首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally-induced distortion and residual stresses in parts fabricated by the additive manufacturing (AM) process can lead to part rejection and failure. Still, the understanding of thermo–mechanical behavior induced due to the process physics in AM process is a complex task that depends upon process and material parameters. In this work, a 3D thermo-elasto-plastic model is proposed to predict the thermo–mechanical behavior (thermal and distortion field) in the laser-directed energy deposition (LDED) process using the finite element method (FEM). The predicted thermo–mechanical responses are compared to stainless steel 316L (SS 316L) deposition, with single and double bead 42-layer wall samples subject to different inter-layer dwell times, which govern the thermal response of deposited parts in LDED. In this work, the inter-layer dwell times used in experiments vary from 0 to 10 s. Based on past research into the LDED process, it is assumed that fusion and thermal cycle-induced annealing leads to stress relaxation in the material, and is accounted for in the model by instantaneously removing stresses beyond an inversely calibrated relaxation temperature. The model predicts that, for SS 316L, an increase in dwell time leads to a decrease in in situ and post-process distortion values. Moreover, increasing the number of beads leads to an increase in in situ and post-process distortion values. The calibrated numerical model’s predictions are accurate when compared with in situ and post-process experimental measurements. Finally, an elongated ellipsoid heat source model is proposed to speed up the simulation.  相似文献   

2.
Coupled electrical–thermal finite element analysis (FEA) models are widely adopted to analyze the thermal ablation damage of carbon fiber reinforced polymer (CFRP) caused by lightning, but it is still difficult to analyze the ablation due to its complex space geometry. According to the principle of computerized tomography (CT), tomographic images of FEA models’ temperature fields with different thicknesses were obtained to calculate the mass loss and compare the damage morphology. The four areas including Area 0, Area I, Area II, and Area III; were separated from the temperature fields in terms of different vaporization and pyrolysis temperature ranges of carbon fiber (CF) and resin matrix. Ablation mass losses were calculated by pixel statistics and tomographic intervals, which were consistent with the experimental results. The maximum ablation area of unprotected CFRP was found on the tomography images of 50 μm rather than the surface by comparing tomographic images with different thickness due to the influence of the thermal radiation, but this effect was not found in CFRP protected by copper mesh. Some other phenomena, including continuous evolutions of ablation areas and the influence of the intersection angle on the direction of the ablation extension, were also discovered.  相似文献   

3.
The paper presents a numerical model based on the finite element method (FEM) to predict deformations and residual stresses in socket welding of different diameter stainless steel pipes made of X5CrNi18-10 steel. The next part of the paper concerns the determination of strength properties of a welded joint in terms of a shear test. A thermo-elastic–plastic numerical model is developed using Abaqus FEA software in order to determine the thermal and mechanical phenomena of the welded joint. This approach requires the implementation of moveable heat source power intensity distribution based on circumferentially moving Goldak’s heat source model. This model is implemented in the additional DFLUX subroutine, written in Fortran programming language. The correctness of the assumed model of thermal phenomena is confirmed by examinations of the shape and size of the melted zone. The strength of the welded joint subjected to shear is verified by performing a compression test of welded pipes as well as computer simulations with validation of the computational model using the Dantec 3D image correlation system.  相似文献   

4.
As a novel kind of cold roller steel, Cr8 alloy steel has the characteristics of high hardness, high wear resistance and good toughness, which can effectively prolong the service life of the roller that is an important part of the steel rolling mill. How to accurately define the constitutive model parameters of metal materials is the major problem, because it seriously affects the accuracy of numerical simulation results of the roller hot forming process. In the study of Cr8 alloy steel’s thermal deformation behavior of the present paper, the high temperature compression test was done on a Gleebel-1500D thermal/force simulation testing machine. A novel method of parameter identification was proposed based on inverse optimization. The Hansel–Spittel constitutive model was established by using the inverse optimization method. To carry out the verification on the accuracy of the established constitutive model, the predicted flow-stress of constitutive model was made a contrast to the experimental flow-stress, and the standard statistical parameters were also applied to further evaluation. The results showed a relatively high prediction accuracy of the Hansel–Spittel constitutive model based on the inverse optimization algorithm. Meanwhile, to obtain optimal parameters of Cr8 alloy steel in the thermal processing, 3D thermal processing maps concerning strain-rate, strain and temperature were built based on the dynamic material model. According to the 3D processing map, the most adequate thermal processing parameters of Cr8 alloy steel were obtianed as follows: strain 0.2–0.4, strain-rate 0.05–0.005 s−1, temperature 1100–1150 °C.  相似文献   

5.
The vacuum hot-rolled SUS314/Q235 stainless steel clad plate has many drawbacks including serious interface alloy element diffusion, stainless steel cladding’s sensitization, and carbon steel substrate’s low strength. In this study, the comprehensive properties were systematically adjusted by changing the thickness of the Ni interlayer (0, 100, 200 μm) and the quenching temperature (1000~1150 °C). The results showed that the Ni interlayer can obviously hinder the diffusion of carbon element, so as to achieve the purpose of eliminating the decarburized layer and reducing the carbon content of the carburized layer. Meanwhile, the perfect metallurgical bonding between the substrate and cladding can be obtained, effectively improving the stainless steel clad plate’s tensile shear strength and comprehensive mechanical properties, and significantly reduce the brittleness of the carburized layer. As the quenching temperature increases, the grains coarsening of carbon steel and stainless steel became more and more serious, and the sensitization phenomenon and the thickness of the carburized layer are gradually decreased. The stainless steel clad plate (Ni layer thickness of 100 μm) quenched at 1050 °C had the best comprehensive mechanical properties. Herein, the interface shear strength, tensile strength and the fracture elongation reached 360.5 MPa, 867 MPa and 16.10%, respectively, achieving strengthening and toughening aim. This is attributed to the disappearance of the sensitization phenomenon, the grain refinement and the lower interface residual stress.  相似文献   

6.
To effectively control and predict crack defects in the high-temperature forming process of Cr5 alloy steel, based on the traditional Lemaitre damage model, a new high-temperature damage model of Cr5 alloy steel was proposed which considered the change of material elastic modulus with temperature, the influence of material hydrostatic pressure as well as temperature and strain rate on material damage. Because Cr5 alloy steels are usually forged at high temperatures, tensile testing is an important method to study the damage behaviour of materials. Through the high-temperature tensile test and elastic modulus measurement test of the Cr5 alloy steel, the stress–strain curves and the relationship curves of the elastic modulus value with the temperature of Cr5 alloy steel under different temperatures and strain rates were obtained. A new high-temperature damage model of Cr5 alloy steel was built by introducing the Zener–Hollomon coefficient considering the influence of temperature and strain rate. The established high-temperature damage model was embedded in Forge® finite element software through the program’s secondary development method to numerically simulate the experimental process of Cr5 alloy steel. Comparing the difference between the displacement–load curves of the numerical simulation and the actual test of the tensile process of the experimental samples, the correlation coefficient R2 is 0.987 and the difference between the experimental value and the simulated value of the tensile sample elongation at break is 1.28%. The accuracy of the high-temperature damage model of Cr5 alloy steel established in this paper was verified. Finally, the high-temperature damage map of Cr5 alloy steel was constructed to analyse the variation law of various damage parameters with the temperature and strain rate of the high-temperature damage model of Cr5 alloy steel.  相似文献   

7.
The present paper addresses experimental and numerical investigations of a Large Scale Additive Manufacturing (LSAM) process using polymers. By producing large components without geometrical constraints quickly and economically, LSAM processes have the capability to revolutionize many industries. Accurate prediction and control of the thermal history is key for a successful manufacturing process and for achieving high quality and good mechanical properties of the manufactured part. During the LSAM process, the heat emitted by the nozzle leads to an increase in the temperature of the previously deposited layer, which prepares the surface for better adhesion of the new layer. It is therefore necessary to take into account this part of heat source in the transient heat transfer equation to correctly and completely describe the process and predict the temperature field of the manufactured part. The present study contributes to experimental investigations and numerical analysis during the LSAM process. During the process, two types of measurements are performed: firstly, the heat emitted by the nozzle is measured via a radiative heat sensor; secondly, the temperature field is measured using an infrared camera while varying the process speed. At the same time, a numerical simulation model is developed in order to validate the experimental results. The temperature fields of the manufactured parts computed by numerical simulations are in very good agreement with the temperature fields measured by infrared thermograph with the contribution of the nozzle’s heat exchange.  相似文献   

8.
This paper presents the results of experiments carried out on a specially designed experimental rig designed for the study of capillary pressure generated in the Loop Heat Pipe (LHP) evaporator. The commercially available porous structure made of sintered stainless steel constitutes the wick. Three different geometries of the porous wicks were tested, featuring the pore radius of 1, 3 and 7 µm. Ethanol and water as two different working fluids were tested at three different evaporator temperatures and three different installation charges. The paper firstly presents distributions of generated pressure in the LHP, indicating that the capillary pressure difference is generated in the porous structure. When installing with a wick that has a pore size of 1 μm and water as a working fluid, the pressure difference can reach up to 2.5 kPa at the installation charge of 65 mL. When installing with a wick that has a pore size of 1 μm and ethanol as a working fluid, the pressure difference can reach up to 2.1 kPa at the installation charge of 65 mL. The integral characteristics of the LHP were developed, namely, the mass flow rate vs. applied heat flux for both fluids. The results show that water offers larger pressure differences for developing the capillary pressure effect in the installation in comparison to ethanol. Additionally, this research presents the feasibility of manufacturing inexpensive LHPs with filter medium as a wick material and its influence on the LHP’s thermal performance.  相似文献   

9.
Stress calculations are necessary to determine the feasibility and profitability of a heat storage tank’s construction. The article presented normative methods of stress calculations for a heat storage tank. Results were verified by finite element analysis. These stress calculations enabled us to determine wall and weld thickness. The calculations were made on the example of a tank with a nominal pressure of 10 bar. The work undertook an extensive analysis of the stresses occurring in a pressure tank, described the finite element method and showed examples of ways in which it could be used. During stress analysis, three types of materials were compared: carbon steel St0 (S185), stainless steel (304) and boiler steel (P 265 GH). A brief overview of types of thermal energy storages was also provided.  相似文献   

10.
11.
In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes.  相似文献   

12.
Post-installed rebars (PIRs) using mortar can offer bond strength at ambient temperature equal or higher to that of cast-in place rebars. However, high temperatures have the effect of weakening the bond, typically governed by the chemical and physical properties of the mortar which is often sensitive to temperature increase. Therefore, the behavior of PIRs in a fire situation becomes vulnerable. Moreover, after exposure of PIRs to high temperature, the heat transfer continues during the post-fire phase, which might endanger the construction after a fire event. In order to evaluate the evolution of the pull-out capacity during fire, Pinoteau et al. have developed the bond resistance integration method (Pinoteau’s RIM) to predict the bond resistance value of a rebar subjected to various temperatures in accordance with the fire exposure curves. Therefore, accurate temperature profiles during the post-fire phase are needed to ensure a correct calculation of the post-fire behavior of the PIR connection. This paper presents 3D finite element thermal simulations of PIRs in concrete exposed to ISO 834-1 fire conditions then cooled with ambient air. Numerical thermal profiles are then compared to the experimental results (i.e., post-fire pull-out tests). The proposed model provides guidelines for conducting numerical simulations to determine the thermal entry data necessary for predicting thermal profiles in PIRs during heating and cooling phases. Then, the post-fire pull-out capacity of PIRs in concrete is calculated using Pinoteau’s RIM, and compared to experimental post-fire pull-out results.  相似文献   

13.
Massive composite components manufactured by autoclave curing in large framed molds are extensively used in the aerospace industry. The high temperature performance of the large framed mold is the key to achieving the desired composite part quality. This paper explores and summarizes the important thermal properties of metal and heat transfer fluid materials influencing the heating performance of large framed molds, with the aim of improving the mold temperature distribution. Considering the fluid–thermal–solid interaction inside the autoclave, a reliable computational fluid dynamics (CFD) simulation model was developed and verified by a temperature monitoring experiment to achieve the prediction of the temperature distribution of the large framed mold. Then, numerical simulations were designed on the basis of the CFD model, and the single-variable method was used to study the effects of the material thermal properties on the temperature performance of large framed molds. Our simulation predicts that when copper is used as the mold material, the temperature difference decreases by 30.63% relative to that for steel, and the heating rate increases by 3.45%. Further, when helium is used as the heat transfer medium, the temperature difference decreases by 68.27% relative to that for air, and the heating rate increases by 32.76%. This paper provides a reference for improvement of large framed mold manufacturing and autoclave process in terms of heating rate and temperature uniformity.  相似文献   

14.
This paper investigates the feasibility of replacing steel bars with carbon-fiber-reinforced polymer (CFRP) bars in continuous reinforced concrete (RC) beams. A numerical model is introduced. Model predictions are compared with the experimental results that are available in the literature. A comprehensive numerical investigation is then performed on two-span CFRP/steel RC beams with ρb2 = 0.61–3.03% and ρb1/ρb2 = 1.5, where ρb1 and ρb2 are tensile bar ratios (ratios of tensile bar area to effective cross-sectional area of beams) over positive and negative moment regions, respectively. The study shows that replacing steel bars with CFRP bars greatly improves the crack mode at a low bar ratio. The ultimate load of CFRP RC beams is 89% higher at ρb2 = 0.61% but 7.2% lower at ρb2 = 3.03% than that of steel RC beams. In addition, CFRP RC beams exhibit around 13% greater ultimate deflection compared to steel RC beams. The difference of moment redistribution between CFRP and steel RC beams diminishes as ρb2 increases. ACI 318-19 appears to be conservative, and it leads to more accurate predictions of moment redistribution in CFRP RC beams than that in steel RC beams.  相似文献   

15.
The paper presents a comparison of the effectiveness of strengthening steel thin-walled, cold-formed sigma beams with CFRP tapes and steel tapes. For this purpose, three beams without reinforcement (reference beams) of the “Blachy Pruszyński” type, with a cross-section of ∑200 × 70 × 2 and a span of 280 cm, made of S350GD steel grade, were subjected to laboratory tests in the four-point bending scheme. In the next stage the tests included nine ∑200 × 70 × 2 beams reinforced with Sika CarboDur S512 CFRP tape and six ∑200 × 70 × 2 beams reinforced with steel tape made of S235 steel grade. The length of the reinforcement tapes as well made of steel as well of CFRP was of 175 cm. The location of the tapes within the height of the beams’ cross-section was assumed in three variants, namely placing the tape on the upper or bottom flange and on the web. In the case of beams reinforced with CFRP, three beams were tested for each reinforcement location, and in the case of beams reinforced with steel tapes, two beams were tested for each reinforcement location. SikaDur®-30 glue with a thickness of 1.3 mm was used in order to connect steel or CFRP tapes to the beams. The dimensions of the tapes cross-sections in both cases were similar (CFRP tapes: 50 × 1.2 mm, steel tapes: 50 × 1.3 mm). For all types of beams, numerical models were also developed in the Abaqus software. The main aim of this paper was investigation of the influence of mechanical properties of steel or CFRP tapes on the effectiveness of strengthening ∑ beams. For this purpose a comparison of these two solutions with respect to the limitation of displacements and deformations of the beam was performed. The obtained results were considered in the context of the mechanical properties of the materials composing the reinforcement tapes. The tests showed slight differences in the results of strain and displacements obtained for reinforcement made of two different materials. It was also noted that the decisive element was the failure of the joint at the steel-glue interface. Therefore, future studies will pay particular attention to the adhesive layer.  相似文献   

16.
The article aims to present the modified structural composition of the sub-ballast layers of the railway substructure, in which a part of the natural materials for the establishment of sub-ballast or protective layers of crushed aggregate is replaced by thermal insulation and reinforcing material (layer of composite foamed concrete and extruded polystyrene board). In this purpose, the experimental field test was constructed and the bearing capacity of the modified sub-ballast layers’ structure and temperature parameters were analyzed. A significant increase in the original static modulus of deformation on the surface of composite foamed concrete was obtained (3.5 times and 18 times for weaker and strengthen subsoil, respectively). Based on real temperature measurement, it was determined the high consistency of the results of numerical analyses and experimental test (0.002 m for the maximum freezing depth of the railway line layers and maximum ±0.5 °C for temperature in the railway track substructure–subsoil system). Based on results of numerical analyses, modified railway substructure with built-in thermal insulating extruded materials (foamed concrete and extruded polystyrene) were considered. A nomogram for the implementation of the design of thicknesses of individual structural layers of a modified railway sub-ballast layers dependent on climate load, and a mathematical model suitable for the design of thicknesses of structural sub-ballast layers of railway line were created.  相似文献   

17.
There is increased interest in applying electromagnetic (EM) shielding to prevent EM interference, which destroys electronic circuits. The EM shielding’s performance is closely related to the electrical conductivity and can be improved by incorporating conductive materials. The weight of a structure can be reduced by incorporating lightweight aggregates and replacing the steel rebars with CFRP rebars. In this study, the effects of lightweight coarse aggregate and CFRP rebars on the mechanical and electrical characteristics of concrete were investigated, considering the steel fibers’ incorporation. The lightweight coarse aggregates decreased the density and strength of concrete and increased the electrical conductivity of the concrete, owing to its metallic contents. The steel fibers further increased the electrical conductivity of the lightweight aggregate concrete. These components improved the EM shielding performance, and the steel fibers showed the best performance by increasing shielding effectiveness by at least 23 dB. The CFRP rebars behaved similarly to steel rebars because of their carbon fiber content. When no steel fiber was mixed, the shielding effectiveness increased by approximately 2.8 times with reduced spacing of CFRP rebars. This study demonstrates that lightweight aggregate concrete reinforced with steel fibers exhibits superior mechanical and electrical characteristics for concrete and construction industries.  相似文献   

18.
This paper deals with the problem of the influence of surface topography on the results of thermal diffusivity measurements when determined using the instantaneous surface heat source method, also called the pulse method. The analysis was based on numerical tests carried out using Comsol Multiphysics software. The results of experimental investigations on the actual material structure using an electron microscope, an optical microscope and a profilometer were used to develop a numerical model. The influence of the non-uniformity of the surface of the tested sample on the determined values of half-time of the thermal response of the sample’s rough surface to the impulse forcing on the opposing flat surface was determined by developing the data for simulated measurements. The effect of the position of the response data reading area on the obtained simulation results was also analyzed. The obtained results can be used to improve the accuracy of experimental heat transfer studies performed on thin-film engineering structures depending on the uniformity and parallelism of the material applied to engineering structures. The difference in half-life determination error results for various analyzed models can be as high as 16.7%, depending on the surface from which the responses of the heating impulse are read. With an equivalent model in which 10% of the material volume corresponds to the rough part as a single inclusion, hemisphere, the error in determining thermal diffusivity was equal to 3.8%. An increase in the number of inclusions with smaller weight reduces an error in the determination of thermal diffusivity, as presented in the paper.  相似文献   

19.
In this study, the effects of the traverse and rotational velocities of the noncontact shoulder tool on the heat generation and heated flux during the friction stir joining of high-density polyamide 6 (PA6) polymer were investigated. The computational fluid dynamics (CFD) method was employed to simulate the thermomechanical phenomena during the friction stir joining (FSJ) process of PA6. A developed model was used to consider the void formation and thermochemical properties of PA6. The surface and internal heat flow, material flow, and geometry of the joint were simulated, and an experimental study evaluated the simulation results. The simulation results indicated that the stir zone formed was smaller than regular joints with a noncontact shoulder tool. Despite the polymer’s traditional FSJ, heat generation and material flow do not differ significantly between advancing and retreating sides. On the other hand, the surface flow is not formed, and the surface temperature gradient is in a narrow line behind the tool. The material velocity increased at higher rotational speed and lower transverse velocity and in the stir zone with more giant geometry forms. The maximum generated heat was 204 °C, and the maximum material velocity was predicted at 0.44 m/s in the stir zone, achieved at 440 rpm and 40 mm/min tool velocities.  相似文献   

20.
This paper presents the outcomes of an experimental and numerical study performed on epoxy-bonded single lap joints (SLJs) between carbon fiber-reinforced polymer (CFRP) composite strips and steel elements. For the experimental program, 34 specimens were prepared by varying the type of the composite strip and the type of adhesives and their thicknesses; all specimens were loaded in axial tension up to failure. The specific failure mechanisms were identified and commented on the basis of the performed tests, and the load–displacement curves were plotted. Additionally, the strain distributions along the bond lengths at different load stages, the shear stress–displacements (slip) variations and the stress–strain distributions for the CFRP strips were plotted and investigated. The numerical simulations, based on 3D finite element method (FEM) analysis, provided consistent results, in good agreement with the experimental ones for all parameters that were investigated and discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号