首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We performed whole genome sequencing and genetic characterization of rabies viruses (RABV) detected in bats submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL) during 2018–2019. Among 88 bats submitted to CVMDL, six brain samples (6.8%, 95% confidence interval: 1.6% to 12.1%) tested positive by direct fluorescent antibody test. RABVs were detected in big brown bats (Eptesicus fuscus, n = 4), a hoary bat (Lasiurus cinereus, n = 1), and an unidentified bat species (n = 1). Complete coding sequences of four out of six detected RABVs were obtained. In phylogenetic analysis, the RABVs (18-62, 18-4347, and 19-2274) from big brown bats belong to the bats EF-E1 clade, clustering with RABVs detected from the same bat species in Pennsylvania and New Jersey. The bat RABV (19-2898) detected from the migratory hoary bat belongs to the bats LC clade, clustering with the eleven viruses detected from the same species in Arizona, Washington, Idaho, and Tennessee. The approach used in this study generated novel data regarding genetic relationships of RABV variants, including their reservoirs, and their spatial origin and it would be useful as reference data for future investigations on RABV in North America. Continued surveillance and genome sequencing of bat RABV would be needed to monitor virus evolution and transmission, and to assess the emergence of genetic mutations that may be relevant for public health.  相似文献   

2.
3.
A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a “friendly” coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.  相似文献   

4.
Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.  相似文献   

5.
Bats are a reservoir for a diverse range of viruses, including coronaviruses (CoVs). To determine the presence of CoVs in French bats, fecal samples were collected between July and August of 2014 from four bat species in seven different locations around the city of Bourges in France. We present for the first time the presence of alpha-CoVs in French Pipistrellus pipistrellus bat species with an estimated prevalence of 4.2%. Based on the analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) gene, phylogenetic analyses show that alpha-CoVs sequences detected in French bats are closely related to other European bat alpha-CoVs. Phylogeographic analyses of RdRp sequences show that several CoVs strains circulate in European bats: (i) old strains detected that have probably diverged a long time ago and are detected in different bat subspecies; (ii) strains detected in Myotis and Pipistrellus bat species that have more recently diverged. Our findings support previous observations describing the complexity of the detected CoVs in bats worldwide.  相似文献   

6.
Bat flies (Hippoboscoidea: Nycteribiidae and Streblidae) are obligate hematophagous ectoparasites of bats. We collected streblid bat flies from the New World (México) and the Old World (Uganda), and used metagenomics to identify their viruses. In México, we found méjal virus (Rhabdoviridae; Vesiculovirus), Amate virus (Reoviridae: Orbivirus), and two unclassified viruses of invertebrates. Méjal virus is related to emerging zoonotic encephalitis viruses and to the agriculturally important vesicular stomatitis viruses (VSV). Amate virus and its sister taxon from a bat are most closely related to mosquito- and tick-borne orbiviruses, suggesting a previously unrecognized orbivirus transmission cycle involving bats and bat flies. In Uganda, we found mamucuso virus (Peribunyaviridae: Orthobunyavirus) and two unclassified viruses (a rhabdovirus and an invertebrate virus). Mamucuso virus is related to encephalitic viruses of mammals and to viruses from nycteribiid bat flies and louse flies, suggesting a previously unrecognized orthobunyavirus transmission cycle involving hippoboscoid insects. Bat fly virus transmission may be neither strictly vector-borne nor strictly vertical, with opportunistic feeding by bat flies occasionally leading to zoonotic transmission. Many “bat-associated” viruses, which are ecologically and epidemiologically associated with bats but rarely or never found in bats themselves, may actually be viruses of bat flies or other bat ectoparasites.  相似文献   

7.
Poxviruses are important pathogens of man and numerous domestic and wild animal species. Cross species (including zoonotic) poxvirus infections can have drastic consequences for the recipient host. Bats are a diverse order of mammals known to carry lethal viral zoonoses such as Rabies, Hendra, Nipah, and SARS. Consequent targeted research is revealing bats to be infected with a rich diversity of novel viruses. Poxviruses were recently identified in bats and the settings in which they were found were dramatically different. Here, we review the natural history of poxviruses in bats and highlight the relationship of the viruses to each other and their context in the Poxviridae family. In addition to considering the zoonotic potential of these viruses, we reflect on the broader implications of these findings. Specifically, the potential to explore and exploit this newfound relationship to study coevolution and cross species transmission together with fundamental aspects of poxvirus host tropism as well as bat virology and immunology.  相似文献   

8.
The emergence of the West Nile virus (WNV) in the northeastern United States has drawn emphasis to the need for expanded arbovirus surveillance in Connecticut. Although the state of Connecticut began a comprehensive mosquito-screening program in 1997, only since 1999 have there been efforts to determine the prevalence of arboviruses in bird populations in this state. Herein, we report on our results of an arbovirus survey of 1,704 bird brains. Included in this report are the first known isolations of eastern equine encephalitis virus (EEEV) from crows and data on the geographic and temporal distribution of 1,092 WNV isolations from crow species. Moreover, these nine isolations of EEEV identify regions of Connecticut where the virus is rarely found. With the exception of WNV and EEEV, no other arboviruses were isolated or detected. Taken together, these data illustrate the distribution of avian borne EEEV and WNV in 2000 and support the need for ongoing avian arbovirus surveillance in Connecticut.  相似文献   

9.
Western equine encephalitis virus is a recombinant virus.   总被引:31,自引:2,他引:31       下载免费PDF全文
The alphaviruses are a group of 26 mosquito-borne viruses that cause a variety of human diseases. Many of the New World alphaviruses cause encephalitis, whereas the Old World viruses more typically cause fever, rash, and arthralgia. The genome is a single-stranded nonsegmented RNA molecule of + polarity; it is about 11,700 nucleotides in length. Several alphavirus genomes have been sequenced in whole or in part, and these sequences demonstrate that alpha-viruses have descended from a common ancestor by divergent evolution. We have now obtained the sequence of the 3'-terminal 4288 nucleotides of the RNA of the New World Alphavirus western equine encephalitis virus (WEEV). Comparisons of the nucleotide and amino acid sequences of WEEV with those of other alphaviruses clearly show that WEEV is recombinant. The sequences of the capsid protein and of the (untranslated) 3'-terminal 80 nucleotides of WEEV are closely related to the corresponding sequences of the New World Alphavirus eastern equine encephalitis virus (EEEV), whereas the sequences of glycoproteins E2 and E1 of WEEV are more closely related to those of an Old World virus, Sindbis virus. Thus, WEEV appears to have arisen by recombination between an EEEV-like virus and a Sindbis-like virus to give rise to a new virus with the encephalogenic properties of EEEV but the antigenic specificity of Sindbis virus. There has been speculation that recombination might play an important role in the evolution of RNA viruses. The current finding that a widespread and successful RNA virus is recombinant provides support for such an hypothesis.  相似文献   

10.
Tony Schountz 《Viruses》2014,6(12):4880-4901
Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.  相似文献   

11.
Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida.  相似文献   

12.
13.
Several species of alphaviruses have been previously described in the Americas, some of which are associated with encephalitis and others are associated with arthralgia. Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV) are endemic to Venezuela, with the former being responsible for major outbreaks of severe and often fatal disease in animals and humans. The aim of this study was to analyze the genetic diversity of Venezuelan alphaviruses isolated during two decades (1973–1999) of surveillance in northern Venezuela. Phylogenetic analysis indicated the circulation of a VEEV subtype IAB strain 8 years after the last reported outbreak. Thirteen strains within two subclades of South American lineage III of EEEV were also found in Venezuela. Considerable genetic variability was observed among Venezuelan Una virus strains, which were widely distributed among the clades. The first Venezuelan Mayaro sequence was also characterized.  相似文献   

14.
The three encephalitic alphaviruses, namely, the Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are classified by the Centers for Disease Control and Prevention (CDC) as biothreat agents. Currently, no licensed medical countermeasures (MCMs) against these viruses are available for humans. Neutralizing antibodies (NAbs) are fast-acting and highly effective MCMs for use in both pre- and post-exposure settings against biothreat agents. While significant work has been done to identify anti-VEEV NAbs, less has been done to identify NAbs against EEEV and WEEV. In order to develop anti-EEEV or -WEEV NAbs, mice were immunized using complementary strategies with a variety of different EEEV or WEEV immunogens to maximize the generation of NAbs to each of these viruses. Of the hybridomas generated, three anti-EEEV and seven anti-WEEV monoclonal antibodies were identified with in vitro neutralization activity. The most potent neutralizers (two anti-EEEV NAbs and three anti-WEEV NAbs) were further evaluated for neutralization activity against additional strains of EEEV, a single strain of Madariaga virus (formerly South American EEEV), or WEEV. Of these, G1-2-H4 and G1-4-C3 neutralized all three EEEV strains and the Madariaga virus strain, whereas G8-2-H9 and 12 WA neutralized six out of eight WEEV strains. To determine the protective efficacy of these NAbs, the five most potent neutralizers were evaluated in respective mouse aerosol challenge models. All five NAbs demonstrated various levels of protection when administered at doses of 2.5 mg/kg or 10 mg/kg 24 h before the respective virus exposure via the aerosol route. Of these, anti-EEEV NAb G1-4-C3 and anti-WEEV NAb 8C2 provided 100% protection at both doses and all surviving mice were free of clinical signs throughout the study. Additionally, no virus was detected in the brain 14 days post virus exposure. Taken together, efficacious NAbs were developed that demonstrate the potential for the development of cross-strain antibody-based MCMs against EEEV and WEEV infections.  相似文献   

15.
Influenza A viruses (IAV) of subtype H9N2, endemic in world-wide poultry holdings, are reported to cause spill-over infections to pigs and humans and have also contributed substantially to recent reassortment-derived pre-pandemic zoonotic viruses of concern, such as the Asian H7N9 viruses. Recently, a H9N2 bat influenza A virus was found in Egyptian fruit bats (Rousettus aegyptiacus), raising the question of whether this bat species is a suitable host for IAV. Here, we studied the susceptibility, pathogenesis and transmission of avian and bat-related H9N2 viruses in this new host. In a first experiment, we oronasally inoculated six Egyptian fruit bats with an avian-related H9N2 virus (A/layer chicken/Bangladesh/VP02-plaque/2016 (H9N2)). In a second experiment, six Egyptian fruit bats were inoculated with the newly discovered bat-related H9N2 virus (A/bat/Egypt/381OP/2017 (H9N2)). While R. aegyptiacus turned out to be refractory to an infection with H9N2 avian-type, inoculation with the bat H9N2 subtype established a productive infection in all inoculated animals with a detectable seroconversion at day 21 post-infection. In conclusion, Egyptian fruit bats are most likely not susceptible to the avian H9N2 subtype, but can be infected with fruit bat-derived H9N2. H9-specific sero-reactivities in fruit bats in the field are therefore more likely the result of contact with a bat-adapted H9N2 strain.  相似文献   

16.
Serologic surveys of wild and domestic birds, wild mammals, and horses were conducted during arbovirus field studies in Argentina from 1977 through 1980, a non-epizootic interval. The prevalence of neutralizing antibodies to eastern equine encephalitis (EEE) was consistently higher than to western equine encephalitis (WEE) virus in all species and all areas. The presence of antibodies in short-lived avian species and in young unvaccinated horses and the demonstration of seroconversions in horses during the period, indicated that these viruses are either enzootic in, or annually reintroduced into, Argentina. Antibodies to AG80-646, a new subtype of WEE virus isolated in the subtropical north (Chaco Province) from Culex (Melanoconion) mosquitoes, were found in horses and rodents in that region. Antibodies to the TC-83 strain of Venezuelan equine encephalitis (VEE) virus were found in all areas studied. The presence of antibodies in some horses was probably related to vaccination, but the demonstration of seroconversions in sentinel horses and of antibodies in birds and wild mammals indicates active transmission of VEE virus. In 1980 a new enzootic subtype of VEE virus (AG80-663) was isolated from mosquitoes in Chaco; neutralizing antibodies to this virus were prevalent in horses and rodents in this area. Infections with Aura and Una viruses were most common in the subtropical northern provinces. Infection with St. Louis encephalitis was prevalent and widespread, and birds, principally passerine and columbiform species, appear to be the principal hosts. An interesting and unexplained finding was the absence of arbovirus antibodies, in particular SLE antibodies in house sparrows (Passer domesticus). Antibody prevalences in horses exceeded 50% in all areas, and 12% of horses surveyed in Santa Fe Province developed antibody in a 17-month period. Antibodies to other flaviviruses were rare. A high prevalence of immunity to Maguari virus was found in horses; this agent is considered to be a potential equine pathogen. Antibodies to 2 new viruses, Barranqueras and Resistencia, which had been isolated from Cx. (Melanoconion) in Chaco Province, were found in rodents there. Immunity to Gamboa group viruses was prevalent, and birds were implicated as principal hosts.  相似文献   

17.
Arthropods are integral to ecosystem equilibrium, serving as both a food source for insectivores and supporting plant reproduction. Members of the Iflaviridae family in the order Picornavirales are frequently found in RNA sequenced from arthropods, who serve as their hosts. Here we implement a metagenomic deep sequencing approach followed by rapid amplification of cDNA ends (RACE) on viral RNA isolated from wild and captured bat guano in Washington State at two separate time points. From these samples we report the complete genomes of two novel viruses in the family Iflaviridae. The first virus, which we call King virus, is 46% identical by nucleotide to the lethal honeybee virus, deformed wing virus, while the second virus which we call Rolda virus, shares 39% nucleotide identity to deformed wing virus. King and Rolda virus genomes are 10,183 and 8934 nucleotides in length, respectively. Given these iflaviruses were detected in guano from captive bats whose sole food source was the Tenebrio spp. mealworm, we anticipate this invertebrate may be a likely host. Using the NCBI Sequence Read Archive, we found that these two viruses are located in six continents and have been isolated from a variety of arthropod and mammalian specimens.  相似文献   

18.
The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.  相似文献   

19.
Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans.  相似文献   

20.
Arthropod-borne infections are a medical and economic threat to humans and livestock. Over the last three decades, several unprecedented viral outbreaks have been recorded in the Western part of the Arabian Peninsula. However, little is known about the circulation and diversity of arthropod-borne viruses in this region. To prepare for new outbreaks of vector-borne diseases, it is important to detect which viruses circulate in each vector population. In this study, we used a metagenomics approach to characterize the RNA virome of ticks infesting dromedary camels (Camelus dromedaries) in Makkah province, Saudi Arabia. Two hundred ticks of species Hyalomma dromedarii (n = 196) and Hyalomma impeltatum (n = 4) were collected from the Alkhurma district in Jeddah and Al-Taif city. Virome analysis showed the presence of several tick-specific viruses and tick-borne viruses associated with severe illness in humans. Some were identified for the first time in the Arabian Peninsula. The human disease-associated viruses detected included Crimean Congo Hemorrhagic fever virus and Tamdy virus (family Nairoviridae), Guertu virus (family Phenuiviridae), and a novel coltivirus that shares similarities with Tarumizu virus, Tai forest reovirus and Kundal virus (family Reoviridae). Furthermore, Alkhurma hemorrhagic virus (Flaviviridae) was detected in two tick pools by specific qPCR. In addition, tick-specific viruses in families Phenuiviridae (phleboviruses), Iflaviridae, Chuviridae, Totiviridae and Flaviviridae (Pestivirus) were detected. The presence of human pathogenetic viruses warrants further efforts in tick surveillance, xenosurveillence, vector control, and sero-epidemiological investigations in human and animal populations to predict, contain and mitigate future outbreaks in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号