首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The epidermal growth factor receptor (EGF-R) pathway plays a pivotal role in the progression of human gastric cancer. The angiogenic factor vascular endothelial growth factor (VEGF) has been shown to be induced by EGF in various cancer cell lines. Neuropilin-1 (NRP-1) acts as a coreceptor for VEGF-165 and increases its affinity for VEGF receptor 2 (VEGFR-2) in endothelial cells. Furthermore, NRP-1 has been found to be expressed by tumour cells and has been shown to enhance tumour angiogenesis and growth in preclinical models. We examined the expression of NRP-1 mRNA and EGF-R protein in seven human gastric cancer cell lines. NRP-1 expression was expressed in five of seven cell lines, and EGF-R expression closely mirrored NRP-1 expression. Moreover, in EGF-R-positive NCI-N87 and ST-2 cells, EGF induced both NRP-1 and VEGF mRNA expression. C225, a monoclonal antibody to EGF-R, blocked EGF-induced NRP-1 and VEGF expression in NCI-N87 cells in a dose-dependent manner. The treatment of NCI-N87 cells with EGF resulted in increases in phosphorylation of Erk1/2, Akt, and P38. Blockade of the Erk, phosphatidylinositol-3 kinase/Akt, or P38 pathways in this cell line prevented EGF induction of NRP-1 and VEGF. These results suggest that regulation of NRP-1 expression in human gastric cancer is intimately associated with the EGF/EGF-R system. Activation of EGF-R might contribute to gastric cancer angiogenesis by a mechanism that involves upregulation of VEGF and NRP-1 expression via multiple signalling pathways.  相似文献   

3.
Increasing evidence indicates that tumor-derived endothelial cells (TEC) possess a distinct and unique phenotype in respect to normal endothelial cells and may be able to acquire resistance to drugs. However, few functional studies are available on cultured TEC. In the present study, we obtained TEC from human breast carcinomas and, to dispel the possibility of contaminating tumor cells, we established six different clones that we characterized at a functional level. Breast TEC cell lines and clones did not undergo normal cell senescence in culture and showed constant expression of markers of endothelial activation and angiogenesis. These cells showed increased apoptosis resistance to vincristine and doxorubicin and increased random cell motility, as compared to normal micro-endothelial cells. In addition, breast TEC, at variance to normal endothelial cells, were able to grow and to organize in the absence of serum in capillary-like structures on Matrigel that persisted up to one week. These functional characteristics of breast TEC may be relevant for tumor angiogenesis and may indicate an increased pro-angiogenic activity of endothelial cells within the tumor. Moreover, our data suggest that TEC might be more appropriate for screening antiangiogenic drugs than normal endothelial cells.  相似文献   

4.
5.
6.
It is now well established that tumor growth is angiogenesis dependent. Inhibition of angiogenesis, therefore, is likely to be an effective anticancer approach. A gene therapy-mediated approach to the delivery of antiangiogenic agents using adeno-associated virus (AAV) vectors has a number of advantages, including the potential for sustained expression. We have constructed a rAAV vector in which the expression of a soluble, truncated form of the vascular endothelial growth factor receptor-2 (Flk-1), a known inhibitor of endothelial cell activation, is driven by a composite beta-actin-based promoter. After intraportal injection of this vector, high-level, stable transgene expression was generated in mice. This established a systemic state of angiogenesis inhibition; sera from these mice inhibited endothelial cell activation in vitro and Matrigel plug neovascularization in vivo. Significant antitumor efficacy was observed in two murine models of pediatric kidney tumors. Tumor development was prevented in 10 of 15 (67%) mice, with significant growth restriction of tumors in the remaining mice. For the first time, long-term, in vivo expression of a functional angiogenesis inhibitor has been established using rAAV, with resultant anticancer efficacy in a relevant, orthotopic tumor model. These findings establish the feasibility of using rAAV vectors in antiangiogenic gene therapy.  相似文献   

7.
Vascular endothelial growth factor (VEGF) A is a major promoter of tumor angiogenesis and a prime target of antiangiogenic cancer therapy. To examine whether endothelial cell signaling might provide histological biomarkers of angiogenesis and VEGF activity in vivo, normal mouse organs and multiple tumor models were studied immunohistochemically for endothelial expression of activated ERK, STAT3, and AKT. Phospho(p)-ERK and p-STAT3 expression was negligible in the endothelia of normal organs but was significantly elevated in tumor endothelium. p-AKT was present at significant and comparable levels in both tumor and normal endothelia. In K1735 tumors induced to express more VEGF, endothelial p-ERK, p-STAT3 and p-AKT increased accompanied by signs of accelerated angiogenesis. Treatment of K1735 and Colo-205 tumors with the VEGF inhibitor, VEGF Trap (aflibercept), decreased tumor endothelial p-ERK, p-STAT3 and p-AKT expression accompanied by signs of antiangiogenic effect. These results show that endothelial p-ERK and p-STAT3 (but not p-AKT) distinguish tumor from normal vessels and that the presence of these two signaling intermediates may be useful indicators of tumor angiogenic activity and angiogenesis inhibition by VEGF antagonist.  相似文献   

8.
Human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMVEC) have been the standards for cell-based assays in the field of angiogenesis research and in antiangiogenic drug discovery. These normal mature endothelial cells may not be most representative of human tumor endothelial cells. Human AC133+/CD34+ bone marrow progenitor cells were established in cell culture media containing vascular endothelial growth factor, basic fibroblast growth factor (bFGF), and heparin to drive differentiation toward the endothelial phenotype. The resulting cells designated endothelial precursor cells (EPC) have many of the same functional properties as mature endothelial cells represented by HUVEC and HMVEC. By SAGE analysis, the genes expressed by EPC are more similar to the genes expressed by endothelial cells isolated from fresh surgical specimens of human tumors than are the genes expressed by HUVEC and HMVEC. Analysis of several cell surface markers by flow cytometry showed that EPC, HUVEC, and HMVEC have similar expression of P1H12, vascular endothelial growth factor 2, and endoglin but that EPC have much lower expression of ICAM1, ICAM2, VCAM1, and thrombomodulin than do HUVEC and HMVEC. The EPC generated can form tubes/networks on Matrigel, migrate through porous membranes, and invade through thin layers of Matrigel similarly to HUVEC and HMVEC. However, in a coculture assay using human SKOV3 ovarian cancer cell clusters in collagen as a stimulus for invasion through Matrigel, EPC were able to invade into the malignant cell cluster, whereas HMVEC were not able to invade the malignant cell cluster. In vivo, a Matrigel plug assay where human EPC were suspended in the Matrigel allowed tube/network formation by human EPC to be carried out in a murine host. EPC may be a better model of human tumor endothelial cells than HUVEC and HMVEC and, thus, may provide an improved cell-based model for second generation antineoplastic antiangiogenic drug discovery.  相似文献   

9.
The role of platelets in tumor progression and metastasis has been recognized but the mechanism of their action remains unclear. Five human lung cancer cell lines (A549, CRL 2066, CRL 2062, HTB 183, HTB 177) and a murine Lewis lung carcinoma (LCC) cell line (for an in vivo model of metastasis) were used to investigate how platelet-derived microvesicles (PMV), which are circular fragments shed from the surface membranes of activated platelets, and exosomes released from platelet alpha-granules, could contribute to metastatic spread. We found that PMV transferred the platelet-derived integrin CD41 to most of the lung cancer cell lines tested and stimulated the phosphorylation of mitogen-activated protein kinase p42/44 and serine/threonine kinase as well as the expression of membrane type 1-matrix metalloproteinase (MT1-MMP). PMV chemoattracted 4 of the 5 cell lines, with the highly metastatic A549 cells exhibiting the strongest response. In A549 cells, PMV were shown to stimulate proliferation, upregulate cyclin D2 expression and increase trans-Matrigel chemoinvasion. Furthermore, in these cells, PMV stimulated mRNA expression for angiogenic factors such as MMP-9, vascular endothelial growth factor, interleukin-8 and hepatocyte growth factor, as well as adhesion to fibrinogen and human umbilical vein endothelial cells. Intravenous injection of murine PMV-covered LLC cells into syngeneic mice resulted in significantly more metastatic foci in their lungs and LLC cells in bone marrow than in control animals injected with LCC cells not covered with PMV. Based on these findings, we suggest that PMV play an important role in tumor progression/metastasis and angiogenesis in lung cancer.  相似文献   

10.
Vascular endothelial growth factor (VEGF) A is a major promoter of tumor angiogenesis and a prime target of antiangiogenic cancer therapy. To examine whether endothelial cell signaling might provide histological biomarkers of angiogenesis and VEGF activity in vivo, normal mouse organs and multiple tumor models were studied immunohistochemically for endothelial expression of activated ERK, STAT3 and AKT. Phospho(p)-ERK and p-STAT3 expression was negligible in the endothelia of normal organs but was significantly elevated in tumor endothelium. p-AKT was present at significant and comparable levels in both tumor and normal endothelia. In K1735 tumors induced to express more VEGF, endothelial p-ERK, p-STAT3 and p-AKT increased accompanied by signs of accelerated angiogenesis. Treatment of K1735 and Colo-205 tumors with the VEGF inhibitor, VEGF Trap (aflibercept), decreased tumor endothelial p-ERK, p-STAT3 and p-AKT expression accompanied by signs of antiangiogenic effect. These results show that endothelial p-ERK and p-STAT3 (but not p-AKT) distinguish tumor from normal vessels and that the presence of these two signaling intermediates may be useful indicators of tumor angiogenic activity and angiogenesis inhibition by VEGF antagonists.Key words: VEGF, VEGF Trap, endothelial cells, signal transduction, angiogenesis, biomarker, p-ERK, p-STAT3, p-AKT  相似文献   

11.
12.
Overexpression of the epidermal growth factor receptor (EGFR) is thought to play a key role in the development of head and neck squamous cell carcinoma (HNSCC) primarily through its effect on promoting uncontrolled cell proliferation. Blocking EGFR ligand binding might also inhibit angiogenesis and down-regulate the production of angiogenic factors. Angiogenesis is increased in various human tumors, including head and neck squamous cell carcinoma (HNSCC), and correlates with tumor progression and metastasis. The vascular endothelial growth factor (VEGF) is thought to be the most important angiogenic factor. We determined whether VEGF antisense oligonucleotide treatment can decrease angiogenic activity of HNSCC cell lines in vitro. By using a 21-mer antisense phosphorothioate oligonucleotide targeting the translation start site of human EGFR mRNA, we examined modulation of VEGF expression in cell line supernatants by capture ELISA, and in cell lysates by Western blotting. Human umbilica vein endothelial cells (HUVEC) were grown in conditioned medium produced from the treated tumor cells. Endothelial cell migration was measured using a modified Boyden chamber. EGFR antisense oligonucleotide treatment resulted in a significant reduction of VEGF protein expression compared to sense oligonucleotide control. Addition of conditioned medium from EGFR antisense-treated tumor cells resulted in decreased endothelial cell migration. In conclusion, therapeutic strategies targeting EGFR signaling in head and neck cancer might have an antitumor effect mediated in part by inhibition of tumor angiogenesis.  相似文献   

13.
Antiangiogenic activity of aplidine, a new agent of marine origin   总被引:7,自引:0,他引:7  
The antineoplastic compound aplidine, a new marine-derived depsipeptide, has shown preclinical activity in vitro on haematological and solid tumour cell lines. It is currently in early phase clinical trials. The exact mechanism of action of this anticancer agent still needs to be clarified. We have previously reported that aplidine blocks the secretion of the angiogenic factor vascular endothelial growth factor (VEGF) by the human leukaemia cells MOLT-4, suggesting a possible effect on tumour angiogenesis. This study was designed to investigate the antiangiogenic effect of aplidine. In vivo, in the chick embryo allantoic membrane (CAM) assay, aplidine inhibited spontaneous angiogenesis, angiogenesis elicited by exogenous VEGF and FGF-2, and induced by VEGF overexpressing 1A9 ovarian carcinoma cells. In vitro, at concentrations achievable in the plasma of patients, aplidine inhibited endothelial cell functions related to angiogenesis. It affected VEGF- and FGF-2-induced endothelial cell proliferation, inhibited cell migration and invasiveness assessed in the Boyden chamber and blocked the production of matrix metalloproteinases (MMP-2 and MMP-9) by endothelial cells. Finally, aplidine prevented the formation of capillary-like structures by endothelial cells on Matrigel. These findings indicate that aplidine has antiangiogenic activity in vivo and inhibits endothelial cell functional responses to angiogenic stimuli in vitro. This effect might contribute to the antineoplastic activity of aplidine.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a potent proangiogenic protein that activates VEGF receptor (VEGFR) tyrosine kinases expressed by vascular endothelial cells. We previously showed that one of these receptors, VEGFR-2, has a truncated soluble form (sVEGFR-2) that can be detected in mouse and human plasma. Because activation of VEGFR-2 plays an important role in tumor angiogenesis, clinical interest in monitoring plasma sVEGFR-2 levels in cancer patients has focused on its potential exploitation as a surrogate biomarker for disease progression as well as assessing efficacy/activity of antiangiogenic drugs, particularly those that target VEGF or VEGFR-2. However, no preclinical studies have been done to study sVEGFR-2 during tumor growth or the mechanisms involved in its modulation. Using spontaneously growing tumors and both localized and metastatic human tumor xenografts, we evaluated the relationship between sVEGFR-2 and tumor burden as well as underlying factors governing protein level modulation in vivo. Our results show an inverse relationship between the levels of sVEGFR-2 and tumor size. Furthermore, using various methods of VEGF overexpression in vivo, including cell transfection and adenoviral delivery, we found plasma sVEGFR-2 decreases to be mediated largely by tumor-derived VEGF. Finally, in vitro studies indicate VEGF-mediated sVEGFR-2 modulation is the result of ligand-induced down-regulation of the VEGFR-2 from the cell surface. Taken together, these findings may be pertinent to further clinical exploitation of plasma sVEGFR-2 levels as a surrogate biomarker of VEGF-dependent tumor growth as well as an activity indicator of antiangiogenic drugs that target the VEGFR system.  相似文献   

15.
16.
We reported previously that an angiogenesis inhibitor, E7820, inhibits in vitro tube formation of human umbilical vein endothelial cell through the suppression of integrin alpha2 expression. Here we describe the antiangiogenic and antitumor effects of E7820 in mice and discuss the feasibility of using platelet integrin alpha2 expression on platelets as a biological marker of the efficacy of E7820. Oral administration of E7820 significantly inhibited basic fibroblast growth factor-induced angiogenesis in Matrigel implants and human colon WiDr tumor-induced angiogenesis in a dorsal air sac model. Twice-daily treatment with E7820 clearly inhibited the s.c. tumor growth of seven tumor cell lines derived from human colon, breast, pancreas, and kidney, and completely suppressed the growth of human pancreatic KP-1 and human colon LoVo cell lines. Moreover, E7820 significantly inhibited the growth of KP-1 and human colon tumor Colo320DM cells orthotopically implanted in the pancreas and cecum, respectively. The efficacy of E7820 was comparable in the s.c. and orthotopic transplantation models. Immunohistochemical analyses using anti-CD31 antibody showed that E7820 significantly reduced microvessel density in orthotopically implanted KP-1 tumor. E7820 reduced integrin alpha2 expression on a megakaryocytic cell line, Dami cells, induced by phorbol 12-myristate 13-acetate treatment. It also decreased the expression level of integrin alpha2 on platelets withdrawn from mice bearing s.c. KP-1 tumor at a dosage close to that affording antitumor activity. These data demonstrate that E7820 showed a broad-spectrum antitumor effect in mice through inhibition of angiogenesis and indicate that the decrease of integrin alpha2 on platelets might serve as a biological marker for the antitumor efficacy of E7820.  相似文献   

17.
Rofstad EK  Halsør EF 《Cancer research》2000,60(17):4932-4938
Angiogenesis is a significant prognostic factor in melanoma, but the angiogenic factors controlling the neovascularization are not well defined. The purpose of this study was to investigate whether the angiogenesis and metastasis of melanoma are promoted by vascular endothelial growth factor (VEGF), interleukin 8 (IL-8), platelet-derived endothelial cell growth factor (PD-ECGF), and/or basic fibroblast growth factor (bFGF). Cells from human melanoma lines (A-07, D-12, R-18, and U-25) transplanted to BALB/c nu/nu mice were used as tumor models. Expression of angiogenic factors was studied by ELISA, Western blotting, and immunohistochemistry. Angiogenesis was assessed by using an intradermal angiogenesis assay. Lung colonization and spontaneous lung metastasis were determined after i.v. and intradermal inoculation of tumor cells, respectively. The specific roles of VEGF, IL-8, PD-ECGF, and bFGF in tumor angiogenesis, lung colonization, and spontaneous metastasis were assessed in mice treated with neutralizing antibody. The melanoma lines expressed multiple angiogenic factors, and each line showed a unique expression pattern. Multiple angiogenic factors promoted angiogenesis in the most angiogenic melanoma lines, whereas angiogenesis in the least angiogenic melanoma lines was possibly promoted solely by VEGF. Tumor growth, lung colonization, and spontaneous metastasis were controlled by the rate of angiogenesis and hence by the angiogenic factors promoting the angiogenesis. Lung colonization and spontaneous metastasis in A-07 were inhibited by treatment with neutralizing antibody against VEGF, IL-8, PD-ECGF, or bFGF. Each of these angiogenic factors may promote metastasis in melanoma, because inhibition of one of them could not be compensated for by the others. Our observations suggest that efficient antiangiogenic treatment of melanoma may require identification and blocking of common functional features of several angiogenic factors.  相似文献   

18.
Many normal human cells produce thrombospondin-1 (TSP-1), a potent antiangiogenic protein that promotes vascular quiescence. In various organ systems, including the brain, breast and bladder and in fibroblasts, TSP-1 secretion is reduced during tumorigenesis, thereby allowing induction of the vigorous neovascularization required for tumor growth and metastasis. Full-length and short TSP-1-derived peptides inhibit angiogenesis by inducing endothelial cell apoptosis and thus disrupting the vasculature of the growing tumor. CD36 expressed on the surface of endothelial cells functions as the primary antiangiogenic receptor for TSP-1. A D-isoleucyl enantiomer of a TSP-1 heptapeptide specifically inhibits the proliferation and migration of capillary endothelial cells. DI-TSP, an approximately 1 kDa capped version of this peptide, is also antiangiogenic in vitro, with a specific activity approaching that of the 450 kDa parental molecule. Here, we show that DI-TSP delivered systemically dose-dependently inhibits the growth of murine melanoma metastases in syngeneic animals and that its more soluble isomer, DI-TSPa, similarly blocks the progression of primary human bladder tumors in an orthotopic model in immune-deficient mice. Like intact TSP-1, these peptide mimetics had no effect on cancer cells growing in vitro but markedly suppressed the growth of endothelial cells by inducing receptor-dependent apoptosis. Antibodies raised against CD36 blocked the ability of peptides to induce apoptosis in endothelial cells but had no effect on tumor necrosis factor-alpha-induced apoptosis. In vivo, the peptide mimetics were associated with a significantly reduced microvessel density and increased apoptotic indices in both the endothelial and tumor cell compartments. Such short peptides targeted to a specific antiangiogenic receptor, potent and easy to synthesize, show great promise as lead compounds in clinical antiangiogenic strategies.  相似文献   

19.
Approaches to preclinical screening of antiangiogenic agents.   总被引:6,自引:0,他引:6  
Angiogenesis, or new blood vessel growth, is essential for the growth, invasion, and metastasis of solid tumors. The inhibition of this process, or antiangiogenesis, is a promising new therapeutic anticancer strategy. Several antiangiogenic compounds are currently in preclinical or clinical development for the treatment of cancer. However, the challenge for the discovery and characterization of antiangiogenic targets remains in developing efficient in vitro or in vivo preclinical angiogenesis screening assays to assess and compare antiangiogenic activity. Several semiquantitative or quantitative angiogenesis assays exist, including in vitro endothelial cell systems and ex vivo or in vivo neovascularization models utilizing mouse, rat, or human tissues. We describe the more common and cost-effective angiogenesis assays currently in use, summarizing their unique advantages and disadvantages. Since angiogenesis inhibition is a novel therapeutic modality towards controlling solid tumors, antiangiogenic drug development underlines the importance in describing, standardizing, and developing quantitative screening assays for the next generation of antiangiogenic agents.  相似文献   

20.
The Notch signaling pathway and the delta-like 4 ligand (DLL4) play key roles in embryonic vascular development. Many of the pathways involved in embryonic vascular development also play important roles in tumor angiogenesis. In this study, we assessed the expression of DLL4 in primary renal cancer and investigated the biological function of DLL4 in primary endothelial cells. Using real-time quantitative PCR and in situ hybridization, we showed that the expression of DLL4 was up-regulated within the vasculature of clear cell-renal cell carcinoma almost 9-fold more than normal kidney and was correlated with the expression of vascular endothelial growth factor (VEGF). The expression of DLL4 in endothelial cells was up-regulated by VEGF and basic fibroblast growth factor synergistically, and by hypoxia through hypoxia-inducible factor 1alpha. Down-regulation of DLL4 expression with RNA interference led to decreased expression of HEY1 and EphrinB2, and the inhibition of endothelial cell proliferation, migration, and network formation, all of which are important processes in tumor angiogenesis. The inhibition of proliferation occurred via the induction of cell cycle arrest in G0-G1 by increased expression of p21 and decreased phosphorylation of retinoblastoma. We conclude that an optimal window of the DLL4 expression is essential for tumor angiogenesis and that selective modulation of the DLL4 expression within human tumors may represent a potential novel antiangiogenic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号