首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is widely accepted that the hippocampus plays a major role in learning and memory. The mossy fiber synapse between granule cells in the dentate gyrus and pyramidal neurons in the CA3 region is a key component of the hippocampal trisynaptic circuit. Recent work, partially based on direct presynaptic patch-clamp recordings from hippocampal mossy fiber boutons, sheds light on the mechanisms of synaptic transmission and plasticity at mossy fiber synapses. A high Na+ channel density in mossy fiber boutons leads to a large amplitude of the presynaptic action potential. Together with the fast gating of presynaptic Ca2+ channels, this generates a large and brief presynaptic Ca2+ influx, which can trigger transmitter release with high efficiency and temporal precision. The large number of release sites, the large size of the releasable pool of vesicles, and the huge extent of presynaptic plasticity confer unique strength to this synapse, suggesting a large impact onto the CA3 pyramidal cell network under specific behavioral conditions. The characteristic properties of the hippocampal mossy fiber synapse may be important for pattern separation and information storage in the dentate gyrus-CA3 cell network.  相似文献   

2.
3.
The dependence of stimulus-induced synaptic potentials on changes of extracellular ionic concentrations of potassium ([K+]o 3, 5, 8 mM), magnesium ([Mg2+]o 2, 4, 8 mM) and calcium [Ca2+]o (2 mM and continuous lowering by washing with Ca2+-free solutions) was investigated in area CA1 and dentate gyrus of rat hippocampal slices. Field potentials (fps), [K+]o and [Ca2+]o were measured with double-barreled ion selective/reference microelectrodes. Paired pulse stimulation (interval 50-ms) was applied either to the lateral perforant path or to the Schaffer collaterals. Elevation of [K+]o from 5 to 8 mM and of [Mg2+]o from 2 to 8 mM depressed the rise of excitatory postsynaptic potentials, as well as the amplitude of population spikes. With elevation of [K+]o, the effect was stronger in the dentate gyrus, while with elevation of [Mg2+]o, the reduction was more pronounced in area CA1. During washout of Ca2+, synaptic potentials became reduced and finally depressed. The [Ca2+]o at which synaptic transmission was blocked increased with higher [Mg2+]o and decreased with a change of [K+]o from 3 to 5 mM, whereas with an elevation of [K+]o from 5 to 8 mM, it rose in area CA1 but was reduced in dentate gyrus. All ionic changes also affected frequency habituation and potentiation in paired pulse experimentes. In dentate gyrus, frequency habituation was reversed to frequency potentiation with moderate lowering of [Ca2+]o and with elevation of [Mg2+]o and [K+]o. In contrast, in area CA1 frequency potentiation was reduced upon elevation of [K+]o.  相似文献   

4.
Recently, our research team has reported that Tualang honey was able to improve immediate memory in postmenopausal women comparable with that of estrogen progestin therapy. Therefore the aim of the present study was to examine the effects of Tualang honey supplement on hippocampal morphology and memory performance in ovariectomized (OVX) rats exposed to social instability stress. Female Sprague-Dawley rats were divided into six groups: (i) sham-operated controls, (ii) stressed sham-operated controls, (iii) OVX rats, (iv) stressed OVX rats, (v) stressed OVX rats treated with 17β-estradiol (E2), and (vi) stressed OVX rats treated with Tualang honey. These rats were subjected to social instability stress procedure followed by novel object recognition (NOR) test. Right brain hemispheres were subjected to Nissl staining. The number and arrangement of pyramidal neurons in regions of CA1, CA2, CA3 and the dentate gyrus (DG) were recorded. Two-way ANOVA analyses showed significant interactions between stress and OVX in both STM and LTM test as well as number of Nissl-positive cells in all hippocampal regions. Both E2 and Tualang honey treatments improved both short-term and long-term memory and enhanced the neuronal proliferation of hippocampal CA2, CA3 and DG regions compared to that of untreated stressed OVX rats.  相似文献   

5.
目的 观察大鼠前脑缺血再灌流后海马各区域NMDA受体亚单位NR1表达的变化和差异 ,探讨NR1在缺血性脑损伤中的作用。 方法 免疫组织化学和图像处理技术。 结果  1 在前脑缺血再灌流后早期 ,海马各区域NR1的表达水平显著下降 (P <0 0 5 )。CA1区 ,下降趋势持续存在且不可逆 ,直至再灌流后第 7d ,NR1在该区域的染色强度降至对照组的 17% (P <0 0 5 )。CA3区及齿状回 ,NR1的表达下降是可逆的 ,再灌流后 72h ,齿状回的表达恢复正常 ,再灌后第 7d ,CA3区的表达也恢复到对照组的 96 % ,两组间染色强度无显著差异。 2 在迟发性神经元坏死出现前的缺血再灌流的早期 ,NR1在CA1区、CA3区及齿状回表达下降的幅度不一致 ,再灌后 6h以前 ,CA1区的下降幅度明显小于CA3区及齿状回 (P <0 0 5 ) ,再灌后 12h ,CA1区的下降幅度仍低于CA3区 (P <0 0 5 )。结论 短暂性前脑缺血后 ,NR1在海马CA1区、CA3区及齿状回表达下降的幅度和可逆性存在显著差异 ,这种差异可能是造成CA1区缺血敏感性的重要原因。  相似文献   

6.
A number of studies have implicated the hippocampal formation in social-recognition memory in the rat. The present study addressed this issue directly by assessing the effects of cytotoxic lesions confined to the hippocampus proper, encompassing the four CA subfields and the dentate gyrus, on this behavioural task. Ibotenate-induced hippocampal lesions led to locomotor hyperactivity and a marked spatial working-memory impairment on the elevated T-maze. In addition, they also led to increased social investigation. However, despite these clear effects, there was no effect of the lesions on social-recognition memory. These results suggest that the hippocampus proper does not subserve social-recognition memory; but does not, however, preclude the possibility that other areas of the hippocampal formation (e.g. entorhinal cortex or subiculum) may support this memory process.  相似文献   

7.
Summary Fully mature rats were injected intraperitoneally with 3H-TdR on postnatal day (P) 100. After an additional 28–32 days, a retrograde fluorescent tracer, either FB or DY, was injected into the regio inferior of the hippocampal formation to label granule cells of the dentate gyrus through their mossy fiber axons. Examination of autoradiographs from these brains reveals that 3H-TdR labeled cells within the granule cell layer of the dentate gyrus are often labeled with the retrograde tracer as well. This indicates that within the mature hippocampal formation, newly generated dentate granule cells are capable of extending axonal projections for considerable distances.Abbreviations FB fast blue - DY diamidino yellow dihydrochloride - 3H-TdR tritiated thymidine - UV ultraviolet  相似文献   

8.
It has been shown previously that the synthetic corticosteroid dexamethasone induces apoptosis of granule cells in the dentate gyrus and striatopallidal neurons in the dorsomedial caudate-putamen. We investigated whether or not dexamethasone can induce damage to other neuronal populations. This issue was addressed using OX42 immunohistochemistry to visualise activated microglia and thereby gauge the extent of dexamethasone-induced neuronal death. A single dose of dexamethasone (20mg/kg, i.p.) administered to young male Sprague-Dawley rats induced a strong microglial reaction which was restricted to the striatum, the dentate gyrus and all of the CA subfields of the hippocampus. Some OX42-immunoreactive cells were also seen in the lateral septal nucleus. Subsequent quantitative analysis of silver/methenamine-stained sections confirmed that acute administration of dexamethasone induced apoptosis in the striatum and all regions of the hippocampus at doses as low as 0.7mg/kg. In contrast, dexamethasone failed to induce apoptosis in the lateral septal nucleus at doses up to 20mg/kg. The levels of dexamethasone-induced striatal and hippocampal apoptosis were attenuated by pretreatment with the corticosteroid receptor antagonist RU38486 (Mifepristone), which implies that the cell death was mediated by a corticosteroid receptor-dependent process. We further determined whether dexamethasone induced sublethal damage to neurons by quantifying reductions in the number of microtubule-associated protein-2-immunoreactive striatal and hippocampal cells following injection of the corticosteroid. Dexamethasone induced dramatic decreases in the striatum, with the dorsomedial caudate-putamen being particularly affected. Similar damage was seen in the hippocampus, with the dentate gyrus and CA1 and CA3 subfields being particularly vulnerable.Equivalent corticosteroid-induced neuronal damage may occur in mood disorders, where the levels of endogenous corticosteroids are often raised. Corticosteroid-induced damage of striatal and hippocampal neurons may also account for some of the cognitive deficits seen following administration of the drugs to healthy volunteers.  相似文献   

9.
D.R Brady  E.J Mufson 《Neuroscience》1997,80(4):526-1125
The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1–CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (P<0.01) and subfields CA1–CA2 (P<0.01). In contrast, parvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).  相似文献   

10.
Tg2576 transgenic mice (mice overexpressing the "Swedish" mutation in the human amyloid precursor protein 695) demonstrated a decreased capacity for cell proliferation in the dentate gyrus of the hippocampus compared with non-transgenic littermates at 3 months, 6 months and 9 months of age. Isolation stress induced by individually housing each mouse from the time of weaning further decreased hippocampal cell proliferation in Tg2576 mice as well as in non-transgenic littermates at 6 months of age. Decreases in hippocampal cell proliferation in isolated Tg2576 mice were associated with impairments in contextual but not cued memory. Fluoxetine administration increased cell proliferation and improved contextual memory in isolated Tg2576 mice. Further, isolation stress accelerated the age-dependent deposition of beta-amyloid 42 plaques in Tg2576 mice. Numerous beta-amyloid plaques were found in isolated but not non-isolated Tg2576 mice at 6 months of age. These results suggest that Tg2576 mice, a mouse model of Alzheimer disease, have an impaired ability to generate new cells in the dentate gyrus of the hippocampus and that the magnitude of this impairment can be modulated by behavioral interventions and drugs known to have effects on hippocampal neurogenesis in normal rodents. Unexpectedly, isolation stress also appeared to accelerate the underlying process of beta-amyloid plaque deposition in Tg2576 mice. These results suggest that stress may have an impact on the underlying disease process associated with Alzheimer's disease.  相似文献   

11.
The distribution of glutamate receptors in transverse hippocampal sections has been well investigated. However, in spite of the known septotemporal gradients of hippocampal connectivity no systematic studies exist about the distribution of glutamate receptors along the septotemporal (longitudinal) hippocampal axis. Therefore, in the present study this issue was investigated using receptor autoradiography for the [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites. Hippocampi from 30-day-old rats were sectioned perpendicularly to their longitudinal axis, yielding a total of 25–30 equidistantly spaced autoradiographs for each hippocampus. For each section layer-specific concentrations of binding sites were calculated by the aid of a computerized image analysing system. The dependency of concentrations of binding sites on the septotemporal position was evaluated by regression analysis. Gradients of binding were confined to distinct hippocampal layers. Significant septotemporal gradients of [3H]MK-801 binding were observed in selected layers of CA1 and the dentate gyrus, a septal to temporal decrease of binding in the oriens and radiatum layers of CA1 being most prominent. For [3H]AMPA, significant septotemporal gradients of binding were restricted to layers of CA3, CA4 and the dentate gyrus, with values generally increasing from septal to temporal levels. The observed septotemporal gradients possibly reflect functional segregations along the longitudinal hippocampal axis and could be important for the comparability of ligand binding studies using transverse hippocampal sections or hippocampal slice cultures.  相似文献   

12.
Bilateral injection of 3.5 micrograms of colchicine into the dentate gyrus produced specific learning and memory impairments together with a selective pattern of neuropathology. Animals injected with colchicine exhibited a significant impairment in their ability to perform the working memory, but not the reference memory, component of a multiple component T-maze task. These deficits were transient and over time all animals were able to reaquire the task to preoperative levels of performance. Histological analyses revealed that intradentate injection of colchicine produced 1) a significant decrease in the width of both the superior and inferior blades of the dentate gyrus reflecting the extensive loss of granule cells, 2) a related decrease in the size of the dentate molecular layer, and 3) a decrease in the number of cholinergic neurons in the medial septum. The second phase of the experiment demonstrated that gangliosides GM1 and AGF2 did not prevent the initial impairments in working memory performance induced by colchicine but rather accelerated the rate at which it recovered. The gangliosides did not decrease the extent of neuronal damage; there was no sparing of granule cells in the dentate gyrus or cholinergic neurons in the medial septum. These data further support a role for the hippocampus in working memory processes and they also indicate that gangliosides GM1 and AGF2 might be useful for treating the behavioral deficits induced by hippocampal damage.  相似文献   

13.
The hippocampal formation is a crucial structure for learning and memory, and serotonin together with other neurotransmitters is essential in these processes. Although the effects of aging on various neurotransmitter systems in the hippocampus have been extensively investigated, it is not entirely clear whether or how the hippocampal serotonergic innervation changes during aging. Rat studies, which have mostly focused on aging-related changes in the dentate gyrus, have implied a loss of hippocampal serotonergic fibers. We used the tree shrew (Tupaia belangeri), an intermediate between insectivores and primates, as a model of aging. We applied immunocytochemistry with an antibody against serotonin to assess serotonergic fiber densities in the various hippocampal subfields of adult (0.9–1.3 years) and old (5–7 years) tree shrews. Our results have revealed a reduction of serotonergic fiber densities in the stratum radiatum of CA1 and CA3, and in the stratum oriens of CA3. A partial depletion of serotonin in the hippocampal formation, as can be expected from our current observations, will probably have an impact on the functioning of hippocampal principal neurons. Our findings also indicate that the rat and the tree shrew hippocampal serotonergic innervation show some variations that seem to be differentially affected during aging.  相似文献   

14.
One-trial step-down inhibitory avoidance in rats involves the activation of two separate memory types, a short-term system (STM) that lasts 3-6 h, and a long-term system (LTM) that takes 3-6 h to be formed and lasts for many days or even months. Here we investigate the effect of nicotinic receptor (nAChR) ligands infused bilaterally in the hippocampus on STM and LTM formation and on LTM retrieval of this task. Rats were implanted with chronic cannulae in the CA1 region of the dorsal hippocampus, trained using a 0.5 mA foot shock, and tested twice, first 1.5 h after training to measure STM, and again at 24 h to measure LTM. The drugs used were the nAChR antagonists, mecamylamine (1, 3 and 10 microg/side) and dihydro-beta-erythroidine (DHbetaE; 2, 6 and 18 microg/side) and the agonist, nicotine (0.6, 1 and 3 microg/side). They were given either 15 min before training, immediately after training or 15 min prior to LTM retrieval. Mecamylamine and DHbetaE impaired and nicotine enhanced STM, LTM and retrieval similarly. The results indicate that nAChRs in CA1 participate in the regulation of both STM and LTM formation, and on the retrieval of LTM.  相似文献   

15.
Intracranial event-related potentials (ERPs) elicited during a recognition memory task were recorded in 25 epileptic patients by using depth electrodes sampling four different regions within the temporal lobe (amygdala, hippocampus, anterior and posterior temporal cortices). The task was a continuous recognition memory task in which repeated items were presented after 6 or 19 intervening items following their first presentation. This study was performed to investigate the respective role of the different temporal lobe structures in short-term memory (STM) and long-term memory (LTM) processing. Subregions of the temporal lobe were differently involved in these two memory systems. The posterior temporal cortex is specifically involved in STM processing, whereas the amygdala, hippocampus, and anterior temporal cortex contribute to both STM and LTM. Moreover, it appeared that the latter structures play their own role in LTM. The anterior temporal cortex and amygdala may contribute to recency discrimination, and the hippocampus seems rather to be involved in maintaining memory traces. These findings suggest that the temporal lobe structures may function in a complementary way by subserving different aspects of information processing.  相似文献   

16.
 The distribution of glutamate receptors in transverse hippocampal sections has been well investigated. However, in spite of the known septotemporal gradients of hippocampal connectivity no systematic studies exist about the distribution of glutamate receptors along the septotemporal (longitudinal) hippocampal axis. Therefore, in the present study this issue was investigated using receptor autoradiography for the [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites. Hippocampi from 30-day-old rats were sectioned perpendicularly to their longitudinal axis, yielding a total of 25–30 equidistantly spaced autoradiographs for each hippocampus. For each section layer-specific concentrations of binding sites were calculated by the aid of a computerized image analysing system. The dependency of concentrations of binding sites on the septotemporal position was evaluated by regression analysis. Gradients of binding were confined to distinct hippocampal layers. Significant septotemporal gradients of [3H]MK-801 binding were observed in selected layers of CA1 and the dentate gyrus, a septal to temporal decrease of binding in the oriens and radiatum layers of CA1 being most prominent. For [3H]AMPA, significant septotemporal gradients of binding were restricted to layers of CA3, CA4 and the dentate gyrus, with values generally increasing from septal to temporal levels. The observed septotemporal gradients possibly reflect functional segregations along the longitudinal hippocampal axis and could be important for the comparability of ligand binding studies using transverse hippocampal sections or hippocampal slice cultures. Accepted: 2 April 1998  相似文献   

17.
Long-term adrenalectomy induces a dramatic loss of cells in the dentate gyrus and CA1-CA4 fields of the hippocampus resulting in an impairment of cognitive functions such as spatial learning, memory and exploratory behaviour. Muscarinic M1 and M4 receptor levels in the hippocampus and entorhinal cortex of adult male Wistar rats were examined 3, 14, 30, 90, and 150 days after adrenalectomy. Receptor levels in the entorhinal cortex and the hippocampus were determined by quantitative autoradiography using 125I-M1-toxin-1 and 125I-M4-toxin-1, M1 and M4 subtype selective antagonists, respectively. Moreover, the level of hippocampal M1 and M4 muscarinic receptors were evaluated 1 month after adrenalectomy by immunoblot analysis. Adrenalectomy induced apoptotic processes were examined by analysing apoptotic markers using Western blot analysis. No significant changes were observed in the level of muscarinic M1 receptors in the entorhinal cortex, the dentate gyrus and in the different CA fields of the hippocampus of adrenalectomized (ADX) rats. However, M4 receptors showed a significant decrease in the entorhinal cortex (at 3 days), dentate gyrus and CA4 (at 14 days), CA3 (at 30 days), and CA2 and CA1 (at 90 days) after adrenalectomy. Moreover, a decrease in the level of M4 receptors was detected in ADX rats 1 month after adrenalectomy as compared with sham groups using M4 specific antibody. Apoptotic markers such as PARP and p53 were significantly increased whereas Bcl-2 marker was decreased in ADX rat brain homogenates compared to controls. Our results show that M1 and M4 receptors are differentially affected by adrenalectomy and indicate that these subtypes have different functions in the hippocampus. Our data on time and region-dependent decreases in hippocampal M4 receptors indicate that the M4 receptor subtype is influenced by adrenal hormones and suggest that the M4 receptor might be linked to memory function in the hippocampus.  相似文献   

18.
Sialic acid in glycoconjugates participates in important cellular functions associated with normal development, growth, and communication. Therefore we evaluated the sialylation pattern and memory deficits caused by the injection of Aβ(25–35) into the hippocampus (Hp) of rats. The eight-arm maze spatial-learning and memory test indicated that the injection of Aβ(25–35) into subfield CA1 of the Hp impaired both learning and memory. The sialylation pattern was examined using sialic acid-specific lectins. Our results showed that Maackia amurensis agglutinin (MAA, specific for Neu5Acα2,3Gal) showed reactivity in the CA1 and dentate gyrus (DG) subfields of the Hp mainly in the group injected with vehicle, whereas Macrobrachium rosenbergii lectin (MRL, specific for Neu5,9,7Ac) and Sambucus nigra agglutinin (SNA, specific for Neu5Acα2,6Gal-GalNAc) had increased reactivity in the CA1 and DG subfields of the Hp in the Aβ(25–35)-injected group. The staining pattern of the antibody specific for polysialic acid (a linear homopolymer of α-2,8-linked sialic acid) increased in the CA1 and DG subfields of the Hp of the Aβ(25–35) group compared to the control group. Our results suggest that injection of Aβ(25–35) causes impairment in spatial memory and alters the sialylation pattern in response to compensatory reorganization and-or sprouting of dendrites and axons of the surviving neurons.  相似文献   

19.
Alterations in the opioid system in the hippocampal formation and some of the possible functional consequences were investigated in adult male rats that were prenatally exposed to either saline or morphine (10 mg/kg twice daily on gestational days 11-18). In situ hybridization and Northern blots were used to measure proenkephalin and prodynorphin mRNA, and radioimmunoassays quantified proenkephalin- and prodynorphin-derived peptide levels in the dentate gyrus, CA3, and CA1 subfields of the hippocampal formation. Prenatal morphine exposure in male rats decreases proenkephalin and increases prodynorphin mRNA selectively in the granule cell layer of the dentate gyrus. Similarly, met-enkephalin peptide levels are decreased and dynorphin B peptide levels are increased in the dentate gyrus but not CA3 or CA1 of prenatally morphine-exposed males. In addition, there are decreases in dynorphin-derived peptides in the CA3 subfield. Receptor autoradiography revealed increases in the density of micro but not delta receptor labeling in discrete strata of specific hippocampal subfields in morphine-exposed males. Because alterations in the hippocampal opioid system suggest possible alterations in the excitability of the hippocampal formation, changes in opioid regulation of seizures were examined. Morphine exposure, however, does not alter the latency to onset or number of episodes of wet dog shakes or clonic seizures induced by infusion of 10 nmol [D-Ala2, MePhe4, Gly-ol5]enkephalin into the ventral hippocampal formation. Interestingly, a naloxone (5 mg/kg) injection 30 min before bicuculline administration reverses the increased latency to onset of clonic and tonic-clonic seizures in morphine-exposed males. Thus, the present study suggests that exposure of rats to morphine during early development alters the hippocampal opioid system, suggesting possible consequences for hippocampal-mediated functions.  相似文献   

20.
The main aim of the paper is to present an up-to-date computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces sparse representations by competitive learning and via the mossy fiber pathway forces new representations on the CA3 during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern separation during learning. Based on the computational proposal that CA3-CA3 autoassociative networks are important for episodic memory, it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning, learning of arbitrary associations where space is a component, pattern completion, spatial short-term memory, and sequence learning by associations formed between successive items. The concept that the CA1 recodes information from CA3 and sets up associatively learned backprojections to neocortex to allow subsequent retrieval of information to neocortex, is consistent with findings on consolidation. Behaviorally, the CA1 is implicated in processing temporal information as shown by investigations requiring temporal order pattern separation and associations across time; computationally this could involve temporal decay memory, and temporal sequence memory which might also require CA3. The perforant path input to DG is implicated in learning, to CA3 in retrieval from CA3, and to CA1 in retrieval after longer time intervals ("intermediate-term memory").  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号