首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Crain SM  Shen KF 《Brain research》2004,995(2):260-266
The endogenous glycolipid GM1 ganglioside plays a critical role in nociceptive neurons in regulating opioid receptor excitatory signaling demonstrated to mediate "paradoxical" morphine hyperalgesia and to contribute to opioid tolerance/dependence. Neuraminidase (sialidase) increases levels of GM1, a monosialoganglioside, in these neurons by enzymatic removal of sialic acid from abundant polysialylated gangliosides. In this study, acute treatment of mice with the neuraminidase inhibitor, oseltamivir enhanced morphine analgesia. Acute oseltamivir also reversed "paradoxical" hyperalgesia induced by an extremely low dose of morphine, unmasking potent analgesia. In chronic studies, co-administration of oseltamivir with morphine prevented and reversed the hyperalgesia associated with morphine tolerance. These results provide the first evidence indicating that treatment with a neuraminidase inhibitor, oseltamivir, blocks morphine's hyperalgesic effects by decreasing neuronal levels of GM1. The present study further implicates GM1 in modulating morphine analgesia and tolerance, via its effects on the underlying excitatory signaling of Gs-coupled opioid receptors. Finally, this work suggests a remarkable, previously unrecognized effect of oseltamivir-which is widely used clinically as an antiviral agent against influenza-on glycolipid regulation of opioid excitability functions in nociceptive neurons.  相似文献   

2.
Crain SM  Shen K 《Brain research》2000,856(1-2):227-235
10-fold higher doses in SW mice. Furthermore, cotreatment of 129/SvEv mice with morphine plus a low dose of naltrexone (ca. 0.1 microgram/kg) that markedly enhances and prolongs morphine's antinociceptive effects in SW mice did not enhance, and often attenuated6 h. The marked GM1-induced attenuation of morphine's antinociceptive effects in 129/SvEv mice may be due to conversion of some of the opioid receptors in these mice from an inhibitory Gi/Go-coupled to an excitatory Gs-coupled mode. Exogenous GM1 supplementation can, therefore, reverse the anomalous lack of morphine tolerance displayed by this mouse strain in comparison to SW and other mice. The present study may provide insights into factors that regulate the marked variability in nociceptive sensitivity and opioid tolerance/dependence liability among individual humans.  相似文献   

3.
In previous studies we showed that low (pM) concentrations of naloxone (NLX), naltrexone (NTX) or etorphine selectively antagonize excitatory, but not inhibitory, opioid receptor-mediated functions in nociceptive types of sensory neurons in culture. Cotreatment of these neurons with pM NTX or etorphine not only results in marked enhancement of the inhibitory potency of acutely applied nM morphine [or other bimodally-acting (inhibitory/excitatory) opioid agonists], but also prevents development of cellular manifestations of tolerance and dependence during chronic exposure to μM morphine. These in vitro studies were confirmed in vivo by demonstrating that acute cotreatment of mice with morphine plus a remarkably low dose of NTX (ca. 10 ng/kg) does, in fact, enhance the antinociceptive potency of morphine, as measured by hot-water tail-flick assays. Furthermore, chronic cotreatment of mice with morphine plus low doses of NTX markedly attenuates development of naloxone-precipitated withdrawal-jumping in physical dependence assays. The present study provides systematic dose-response analyses indicating that NTX elicited optimal enhancement of morphine's antinociceptive potency in mice when co-administered (i.p.) at about 100 ng/kg together with morphine (3 mg/kg). Doses of NTX as low as 1 ng/kg or as high as 1 μg/kg were still effective, but to a lesser degree. Oral administration of NTX in the drinking water of mice was equally effective as i.p. injections in enhancing the antinociceptive potency of acute morphine injections and even more effective in attenuating development of tolerance and NLX-precipitated withdrawal-jumping during chronic cotreatment. Cotreatment with a subanalgesic dose of etorphine (10 ng/kg) was equally effective as NTX in enhancing morphine's antinociceptive potency and attenuating withdrawal-jumping after chronic exposure. These studies provide a rationale for the clinical use of ultra-low-dose NTX or etorphine so as to increase the antinociceptive potency while attenuating the tolerance/dependence liability of morphine or other conventional bimodally-acting opioid analgesics.  相似文献   

4.
Crain SM  Shen KF 《Brain research》2001,888(1):75-82
Our previous electrophysiologic studies on nociceptive types of dorsal root ganglion (DRG) neurons in culture demonstrated that extremely low fM-nM concentrations of morphine and many other bimodally-acting mu, delta and kappa opioid agonists can elicit direct excitatory opioid receptor-mediated effects, whereas higher (microM) opioid concentrations evoked inhibitory effects. Cotreatment with pM naloxone or naltrexone (NTX) plus fM-nM morphine blocked the excitatory effects and unmasked potent inhibitory effects of these low opioid concentrations. In the present study, hot-water-immersion tail-flick antinociception assays at 52 degrees C on mice showed that extremely low doses of morphine (ca. 0.1 microg/kg) can, in fact, elicit acute hyperalgesic effects, manifested by rapid onset of decreases in tail-flick latency for periods >3 h after drug administration. Cotreatment with ultra-low-dose NTX (ca. 1-100 pg/kg) blocks this opioid-induced hyperalgesia and unmasks potent opioid analgesia. The consonance of our in vitro and in vivo evidence indicates that doses of morphine far below those currently required for clinical treatment of pain may become effective when opioid hyperalgesic effects are blocked by coadministration of appropriately low doses of opioid antagonists. This low-dose-morphine cotreatment procedure should markedly attenuate morphine tolerance, dependence and other aversive side-effects.  相似文献   

5.
The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e. shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e. APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1–1 μM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1–10 wM concentrations. In addition to the potent agonist action of etorphine at μ-, δ- and κ-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potentantagonist of excitatory μ-, δ- and κ-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all μ-, δ- and κ-opioid receptor-mediated functions, whereas addition of the epsilon (ε)-opioid-receptor antagonist, β-endorphin(1–27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine showsexcitatory agonist action onnon-μ-/δ-/κ-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on μ-, δ- and κ-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of μ-, δ- and -opioid agonists. This weak excitatory agonist action of etorphine on non-μ-/δ-/κ-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.  相似文献   

6.
Mice deficient in the κ-opioid receptor (KOR) gene have recently been developed by the technique of homologous recombination and shown to lack behavioural responses to the selective κ1-receptor agonist U-50,488H. We have carried out quantitative autoradiography of μ-, δ- and κ1 receptors in the brains of wild-type (+/+), heterozygous (+/−) and homozygous (−/−) KOR knockout mice to determine if there is any compensatory expression of μ- and δ-receptor subtypes in mutant animals. Adjacent coronal sections were cut from the brains of +/+, +/− and −/− mice for the determination of binding of [3H]CI-977, [3H]DAMGO ( -Ala2-MePhe4-Gly-ol5 enkephalin) or [3H]DELT-I ( -Ala2 deltorphin I) to κ1-, μ- and δ-receptors, respectively. In +/− mice there was a decrease in [3H]CI-977 binding of approximately 50% whilst no κ1-receptors could be detected in any brain region of homozygous animals confirming the successful disruption of the KOR gene. There were no major changes in the number or distribution of μ- or δ-receptors in any brain region of mutant mice. There were, however some non-cortical regions where a small up-regulation of δ-receptors was observed in contrast to an opposing down-regulation of δ-receptors evident in μ-knockout brains. This effect was most notable in the nucleus accumbens and the vertical limb of the diagonal band, and suggests there may be functional interactions between μ- and δ-receptors and κ1- and δ-receptors in mouse brain.  相似文献   

7.
This article reviews data on ethanol and neurosteroid interactions in the CNS. We discuss how GABAergic neurosteroids, including 3α,5α-TH PROG and 3α,5α-TH DOC, produced in response to systemic ethanol administration contribute to several of the effects of ethanol associated with modulation of GABAA receptors in rodents. There is an essential correlation between the time course of ethanol-induced 3α,5α-TH PROG production in the brain and specific behavioral and neural effects of ethanol. Furthermore, the anticonvulsant and inhibitory effects of ethanol on spontaneous neural activity were completely prevented by a key inhibitor of steroid biosynthesis. 3α,5α-TH PROG influences cognitive processing, spatial learning and memory and alters drinking behaviors in rats. Furthermore, ethanol induction of 3α,5α-TH PROG is diminished in tolerant and dependent animals. These effects are associated with increases in the sensitivity of GABAA receptors to neurosteroids and suggest an important role in ethanol withdrawal. Together, we suggest that 3α,5α-TH PROG and 3α,5α-TH DOC contribute to ethanol action and this interaction may represent a new mechanism of ethanol action. The identification of neurosteroid intermediaries involved in ethanol action may lead to important advances in the field and the development of novel therapeutics for alcoholism.  相似文献   

8.
Chronic exposure of all-trans-retinoic acid-differentiated SH-SY5Y cells to morphine (10 μM; 2 days) results in sensitization of adenylate cyclase as characterized by a significant increase in both PGE1 receptor-mediated as well as receptor-independent (NaF, 10 mM; forskolin, 100 μM) stimulation of effector activity. To investigate the underlying biochemical alterations, chronic opioid regulation of each of the components comprising the stimulatory PGE, receptor system was examined. On receptor level, chronic morphine treatment was found to reduce PGE1 receptor number (Bmax) by approximately 40%, whereas their affinity slightly increased. Binding experiments performed in the presence of GTPγS (100 μM) further indicate that the decrease in PGE1 receptor density is associated with a loss of functionally G protein-coupled receptors. On post-receptor level, chronic morphine treatment substantially increased the abundance and functional activity of stimulatory G proteins, as assessed by cholera toxin-catalyzed ADP-ribosylation of Gsα and S49 cyc reconstitution assays. No changes were found on the level of adenylate cyclase. Evaluation of the functional interaction between PGE1 receptors and Gs in situ by application of a C-terminal anti-Gsα antibody revealed a more intense coupling efficiency between these two entities, since a significant higher amount of antibody (2.3-fold) was required in morphine dependent cell membranes to half-maximally attenuate PGE1 receptor-stimulated adenylate cyclase activity. In addition, limitation of the amount of functionally available Gsα within the PGE1 receptor/adenylate cyclase signal transduction cascade abolished the generation of a supersensitive adenylate cyclase response during the state of naloxone (100 μM)-precipitated withdrawal. These data demonstrate that in human neuroblastoma SH-SY5Y cells chronic morphine-induced sensitization of adenylate cyclase is associated with distinct quantitative and qualitative adaptations within the stimulatory adenylate cyclase-coupled PGE1 receptor system. Thus, alterations in the functional activity of stimulatory receptor systems are suggested to contribute to the cellular mechanisms underlying opioid dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号