首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.  相似文献   

2.
Ordinary cement concrete is a popular material with numerous advantages when compared to other construction materials; however, ordinary concrete is also criticized from the public point of view due to the CO2 emission (during the cement manufacture) and the consumption of natural resources (for the aggregates). In the context of sustainable development and circular economy, the recycling of materials and the use of alternative binders which have less environmental impacts than cement are challenges for the construction sector. This paper presents a study on non-conventional concrete using recycled aggregates and alkali-activated binder. The specimens were prepared from low calcium fly ash (FA, an industrial by-product), sodium silicate solution, sodium hydroxide solution, fine aggregate from river sand, and recycled coarse aggregate. First, influences of different factors were investigated: the ratio between alkaline activated solution (AAS) and FA, and the curing temperature and the lignosulfonate superplasticizer. The interfacial transition zone of geopolymer recycled aggregate concrete (GRAC) was evaluated by microscopic analyses. Then, two empirical models, which are the modified versions of Feret’s and De Larrard’s models, respectively, for cement concretes, were investigated for the prediction of GRAC compressive strength; the parameters of these models were identified. The results showed the positive behaviour of GRAC investigated and the relevancy of the models proposed.  相似文献   

3.
Concrete production consumes enormous amounts of fossil fuels, raw materials, and is energy intensive. Therefore, scientific research is being conducted worldwide regarding the possibility of using by-products in the production of concrete. The objective is not only to identify substitutes for cement clinker, but also to identify materials that can be used as aggregate in mortar and concrete productions. Among the potential alternative materials that can be used in cement composite production is rock dust of different geological origin. However, some adversarial effects may be encountered when using rock dust regarding the properties and durability of mortars and concrete. Therefore, comprehensive research is needed to evaluate the adequacy of rock dust use in cementitious composite production. This paper presents a comprehensive review of the scientific findings from past studies concerning the use of various geological origins of rock dust in the production of mortars and concrete. The influence of rock dust as a replacement of fine aggregates on cementitious composites was analyzed and evaluated. In this assessment and review, fresh concrete and mortar properties, i.e., workability, segregation, and bleeding, mechanical properties, and the durability of hardened concrete and mortar were considered.  相似文献   

4.
In this research we evaluated the use of recycled fine mortar aggregate (RFMA) as a fine aggregate for new masonry mortar creation. The pre-wetting effect on the aggregate before creating the mixture was analyzed as a method to reduce its absorption potential. A control mixture of conventional mortar and two groups of recycled mortars were designed with a partial replacement of natural sand by RFMA (pre-wetted and not pre-wetted) performed in different proportions. The results established that the pre-wetting process allows a reduction in the amount of water required during the creation of new mixtures, regulating the water/cement (W/C) ratio and improving the properties of recycled mortars such as air content, fresh and hardened densities, and compressive and adhesive strength for all substitution levels. Mortar made with a 20% substitution and pre-wetted until it was at 67% of its absorption capacity displayed adhesive values higher than the ones shown by the reference mortar. The pre-wetting process proves to be an easy performance technique; it is inexpensive, environmentally friendly, and the most valuable fact is that specialized equipment is not necessarily needed. This process is the most profitable option for improving RFMA exploitation and reuse.  相似文献   

5.
One of the biggest technological problems connected with the production of lightweight concretes made of porous aggregates is their much higher water absorption, which may cause on the one hand workability loss, and on the other hand excess water content in concrete. The aim of this research was to assess the effect of impregnation of lightweight aggregates (LWAs) with cement paste on their properties and to verify its effectiveness in concretes. Three types of lightweight aggregates differing in porosity and pore structure (sintered fly ash Lytag, expanded clay: Leca and Liapor) were selected for the tests. The following parameters were taken into consideration in the research program: LWA type and size, LWA initial moisture content, strength, and rheology of cement pastes. The tests of 22 different aggregates, plain and coated with cement paste, included density, crushing strength, and development of water absorption in time. The research program proved that porous aggregates, due to their impregnation with cement pastes, may be effectively sealed and strengthened. All tested LWAs showed a considerable decrease in water absorption by up to 71%. However, only Lytag aggregate showed a visibly enhanced crushing strength. Verification of effectiveness of aggregate sealing on the enhancement of concrete properties showed both a considerable reduction in water absorption of composites (by up to 52%) and a very high increase in their strength (by up to 107%).  相似文献   

6.
A high-strength concrete and mortar subjected to compressive fatigue loading were comparatively investigated using experimental and computational techniques. The focus of the investigations was on the influence of the coarse aggregate in high-strength concrete. Accordingly, the fatigue behaviour was analysed experimentally using the macroscopic damage indicators strain, stiffness and acoustic emission hits. The results clearly show differences in the fatigue behaviour between the concrete and the mortar, especially at the lower stress level investigated. The basalt coarse aggregate here improves the fatigue behaviour of the concrete. Indication of a negative effect can be seen at the higher stress level. A finite element approach with a gradient-enhanced equivalent strain-based damage model combined with a fatigue model was used for the computational simulation of the fatigue behaviour. The damage model includes a differentiation between tension and compression. The fatigue model follows the assumption of the reduction in the material strength based on the accumulated gradient-enhanced equivalent strains. A random distribution of spherically shaped basalt aggregates following a given particle size distribution curve is used for the simulation of concrete. The comparison of the experimentally and computationally determined strain developments of the concrete and mortar shows very good agreement.  相似文献   

7.
Recently, with increasingly stringent environmental regulations and the depletion of natural aggregate resources, high-quality aggregates have become scarce. Therefore, significant efforts have been devoted by the construction industry to improve the quality of concrete and achieve sustainable development by utilizing industrial by-products and developing alternative aggregates. In this study, we use amorphous metallic fibers (AMFs) to enhance the performance of mortar with steel slag aggregate. Testing revealed that the 28-day compressive strength of the sample with steel slag aggregate and AMFs was in the range of 48.7–50.8 MPa, which was equivalent to or higher than that of the control sample (48.7 MPa). The AMFs had a remarkable effect on improving the tensile strength of the mortar regardless of the use of natural aggregates. With AMFs, the drying shrinkage reduction rate of the sample with 100% steel slag aggregate was relatively higher than that of the sample with 50% natural fine aggregate. Furthermore, the difference in the drying shrinkage with respect to the amount of AMFs was insignificant. The findings can contribute to sustainable development in the construction industry.  相似文献   

8.
The impregnation of lightweight aggregate (LWA) is an alternative method to its pre-moistening, which is used to limit the loss of fresh concrete workability due to the aggregate’s ability to absorb a great amount of mixing water. The aim of this study was to access the effectiveness, by pre-coating LWAs with cement paste, in modifying the properties of concrete composites. Two types of lightweight aggregates (Lytag and Leca) characterized with a relatively open-structure shell were selected. The other changeable parameters taken into consideration in this research were: LWA size, initial moisture of aggregate before the impregnation process and type of cement paste applied as an impregnant. Sixteen concretes prepared with pre-moistened and pre-coated lightweight aggregates were subject to a density test in different moisture conditions, a water absorption test and a compressive strength test. On the one hand, the pre-coating of LWAs with cement paste resulted in a relatively slight increase in concrete density (by up to 19%) compared to the pre-moistening of LWAs. On the other hand, it caused a very significant reduction (by up to 52%) in the composite’s water absorption and an incomparably greater growth (by up to 107%) in compressive strength. The most crucial factors determining the effectiveness of impregnation of LWAs with cement pastes in improvement of composite properties were the aggregate type and its size. The composition of impregnating slurry and the initial moisture content of LWA before pre-coating also mattered.  相似文献   

9.
Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. Based on the performance requirements of different qualities of recycled coarse aggregate, the performance differences of recycled coarse aggregate before and after physical strengthening were observed. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. The optimum calcination temperature of the recycled coarse aggregate was 400 °C and the grinding time was 20 min. The contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%, and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower apparent density, and higher crushing index of the recycled coarse aggregate.  相似文献   

10.
The properties of cement concrete using waste materials—namely, recycled cement mortar, fly ash–slag, and recycled concrete aggregate—are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash–slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS–RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS–RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS–RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS–RCM additive as 30% of the cement mass.  相似文献   

11.
In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars containing waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and capillary absorption of rubber mortar were investigated by substituting up to 20% cement with RHA. The experimental results showed that the incorporation of rubber into mortar could be safely achieved by adding RHA as a cement substitute by up to 20% without compromising the compressive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was found to be the optimal dosage.  相似文献   

12.
Coral concrete has low cost and convenient materials, making it an excellent raw material for processing. However, its lower strength limits the application of coral concrete. Surface modification is expected to increase the properties of porous coral concrete. In this study, single and compound modification treatments were applied to the surface of a coral aggregate to improve its properties for promoting the mechanical performance of coral concrete. The results showed that the micro-aggregate effect and pozzolanic activity of granulated blast furnace slag (GBFS) and the permeability and polycondensation of sodium silicate (SS) could be mutually promoted. The GBFS and SS could effectively fill the pores of the coral aggregate, enhancing the properties of the aggregate, such as density and load-bearing capacity, and reducing the water absorption and crushing index by more than 50%. GBFS and SS could intensify and accelerate the hydration of cement, and generate a large number of hard hydration products at the interfacial transition zone (ITZ), which could strengthen the bonding between the aggregate and mortar, improving the strength of the ITZ. The compressive strength of the coral concrete was significantly increased.  相似文献   

13.
The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a ‘shrinkage-controlling’ effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.  相似文献   

14.
High-performance concrete (HPC) is a topic of current research and construction projects, due to its outstanding compressive strength and durability. In particular, its behaviour under high-cycle fatigue loading is the focus of current investigations, to further pave the way to highly challenging long-lasting constructions; e.g., bridges or offshore buildings. In order to investigate the behaviour of HPC with different moisture contents in more detail, a mixture of silica sand and basalt aggregate with a maximum grain size of 8 mm was investigated with three different moisture contents. For this purpose, cyclic compressive fatigue tests at a loading frequency of 10 Hz and different maximum stress levels were performed. The main focus was the moisture influence on the number of cycles to failure and the development of concrete temperature and strain. In a further step, only the mortar matrix was investigated. For this purpose, the mixture was produced without basalt, and the moisture influence was investigated on smaller-sized test specimens using dynamic mechanical analysis (DMA) and X-ray computed tomography (XRCT). It was shown that the moisture content of HPC had a significant influence on the fatigue damage behaviour due to the number of cycles to failure decreasing significantly with increased moisture. In addition, there was also an influence on the temperature development, as well as on the strain development. It was shown that increasing moisture content was associated with an increase in strain development. XRCT scans, in the course of the damage phases, showed an increase in internal cracks, and made their size visible. With the help of DMA as a new research method in the field of concrete research, we were also able to measure damage development related to a decrease in sample stiffness. Both methods, XRCT and DMA, can be listed as nondestructive methods, and thus can complement the known destructive test methods, such as light microscopy.  相似文献   

15.
Beneficiating fly ash as valuable construction material such as artificial lightweight aggregate (LWA) could be an alternative solution to increase the utilization of the industrial by-product. However, generally, LWA is characterized by high porosity and a related high water absorption, which on the one hand allows production of lightweight mortar, but on the other hand can affect its performance. Thus, in this research, the durability performance of mortar composed with alkali-activated fly ash-based LWA, and commercial expanded clay (EC) LWA was investigated. The fly ash LWA was prepared in a pan granulator, with a 6-molar solution of NaOH mixed with Na2SiO3 in a Na2SiO3/NaOH weight ratio of 1.5 being used as activator (FA 6M LWA). The results revealed that mortar containing FA 6M LWA had equivalent mechanical strength with mortar containing EC LWA. The mortar containing FA 6M LWA had comparable capillary water uptake and chloride migration resistance with the reference and EC LWA mortar. Furthermore, the addition of FA 6M LWA was proven to enhance the carbonation resistance in the resulting mortar, due to the denser interfacial transition zone (ITZ) of mortar with LWA.  相似文献   

16.
With the rapid development of urbanization, many new buildings are erected, and old ones are demolished and/or recycled. Thus, the reuse of building materials and improvements in reuse efficiency have become hot research topics. In recent years, scholars around the world have worked on improving recycle aggregates in concrete and broadening the scope of applications of recycled concrete. This paper reviews the findings of research on the effects of recycled fine aggregates (RFAs) on the permeability, drying shrinkage, carbonation, chloride ion penetration, acid resistance, and freeze–thaw resistance of concrete. The results show that the content of old mortar and the quality of recycled concrete are closely related to the durability of prepared RFA concrete. For example, the drying shrinkage value with a 100% RFA replacement rate is twice that of normal concrete, and the depth of carbonation increases by approximately 110%. Moreover, the durability of RFA concrete decreases as the RFA replacement rate and the water–cement ratio improve. Fortunately, the use of zeolite materials such as fly ash, silica fume, and meta kaolin as surface coatings for RFAs or as external admixtures for RFA concrete had a positive effect on durability. Furthermore, the proper mixing methods and/or recycled aggregates with optimized moisture content can further improve the durability of RFA concrete.  相似文献   

17.
Alkali-activated mortars and concretes have been gaining increased attention due to their potential for providing a more sustainable alternative to traditional ordinary Portland cement mixtures. In addition, the inclusion of high volumes of recycled materials in these traditional mortars and concretes has been shown to be particularly challenging. The compositions of the mixtures present in this paper were designed to make use of a hybrid alkali-activation model, as they were mostly composed of class F fly ash and calcium-rich precursors, namely, ordinary Portland cement and calcium hydroxide. Moreover, the viability of the addition of fine milled glass wastes and fine limestone powder, as a source of soluble silicates and as a filler, respectively, was also investigated. The optimization criterium for the design of fly ash-based alkali-activated mortar compositions was the maximization of both the compressive strength and environmental performance of the mortars. With this objective, two stages of optimization were conceived: one in which the inclusion of secondary precursors in ambient-cured mortar samples was implemented and, simultaneously, in which the compositions were tested for the determination of short-term compressive strength and another phase containing a deeper study on the effects of the addition of glass wastes on the compressive strength of mortar samples cured for 24 h at 80 °C and tested up to 28 days of curing. Furthermore, in both stages, the effects (on the compressive strength) of the inclusion of construction and demolition recycled aggregates were also investigated. The results show that a heat-cured fly ash-based mortar containing a 1% glass powder content (in relation to the binder weight) and a 10% replacement of natural aggregate for CDRA may display as much as a 28-day compressive strength of 31.4 MPa.  相似文献   

18.
Recycled aggregate is essential to protect Jeju Island’s natural environment, but waste concrete, including porous basalt, is a factor that lowers the quality of recycled aggregate. Therefore, an experiment was conducted to analyze the properties of concrete application of basalt-based recycled aggregate (B-RA) through quality improvement. The absorption of the B-RA ranged from 3–5%; restricting its absorption to less than 3% was challenging owing to its porosity and irregular shape. However, the increase in the solid volume percentage of the concrete when replacing 25 or 50% of fresh basalt aggregate with recycled basalt aggregate improved the mechanical performance of the concrete, especially at 25%, for which a compressive strength of 55.9 MPa and modulus of elasticity of 25.9 GPa exceeded those of concrete with fresh basalt aggregate. Moreover, increasing the replacement ratio of the fresh basalt with recycled aggregate reduced the slump and decreased the air content, consequently increasing the concrete drying shrinkage. However, the replacement of fresh basalt aggregate with recycled basalt aggregate unaltered the mechanical performance of the concrete. The results indicate that efficient use of recycled aggregates can yield superior performance to that of fresh basalt, irrespective of aggregate quality.  相似文献   

19.
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.  相似文献   

20.
Crumb rubber (CR) from scrap tires is used as a partial replacement of fine aggregates in cement paste. This promotes the sustainable development of the environment, economy, and society, as waste tires are non-biodegradable and flammable. They occupy large landfill areas and are breeding grounds for mosquitoes and rodents. Inclusion of CR in mortar leads to several improvements on the mixture properties such as ductility, toughness, and impact resistance. However, it exhibits lower strengths and Modulus of Elasticity (ME). Therefore, to promote the use of mortar containing CR, it is vital to improve its mechanical strength. Past studies proved that nano-silica (NS) improves the strength of concrete due to the physico-chemical effects of NS. This study aims to examine the mechanical properties of crumb rubber mortar containing nano-silica (NS-CRM) and to develop models to predict these properties using Response Surface Methodology (RSM). Two variables were considered, CR as partial replacement to sand by volume (0%, 7.5%, 15%), and NS as partial replacement to cement by weight (0%, 2.5%, 5%). The results demonstrated a significant improvement in the mechanical properties of CRM when incorporating NS, and the models developed using RSM were acceptable with a 2% to 3% variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号