首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Objectives - We analyzed the percentage of mitochondrial DNA (mtDNA) heteroplasmy in blood samples of 13 individuals belonging to a three family generation of myoclonic epilepsy with ragged-red fibers (MERRF) and compared the 5 affected patients and the 8 unaffected relatives. Material and methods - DNA was extracted from blood and muscle of the proband and from blood of 12 maternal relatives. A PCR restriction analysis method was used to detect the mutation. Results - The proband had the complete MERRF phenotype. The phenotype in three other individuals in the maternal lineage was consistent with the MERRF syndrome. The remaining were asymptomatic. The np 8344 mutation was observed in muscle and blood of the proband, and in blood from every one of 12 maternal relatives, ranging from 44% to 83% of mutated genomes. Symptomatic individuals had higher levels ( P < 0.001) of mutated mtDNA than asymptomatic maternal relatives. However, high proportions of mutant genomes (up to 63%) were found in asymptomatic relatives. Conclusions - Although there seems to be a gene dosage effect in MERRF, we found no absolute relationship between the relative proportion of mutant genomes in blood and clinical severity. Factors other than gene dosage in blood may account for the differences in clinical phenotype.  相似文献   

2.
MELAS: clinical features, biochemistry, and molecular genetics.   总被引:25,自引:0,他引:25  
We studied 23 patients with clinically defined mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), 25 oligosymptomatic or asymptomatic maternal relatives, and 50 mitochondrial disease control subjects for the presence of a previously reported heteroplasmic point mutation at nt 3,243 in the transfer RNA(Leu(UUR)) gene of mitochondrial DNA. We found a high concordance between clinical diagnosis of MELAS and transfer RNA(Leu(UUR)) mutation, which was present in 21 of the 23 patients with MELAS, all 11 oligosymptomatic and 12 of 14 asymptomatic relatives, but in only five of 50 patients without MELAS. The proportion of mutant genomes in muscle ranged from 56 to 95% and was significantly higher in the patients with MELAS than in their oligosymptomatic or asymptomatic relatives. In subjects in whom both muscle and blood were studied, the percentage of mutations was significantly lower in blood and was not detected in three of 12 asymptomatic relatives. The activities of complexes I + III, II + III, and IV were decreased in muscle biopsies harboring the mutation, but there was no clear correlation between percentage of mutant mitochondrial DNAs and severity of the biochemical defect.  相似文献   

3.
The clinical manifestations and mitochondrial DNA (mtDNA) mutations in a Taiwanese family with a female proband exhibiting mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome are reported. Clinically, the proband had a stroke-like episode with right hemiparesis, hemianopsia and mental dysfunction as well as short stature, hearing impairments, and elevated lactate levels. Brain magnetic resonance images showed multiple increased signal intensities over the left frontal, parietal and temporal areas. There were no ragged-red fibers, but paracrystalline inclusion bodies were shown in the muscle biopsies under electron microscopic examination. A deficiency of NADH-CoQ reductase was also found in biochemical studies of the muscles. The family survey revealed no abnormal findings except for headache and episodic vomiting in her mother. The molecular analysis of mtDNA disclosed a mutation from A to G at the nucleotide pair 3243 of the mitochondrial transfer RNALeu gene in the blood, hair follicles and/or muscle of the maternal relatives. A characteristic finding of the MELAS family is variation of percentage of mutated mtDNA in various tissues and individuals. However, a higher proportion of mutated mtDNA was noted in the proband than that in the asymptomatic or oligosymptomatic family members. From the data, the variable clinical phenotypes in this MELAS family can be explained at least partly, by the different proportions of mutant mtDNA in the target tissues of the profound and maternal relatives.  相似文献   

4.
Nineteen patients were found to harbor the mitochondrial DNA A3243G mutation associated with MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). Eight of them had presented with stroke-like episodes and therefore had a clinical diagnosis of MELAS syndrome. The other 11 patients had no strokes and presented with generally less severe multisystemic disease. In the two groups, we compared muscle morphology, biochemical activities of muscle respiratory chain, and genetic characteristics: proportion and tissue distribution of the mutation, sequence of the 22 transfer RNA genes of the mitochondrial DNA. The proportion of mutant mtDNA in muscle was always greater than in blood. The number of patients in the two groups was too low to reach significant values. However, the patients with a MELAS syndrome presented with more severe respiratory chain abnormalities and with a proportion of the A3243G mutation that was both higher and more uniformly distributed among tissues. For symptoms others than stroke-like episodes, we did not observe any correlation with the level of mutant mtDNA in muscle. The analysis of the 22 tRNA sequences did not show differences between the two groups, and no co-inherited modifying tRNA genes could explain the variability of severity in our patients.  相似文献   

5.
We studied 22 subjects carrying the A3243G point mutation of human mitochondrial DNA (mtDNA). In 14 cases the clinical phenotype was characterized by mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), while 8 patients had chronic progressive external ophthalmoplegia (CPEO). The proportion of A3243G heteroplasmy in muscle was determined by two methods: densitometry on a diagnostic restriction-fragment length polymorphism and solid-phase mini-sequencing. We found a highly significant inverse correlation between the percentage of A3243G mutation and the specific activity of complex 1, the respiratory complex with the highest number of mtDNA-encoded subunits, suggesting a direct effect of the mutation on mtDNA translation. No correlation was observed between the percentage of mutated mtDNA and the presence or absence of specific clinical features, such as stroke, ophthalmoplegia and diabetes mellitus. However, in the MELAS group the percentage of mutated mtDNA molecules was strongly correlated with the age of onset, while no such correlation was found in the CPEO group, suggesting a different time-dependent evolution of the mutation in the two groups. Finally, in contrast with other mtDNA mutations associated with ragged-red fibres (RRF), in both MELAS3243 and CPE03243 we observed a high proportion of RRF that were positive to the histochemical reaction to cytochromec oxidase, a morphological feature that seems to be specific for the neuromuscular phenotypes associated with mutations affecting the tRNALeu(UUR) gene.  相似文献   

6.
Mitochondrial DNA (mtDNA) disease is an important genetic cause of neurological disability. A variety of different clinical features are observed and one of the most common phenotypes is MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). The majority of patients with MELAS have the 3243A>G mtDNA mutation. The neuropathology is dominated by multifocal infarct-like lesions in the posterior cortex, thought to underlie the stroke-like episodes seen in patients. To investigate the relationship between mtDNA mutation load, mitochondrial dysfunction and neuropathological features in MELAS, we studied individual neurones from several brain regions of two individuals with the 3243A>G mutation using dual cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry, and Polymerase Chain Reaction Restriction Fragment Lenght Polymorphism (PCR-RFLP) analysis. We found a low number of COX-deficient neurones in all brain regions. There appeared to be no correlation between the threshold level for the 3243A>G mutation to cause COX deficiency within single neurones and the degree of pathology in affected brain regions. The most severe COX deficiency associated with the highest proportion of mutated mtDNA was present in the walls of the leptomeningeal and cortical blood vessels in all brain regions. We conclude that vascular mitochondrial dysfunction is important in the pathogenesis of the stroke-like episodes in MELAS patients. As migraine is a commonly encountered feature in MELAS, we propose that coupling of the vascular mitochondrial dysfunction with cortical spreading depression (CSD) might underlie the selective distribution of ischaemic lesions in the posterior cortex in these patients.  相似文献   

7.
Out of 90 Portuguese patients with mitochondrial cytopathy, six harbored the A3243G mutation in the mtDNA tRNA(Leu(UUR)) gene ('MELAS mutation'). They had heterogeneous clinical features, including myopathy with stroke-like episodes, progressive external ophthalmoparesis, diabetes mellitus, and subacute encephalopathy. Histochemical and biochemical analyses of muscle biopsies showed abundant ragged-red fibers reacting positively with the cytochrome oxidase stain, and decreased respiratory chain enzyme activities. On average, the proportion of mutated mtDNA was 67% (20-88%) in tissues from patients and 21% (0-49%) in blood from 20 maternal relatives. The proportion of mutated mitochondrial genomes in muscle did not correlate with clinical presentation or duration of disease. This study, the first in Portuguese patients, confirms the frequent occurrence of the A3243G mutation in patients with mitochondrial diseases, and emphasises the usefulness of genetic testing in reaching a correct diagnosis.  相似文献   

8.
Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy.  相似文献   

9.
BACKGROUND: The proportion of mutant mtDNA in blood has been found to correlate with the frequency of visual loss in cases with mtDNA mutations associated with Leber hereditary optic neuropathy (LHON), especially in men. We sought to determine this correlation in a Thai population of LHON. METHODS: Densitometric quantification of blood mtDNA with the 11,778 LHON mutation in 137 symptomatic cases and their asymptomatic maternal relatives in 30 Asian pedigree families was performed. Asymptomatic maternal relatives under the age of 16 years were excluded. The visual outcome in symptomatic cases with homoplasmy and heteroplasmy was compared. RESULTS: Heteroplasmy was detected in eight (12.9%) symptomatic and 30 (40%) asymptomatic individuals. The quantification of blood mutant mtDNA in the eight symptomatic cases ranged from 44% to 93% (mean=75%). The visual outcome of the cases with heteroplasmy was not different from that of cases with homoplasmy. There was a correlation between the proportion of mutant mtDNA and the likelihood of visual loss. CONCLUSIONS: The prevalence of heteroplasmy among pedigrees of the 11,778 LHON mutation in Thailand was similar to that of other Asian populations and may be greater than in 11,778 LHON pedigrees from white backgrounds. The proportion of mutated mtDNA correlated with visual loss, but the effect of heteroplasmy on clinical expression seemed not to relate to gender.  相似文献   

10.
MELAS is a mitochondrial encephalomyopathy characterized clinically by recurrent stroke-like episodes, seizures, sensorineural deafness, dementia, hypertrophic cardiomyopathy, and short stature. The majority of patients are heteroplasmic for a mutation (A3243G) in the tRNAleu(UUR) gene in mitochondrial DNA (mtDNA). In cells cultured in vitro, the mutation produces a severe mitochondrial translation defect only when the proportion of mutant mtDNAs exceeds 95% of total mtDNAs. However, most patients are symptomatic well below this threshold, a paradox that remains unexplained. We studied the relationship between the level of heteroplasmy for the mutant mtDNA and the clinical and biochemical abnormalities in a large pedigree that included 8 individuals carrying the A3243G mutation, 4 of whom were asymptomatic. Unexpectedly, we found that brain lactate, a sensitive indicator of oxidative phosphorylation dysfunction, was linearly related to the proportion of mutant mtDNAs in all individuals carrying the mutation, whether they were symptomatic or not. There was no evidence for threshold expression of the metabolic defect. These results suggest that marked tissue-specific differences may exist in the pathogenic expression of the A3243G mutation and explain why a neurological phenotype can be observed at relatively low levels of heteroplasmy.  相似文献   

11.
OBJECTIVE: To clarify the relationship between mitochondrial DNA (mtDNA) sequence variations and phenotypes in patients with A3243G mutation. MATERIALS AND METHODS: We studied whole mtDNA sequences in two families with A3243G mutation and characteristic clinical features. Two brothers in Family 1 had shown thiamine deficiency and mitochondrial myopathy without central nervous system involvement. In Family 2, a 16-year-old woman showed the symptoms of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Her mother had had diabetes mellitus and died at the age of 42. The proportion of A3243G mtDNA in blood was 87 and 89% in the patients of Family 1, and 25% in the patient and less than 5% in the mother of Family 2. RESULTS: The mtDNA analysis revealed the following homoplasmic substitutions: T1520C and C12153T found only in Family 1, and A15954G found only in Family 2. These substitutions were not detected in seven other MELAS patients or in 50 controls. CONCLUSION: These substitutions might be specific to these families and could be one of the factors that modulate their clinical features together with the A3243G mutation.  相似文献   

12.
MERRF/MELAS overlap syndrome in a family with A3243G mtDNA mutation   总被引:3,自引:0,他引:3  
Four members of a family were found to carry the A3243G mtDNA mutation. Clinical features varied from typical MELAS to myoclonic epilepsy to simple deafness without neurological signs. Several other members of the family had symptoms consistent with a mitochondrial disease. Muscle biopsy in 3 of the 4 patients showed the most prominent mitochondrial alterations with partial deficiency of cytochrome c oxidase in the case with the mildest phenotype. Mitochondrial DNA analysis detected a variable percentage of A3243G mutation, roughly correlating with the phenotype. The interesting feature of the family lies in the great intrafamilial variability of the severity of clinical expression, encompassing MELAS and MERRF features, associated with the A3243G mtDNA mutation. A search for the most common mtDNA mutations is recommended in all patients featuring incomplete MELAS or MERRF syndromes and in all familial cases presenting minimal clinical signs.  相似文献   

13.
We describe a clinically full-blown MELAS patient, who had an A3243G point mutation of mitochondrial DNA (mtDNA) in muscle and blood cells, and his family members. From the proband two muscle biopsies from the vastus lateralis muscle were analysed; one had typical ragged red fibers and focal cytochrome c oxidase deficiency and the other was completely normal. He also had a peripheral neuropathy confirmed by nerve conduction velocity and sural nerve biopsy studies. Axonal degeneration, relative loss of large myelinated fibers and paracrystalline inclusion bodies in the Schwann cells were noted. Intriguingly, the A3243G mutation of mtDNA was not found in the sural nerve biopsy. Therefore, we conclude that tissue mosaicism is present in the muscle fibers and that the mtDNA mutation may not be detected in the nerve involved as proved by pathology. We also suggest that the involvement of specific tissues in patients with mitochondrial diseases should be further determined by single fiber mtDNA analysis.  相似文献   

14.
Deletions of mitochondrial DNA in Kearns-Sayre syndrome   总被引:38,自引:0,他引:38  
We have identified large-scale deletions in muscle mitochondrial DNA (mtDNA) in seven of seven patients with Kearns-Sayre syndrome (KSS). We found no detectable deletions in the mtDNA of ten non-KSS patients with other mitochondrial myopathies or encephalomyopathies, or three normal controls. The deletions ranged in size from 2.0 to 7.0 kb, and did not localize to any single region of the mitochondrial genome. The proportion of mutated genomes in each KSS patient ranged from 45% to 75% of total mtDNA. There was no correlation between the size or site of the deletion, biochemical abnormality of mitochondrial enzymes, or clinical severity. The data bolster arguments that KSS is a unique disorder and genetic in origin.  相似文献   

15.
We have identified the A3243G heteroplasmic point mutation in mitochondrial DNA from a female patient with headache as the main clinical feature. The mitochondrial origin of her disease was only suspected because of her brother with MELAS syndrome. Morphological and biochemical studies failed to reveal mitochondrial respiratory chain dysfunction in her muscle which contained 65% of mutated mitochondrial DNA molecules. Molecular studies performed among four generations (in the blood of seven subjects) showed the variable transmission of mutated molecules and pointed out the difficulty in giving genetic counsel.  相似文献   

16.
We examined muscle sections from 3 patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), using single-fiber polymerase chain reaction, histochemistry, and in situ hybridization. Most type 1 ragged-red fibers showed positive cytochrome c oxidase activity at the subsarcolemmal region, while type 2 ragged-red fibers had little cytochrome c oxidase activity. However, there was no difference in the amount of total (mutant and wild-type) mitochondrial DNAs (mtDNAs) and the proportion of mutant mtDNA between type 1 and type 2 ragged-red fibers. These observations suggest that mitochondrial proliferation and nuclear factors affect muscle pathology, including cytochrome c oxidase activity, in MELAS. Total mtDNAs were greatly increased in ragged-red fibers (about 5–17 times over those in non–ragged-red fibers). The proportion of mutant mtDNA was significantly higher in ragged-red fibers (88.1 ± 5.5%) than in non–ragged-red fibers (63.2 ± 21.6%). Thus, the amount of wild-type mtDNA as well as mutant mtDNA was increased in ragged-red fibers in MELAS, failing to support the contention of a replicative advantage of mutant mtDNA. The proportion of mutant mtDNA was significantly higher in the strongly succinate dehydrogenase–reactive blood vessels (83.2 + 4.2%) than in non–succinate dehydrogenase–reactive blood vessels (38.8 ± 16.2%). It seems likely that systemic vascular abnormalities involving cerebral vessels lead to the evolution of stroke-like episodes in MELAS.  相似文献   

17.
The clinical features of a patient in a Chinese family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) are reported. The study revealed that hearing and visual impairments and miscarriages may be early clinical presentations in MELAS. A heteroplasmic A to G transition in the tRNA(Leu(UUR)) gene was noted at the nucleotide pair 3243 in the mitochondrial DNA of muscle, blood, and hair follicles of the proband and his maternal relatives. Quantitative analysis of the mutated mitochondrial DNA revealed variable proportions in different tissues and subjects of maternal lineage in the family. Muscle tissue contained a higher proportion of the mutant mitochondria than other tissues examined. The function of the reproductive system of the proband seems to be impaired. In one clinically healthy sibling, the 3243rd point mutation was found in sperm mitochondrial DNA, although sperm motility was not affected. It seems that biochemical defects in mitochondrial respiration and oxidative phosphorylation are tissue specific expressions of the 3243rd point mutation in the mitochondrial DNA of the affected target tissues.  相似文献   

18.
We studied two pedigrees with a mutation at the nucleotide 3243 of mitochondrial DNA (mtDNA). The proband from the first pedigree had clinically defined MELAS plus maternally transmitted insulin-dependent diabetes mellitus (IDDM). The propositus of the other pedigree had exercise intolerance, lactic acidosis and ragged-red fibers (RRF). In the first pedigree, both the mother and the sister's proband harbored the point mutation in their muscle. The mother had 40% of mutant mitochondrial genomes and the sister 70%. In the second pedigree, the mutation was present in both muscle and blood from the proband as well as in blood from all other members studied. Proportion of mutant mtDNA was 90% in muscle and ranged from 40% to 90% in blood.  相似文献   

19.
MERRF (Myoclonic Epilepsy and Ragged-Red Fibres) syndrome is one of the maternally inherited diseases for which a mitochondrial DNA (mtDNA) point mutation has recently been identified. The mutation is always heteroplasmic, that is normal and mutant mtDNA coexist within the same individual. We studied mtDNA heteroplasmy in two families with MERRF syndrome, using a denaturing gradient gel electrophoresis technique that avoids the errors in the evaluation of wild/mutant mtDNA ratios caused by restriction enzyme cutting in the situation of amplification of a heteroplasmic DNA. In two patients, the proportion of muscle mutant mtDNA was in agreement with the severity of muscle mitochondrial proliferation, energy defect and fibre type I predominance. In nine patients from three generations of one family, mutant mtDNA proportion in leukocytes was in relative agreement with the clinical severity of the disease. Transmission of mutant mtDNA through these three generations did not show any tendency toward homoplasmy. Homogeneity of the mutant mtDNA proportion among different tissues from one patient was demonstrated in brain, liver, muscle and heart but a possibility of divergence of the mutant mtDNA proportion during mitosis was documented in cultured skin fibroblasts.  相似文献   

20.
OBJECTIVES: We investigated whether mutation of mitochondrial DNA (mtDNA) affects the copy number of the mitochondrial genome in patients with mitochondrial myopathy encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and those with myoclonic epilepsy with ragged-red fiber (MERRF) syndromes. MATERIALS AND METHODS: Forty-eight Taiwanese patients with MELAS syndrome and 20 patients with MERRF syndrome were recruited in this study. RESULTS: In relation to controls, the copy numbers of mtDNA in leukocytes of patients with MELAS or MERRF syndrome were significantly higher at a young age but lower at an advanced age. In addition, MELAS patients harboring higher proportions of mtDNA with A3243G transition had lower mtDNA copy numbers. The MELAS or MERRF patients with multi-system disorders had lower mtDNA copy numbers in leukocytes. Furthermore, higher proportions of mtDNA with 4977 bp deletion were found in leukocytes of MERRF patients with multi-system involvement. CONCLUSION: In leukocytes, alteration in the copy number of mtDNA is related to the proportion of mtDNA with a point mutation or large-scale deletion, which may serve as a biomarker in the pathogenesis and disease progression of MELAS and MERRF syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号