodegenerative diseases as well, suggesting that these proteins may be particularly susceptible to processes associated with neurodegeneration. Our results establish an initial basis for understanding protein alterations that may lead to age-related cellular dysfunction in the brain.  相似文献   

2.
Age-related impairment of functionality of the central nervous system (CNS) is associated with increased susceptibility to develop many neurodegenerative diseases. Increased oxidative stress in the CNS of aged animals is manifested by increased protein oxidation, which is believed to contribute to the age-related learning and memory deficits. Glutamate dysregulation, mitochondrial dysfunction and impaired protein synthesis are observed in aged brains, along with increased protein oxidation. Interestingly, all of these age-related cellular alterations can be improved by caloric restriction (CR), which can also improve the plasticity and recovery of the CNS. Although the beneficial effects of CR on brains are well established, the mechanism(s) of its action remains unclear. In order to gain insight into the mechanism of CR in the brain, we located the brain regions that are benefited the most from reduced oxidative stress by CR. Along with other brain regions, striatum (ST) showed significantly decreased bulk protein carbonyl levels and hippocampus (HP) showed decreased bulk protein 3-nitrotyrosine (3-NT) levels in CR aged rats when compared to those of age matched controls. To determine which proteins were oxidatively modified in these brain regions, we used parallel proteomics approach to identify the proteins that are altered in oxidation and expression. The specific carbonyl levels of pyruvate kinase M2 (PKM2), alpha-enolase (ENO1), inositol monophosphatase (INSP1), and F1-ATPase Chain B (ATP-F1B) were significantly decreased in ST of aged CR rats. In contrast, the expression levels of phosphoglycerate kinase 1 (PKG1), inosine monophosphate cyclohydrolase (IMPCH) and F1-ATPase Chain A (ATP-F1A) were significantly increased in the ST of CR rats. In the hippocampus of CR rats, the specific 3-NT levels of malate dehydrogenase (MDH), phosphoglycerate kinase 1 (PKG1) and 14-3-3 zeta protein were significantly decreased and expression levels of DLP1 splice variant 1 (DLP1), mitochondrial aconitase (ACO2), dihydrolipoamide dehydrogenase (DLDH), neuroprotective peptide H3 (NPH3), and eukaryotic translation initiation factor 5A (eIF-5A) are increased. Moreover, an unnamed protein product (UNP1) with similar sequence to initiation factor 2 (IF-2) was decreased in the HP of CR rats. Our data support the hypothesis that CR induces a mild metabolic stress response by increasing the production of neurotrophic proteins, therefore, priming neurons against apoptosis. Moreover, our study shows that the improvement of glutamate dysregulation, mitochondrial dysfunction and protein synthesis by CR is, at least partially, due to the CR-mediated alteration of the oxidation or the expression of PKM2, ENO1, INSP1, ATP-F1B, PKG1, IMPCH, ATP-F1A MDH, PKG1 and 14-3-3 zeta protein, DLP1, ACO2, DLDH, NPH3, eIF-5A and UNP1. This study provides valuable insights into the mechanisms of the beneficial factors on brain aging by CR.  相似文献   

3.
Previous studies indicated there is an overall increase of proteolysis in aging rat brains. We monitored the potential degradation of cytoskeletal proteins in neuronal tissue taken from cerebral cortex and cerebellum of young (3 month) and aging (17, 21 and 23.5 month) Wistar rats. We found significant age-dependent proteolysis of cytoskeletal proteins (alphaII-spectrin and microtubule-associated protein MAP-2A/B) in the cerebral cortex and the cerebellum. The pattern of alphaII-spectrin breakdown shows a marked increase in 150- and 145-kDa fragments (SBDP150 and SBDP145, respectively), but we did not detect the caspase-3-mediated 120-kDa fragment (SBDP120) in aged rat brains, suggesting the involvement of the calpain proteases. The pattern of MAP-2A/B breakdown in aged rat brains mirrors that produced by in vitro calpain digestion of 3-month control rat brain MAP-2A/B. In aged rat brains, there is no significant increase in pro-caspase-3 processing; rather, there is a moderate reduction in pro-caspase-3 protein and caspase-3 hydrolytic activity in the cortex. These results point to selective susceptibility of cytoskeletal proteins to calpain-mediated degradation, but not caspase-3 in aging rat brains.  相似文献   

4.
The senescence-accelerated mouse (SAM) is a murine model of accelerated senescence that was established using phenotypic selection. The SAMP series includes nine substrains, each of which exhibits characteristic disorders. SAMP8 is known to exhibit age-dependent learning and memory deficits. In our previous study, we reported that brains from 12-month-old SAMP8 have greater protein oxidation, as well as lipid peroxidation, compared with brains from 4-month-old SAMP8 mice. In order to investigate the relation between age-associated oxidative stress on specific protein oxidation and age-related learning and memory deficits in SAMP8, we used proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. We report here that in 12 month SAMP8 mice brains the expressions of neurofilament triplet L protein, lactate dehydrogenase 2 (LDH-2), heat shock protein 86, and alpha-spectrin are significantly decreased, while the expression of triosephosphate isomerase (TPI) is increased compared with 4-month-old SAMP8 brains. We also report that the specific protein carbonyl levels of LDH-2, dihydropyrimidinase-like protein 2, alpha-spectrin and creatine kinase, are significantly increased in the brain of 12-month-old SAMP8 mice when compared with the 4-month-old SAMP8 brain. These findings are discussed in reference to the effect of specific protein oxidation and changes of expression on potential mechanisms of abnormal alterations in metabolism and neurochemicals, as well as to the learning and memory deficits in aged SAMP8 mice.  相似文献   

5.
The free radical theory of aging was examined by measuring the formation of superoxide radical (SOR) and the level of lipid peroxides in various tissues of the aging rat. A significant increase in SOR production was seen in mitochondria prepared from the brain and the heart as rats aged. An elevation in the level of lipid peroxidation was also found in whole tissue homogenates of the brain and the liver. Vitamin E concentrations in the blood rose rapidly in young rats and remained steady except for a non significant drop in old animals. These results suggest that age-related degeneration of various tissues in the rat may be due to a rise in free radical production in the mitochondria.  相似文献   

6.
老龄大鼠脑缺血再灌注ATP酶和自由基代谢变化及其意义   总被引:2,自引:0,他引:2  
目的:从ATP酶活性变化和自由基损伤方面研究老龄大鼠脑缺血再灌注损伤的机制。方法:青年(5月龄)和老龄(20月龄以上)大鼠均分为模型组和正常对照组,观察大鼠全脑缺血30min再灌注60min后ATP酶和SOD活性及MDA、Ca2+、Na、K含量。结果:老龄模型组Ca2+水平高于青年模型组和老龄对照组。老龄对照组脑组织Na-K-ATP酶低于青年对照组,老龄模型组低于青年模型组。老龄对照组Ca2+-ATP酶低于青年对照组,老龄模型组低于青年模型组但高于老龄对照组。老龄对照组血清和脑组织中SOD活性低于青年对照组,老龄模型组低于青年模型组。老龄模型组血清和脑组织MDA/SOD比值高于老龄对照组。结论:脑缺血再灌注损伤与钙超载和自由基损伤有关,但由于老龄大鼠脑组织ATP酶和钙含量及自由基代谢的增龄变化,使脑缺血再灌注后这些病理改变较青年大鼠更为明显并具有一定特点。  相似文献   

7.
Many investigations have been made on age-related changes of lipid peroxidation in tissue homogenates and subcellular fractions. However, to date there are few reports on the age-related change of free radicals in living organs during aging. In our study, we investigated free radical concentration in liver and sex glands of different aged rats by using electron spin resonance (ESR) technique. A significant reduction of free radicals in liver and sex glands of old aged rats was observed when compared with those of young or middle-aged ones. The decrease of free radical generation during aging is discussed.  相似文献   

8.
Uncoupling proteins (UCPs), which dissipate the mitochondrial proton gradient, have the ability to decouple mitochodrial respiration from ATP production. Since mitochondrial electron transport is a major source of free radical production, it is possible that UCP activity might impact free radical production. Free radicals can react with and damage cellular proteins, DNA and lipids. Accumulated damage from oxidative stress is believed to be a major contributor to cellular decline during aging. If UCP function were to impact mitochondrial free radical production, then one would expect to find a link between UCP activity and aging. This theory has recently been tested in a handful of organisms whose genomes contain UCP1 homologs. Interestingly, these experiments indicate that UCP homologs can affect lifespan, although they do not support a simple relationship between UCP activity and aging. Instead, UCP-like proteins appear to have a variety of effects on lifespan, and on pathways implicated in lifespan regulation. One possible explanation for this complex picture is that UCP homologs may have tissue-specific effects that complicate their effects on aging. Furthermore, the functional analysis of UCP1 homologs is incomplete. Thus, these proteins may perform functions in addition to, or instead of, mitochondrial uncoupling. Although these studies have not revealed a clear picture of UCP effects on aging, they have contributed to the growing knowledge base for these interesting proteins. Future biochemical and genetic investigation of UCP-like proteins will do much to clarify their functions and to identify the regulatory networks in which they are involved.  相似文献   

9.
We review the evidence for free radical initiated chain polymerization of biomolecules. Our hypothesis predicts damaging effects of this chain polymerization. Free radical lipid peroxidation could initiate the chain polymerization of amyloid peptides and other biomolecules found in Alzheimer's disease. Reactions forming polymers present in other neurodegenerative diseases could follow the same pathway. Antioxygenic nutrients could protect against free radical oxidant damage, thereby delaying or preventing the onset of Alzheimer's disease and other neurodegenerative diseases The onset of Alzheimer's disease could be delayed if the initiation of free radical chain polymerization were inhibited or limited by nutrients that act as chain terminators or provide reducing conditions to reduce peroxidized lipids in the brain. Vitamins E and C and coenzyme Q are chain terminators. Selenium, sulfur amino acids and vitamin C provide reducing conditions.  相似文献   

10.
The oxidation of glutamate by non-synaptic and synaptic mitochondria from brains of 3-, 12- and 24-month-old rats was studied. With glutamate plus malate as substrates, non-synaptic mitochondria showed higher respiration rates than synaptic mitochondria in all the three age groups studied. The rate of oxidation of L-[1-14C] glutamate and the activities of NAD-glutamate dehydrogenase and aspartate aminotransferase were also higher in non-synaptic mitochondria compared with synaptic mitochondria in three age groups. With glutamate plus malate as substrates, a significant reduction in state 3 respiration was observed in both mitochondrial populations from 12- and 24-month-old rats compared with 3-month-old animals. Although an age-dependent decrease in the oxidation of L-[1-14C] glutamate was observed in both non-synaptic and synaptic mitochondria from aging rats, the oxidation of [1-14C]-2-oxoglutarate was unaltered in non-synaptic and synaptic mitochondria from senescent rats. The activity of NAD-glutamate dehydrogenase was decreased with age in both mitochondrial populations, whereas aspartate aminotransferase was not altered with age. The results indicate that the oxidation rate of glutamate in rat brain mitochondria is decreased during aging.  相似文献   

11.
The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. In both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. The largest increase (2-fold) was observed in striatum for both species. The neuron-specific proteins, synapsin I and neurofilament-200 (Mr 200 kilodaltons), were not altered by aging in any region of the mouse or rat brain. Brains of aged rats, but not mice, showed a decrease in beta-tubulin. The data suggest that astrocytic hypertrophy observed with aging involves an accumulation of glial filaments.  相似文献   

12.
Caloric and food restriction attenuate oxidative stress. The effect of aging and every-other-day (EOD) feeding on oxygen radical-dependent chemiluminescent intensity was examined in ex vivo brain slices from Fischer rats during oxygenation and hypoxia-reoxygenation with lucigenin, a chemilumigenic probe used for detecting superoxide anion radicals. The chemiluminescent intensity increased during reoxygenation after hypoxic treatment, and the chemiluminescence in the brain slices at the baseline and during reoxygenation increased with age. However, no difference was observed in the superoxide-dependent chemiluminescence between brain slices prepared from the aged rats fed EOD and those fed ad libitum. Our results indicated that age-dependent increases in superoxide production might be associated with enhanced oxidative stress in aged Fischer rat brains. However, the present study newly indicated that decreased superoxide production might not be a major causal factor in caloric and food restriction attenuated oxidative stress.  相似文献   

13.
Brain, aging and neurodegeneration: role of zinc ion availability   总被引:10,自引:0,他引:10  
Actual fields of research in neurobiology are not only aimed at understanding the different aspects of brain aging but also at developing strategies useful to preserve brain compensatory capacity and to prevent the onset of neurodegenerative diseases. Consistent with this trend much attention has been addressed to zinc metabolism. In fact, zinc acts as a neuromodulator at excitatory synapses and has a considerable role in the stress response and in the functionality of zinc-dependent enzymes contributing to maintaining brain compensatory capacity. In particular, the mechanisms that modulate the free zinc pool are pivotal for safeguarding brain health and performance. Alterations in zinc homeostasis have been reported in Parkinson's and Alzheimer's disease as well as in transient forebrain ischemia, seizures and traumatic brain injury, but little is known regarding aged brain. There is much evidence that that age-related changes, frequently associated to a decline in brain functions and impaired cognitive performances, could be related to dysfunctions affecting the intracellular zinc ion availability. A general agreement emerges from studies of humans’ and rodents’ old brains about an increased expression of metallothionein (MT) isoforms I and II, but dyshomogenous results are reported for MT-III, and it is still uncertain whether these proteins maintain in aging the protective role, as it occurs in adult/young age. At the same time, there is considerable evidence that amyloid-β deposition in Alzheimer's disease is induced by zinc, but the pathological significance and the causes of this phenomenon are still an open question. The scientific debate on the role of zinc and of some zinc-binding proteins in aging and neurodegenerative disorders, as well as on the beneficial effect of zinc supplementation in aged brain and neurodegeneration, is extensively discussed in this review.  相似文献   

14.
目的 观察褪黑激素对中老年大鼠大脑皮质脂质过氧化产物含量和氧自由基、游离钙离子清除剂活性的影响,探讨其抗氧化、抗衰老作用机理.方法 连续30天给中、老年大鼠补充褪黑激素,用生化比色法,测定大脑皮质丙二醛(MDA)含量和谷胱甘肽过氧化物酶(GSH-px)、钙离子-三磷酸腺苷酶(Ca~(2+)-ATPase)活性.结果 与对照组比较,实验组大鼠大脑皮质MDA含量下降了26.8%,GSH-px和Ca~(2+)-ATPase活性增加了27.5%和12.5%.结论 褪黑激素能增强大脑皮质对氧自由基和细胞内钙离子的清除能力,对抗神经细胞过氧化和延缓神经组织衰老具有一定的作用.  相似文献   

15.
We propose that increased formation of oxygen-derived free radicals, such as the superoxide and hydroxyl species, may be responsible for progressive neural degeneration in dementia of the Alzheimer type (DAT). Several processes increase free radical formation and some of them (e.g., brain trauma, aging) are risk factors for DAT. There is some evidence for increased free radical formation in Down's syndrome which is associated with development of DAT pathology. Free radicals alone may induce cell death by damaging lipids or proteins while reactions between free radicals and neurotransmitters may lead to formation of endogenous neurotoxin(s). Recently, we have demonstrated that partial oxidation of serotonin by exposure to hydroxyl radicals results in formation of a novel neurotoxin, tryptamine-4,5-dione. Elucidation of the role of free radicals in DAT could open new avenues to prevention and treatment of this disease.  相似文献   

16.
Abnormal extravasation of serum proteins has frequently been reported in Alzheimer's disease (AD) and less often in nondemented, aged individuals. In order to establish whether these are ante or postmortem phenomena, we have now compared the immunocytochemical localization of immunoglobulin in young, aged, and AD brains. In all the young brains, but only in some of the aged and AD brains, immunoglobulin was confined to a fine network of microvessels. In contrast, the majority of AD, as well as apparently normal, aged brains revealed both focal and diffuse extravascular localization in the form of neuronal labeling as well as a general, diffuse background. Since microvessels in these areas were no longer revealed, it was felt that the extravascular leakage occurred postmortem at a time when replacement of intravascular immunoglobulin had ceased. Furthermore, there was a correlation between the extent of leakage and time interval between death and autopsy. Postmortem leakage of serum protein was reproduced in a more controlled system using young and aged rats; serum protein leakage evolved from focal to diffuse patterns in aged brains as the postmortem period increased, whereas the leakage was restricted to the outer half of the cortices in young brains even after a prolonged postmortem period. Postmortem trauma to the rat brain also caused lesion-related leakage as well as neuronal labeling. It was concluded that extravascular leakage and neuronal uptake in aged and AD brains is a postmortem phenomenon, due to delay in autopsy or mishandling of brains, but dependent in severity upon antemortem circumstances.  相似文献   

17.
Neurokinin B and its cognate neurokinin-3 receptor are expressed more in the forebrain than in brain stem structures but little is known about the primary function of this peptide system in the central processing of information. In general, few studies have specifically addressed age-related changes of tachykinins, notably the changes in number and/or distribution of the neurokinin B-expressing and neurokinin-3 receptor-bearing neurons. Data on functions and changes of neurokinins in physiological aging are limited and apply mainly to the substance P/neurokinin-1 receptor system. In the present study, we analyzed neurokinin B/neurokinin-3 receptor system in young (5 months) versus middle aged (15 months) and old rats (23-25 months) and also in aging human brains. For the majority of the immunohistochemically examined regions of the rat brain, there was no statistically significant change in neuronal number and size of the neurokinin B and neurokinin-3 receptor staining. In the adult human brain, there was no age-associated change of the number or size of neurokinin-B-positive neurons. However, we found a major decline in number of neurokinin-3 receptor-expressing neurons between young/middle aged (30 years to 69 years) versus old (70 years and older) adults. Interestingly, numbers of neurokinin-3 receptor-positive microglia increased whereas the neurokinin-3 receptor-positive astrocytes remained unchanged in both aging rat and human brains. Finally, in addition to assessing the morphological and quantitative changes of the neurokinin B/neurokinin-3 receptor system in the rat and human brain, we discuss functional implications of the observed interspecies differences.  相似文献   

18.
The main purpose of this study was to evaluate the effect of aging on plasma and free corticosterone (CORT) levels in the brain in basal conditions and in response to an acute stressor. Microdialysis experiments were performed in the hippocampus (HC) and the prefrontal cortex (PFC) of young adult (6 months) and aged (24 months) male Wistar rats. Basal free levels of CORT in the HC and the PFC were higher in aged animals. Restraint stress increased plasma CORT and free CORT levels in the HC and the PFC both in young and aged animals. However, while the increase of plasma CORT was higher in aged rats compared with young rats, the increases of free CORT in the HC and the PFC were not different between these two groups of rats. These results suggest that the changes produced by aging in the brain may be related to the enhanced basal levels of free CORT and not to the CORT increases in response to stress.  相似文献   

19.
Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin-treated mice. Because previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared with age-matched controls, and in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), we tested the effects of lactate exposure on α-syn in a cell-based study. We demonstrated that (1) lactate treatment led to α-syn accumulation and oligomerization in a time- and concentration-dependent manner; (2) such alterations were mediated via adenosine monophosphate-activated protein kinase (AMPK) and associated with increasing cytoplasmic phosphorylated AMPK levels; (3) AMPK activation facilitated α-syn accumulation and phosphorylation; (4) lactate treatment or overexpression of the active form of AMPK decreased α-syn turnover and neurite outgrowth; and (5) Lewy body-bearing neurons displayed abnormal cytoplasmic distribution of phosphorylated AMPK, which normally is located in nuclei. Together, our results suggest that chronic neuronal accumulation of α-syn induced by lactate-triggered AMPK activation in aging brains might be a novel mechanism underlying α-synucleinopathies in PD and related disorders.  相似文献   

20.
The study has shown that in aged (22–24 months) rat brains an elevation of homocysteine level (42%) and a decrease in dehydroepiandrosterone sulphate (DHEA-S) content (32%) occur compared to those in the brains of young rats (4–6 months). Such changes in the brain levels of homocysteine and DHEA-S in aged rats are prevented, when the diet daily of the rats is supplemented with a combination of antioxidants (N-acetyl cysteine 50 mg, α-lipoic acid 3 mg and α-tocopherol 1.5 mg – each per 100 g of body weight) starting from 18 months until these are sacrificed between 22 and 24 months. The brain content of reduced glutathione is also decreased in aged rats as compared to that in young ones and the phenomenon can again be prevented completely by the same regimen of antioxidant supplementation. The changes in the levels of homocysteine and DHEA-S in aged rat brain have been related to associated glutathione depletion and oxidative stress and the implications of the results highlighted in the pathogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号