首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our findings reported so far demonstrate that silibinin modulates gut microbial enzymes, colonic oxidative stress and Wnt/β-catenin signaling, to exert its antiproliferative effect against 1,2 di-methylhydrazine (DMH) induced colon carcinogenesis. Since xenobiotic metabolizing enzymes play a crucial role in carcinogen activation and metabolism, we aimed to explore the effect of silibinin on xenobiotic metabolizing enzymes during DMH induced colon carcinogenesis. Male albino rats were randomly divided into six groups. Group 1 served as control and group 2 rats received 50mg/kg body weight of silibinin p.o. every day. Groups 3-6 rats were given DMH at a dose of (20mg/kg body weight subcutaneously) once a week for 15 weeks to induce colonic tumors. In addition to DMH, group 4 (initiation), group 5 (post-initiation) and group 6 (entire period) rats received silibinin (50mg/kg body weight, p.o., everyday) at different time points during the experimental period of 32 weeks. Rats exposed to DMH alone showed increased activities of phase I enzymes (cytochrome b5, cytochrome b5 reductase, cytochromeP450, cytochromeP450 reductase, cytochromP4502E1) and decreased activities of phase II enzymes (Uridine diphospho glucuronyl transferase, Glutathione-S-transferase and DT-Diaphorase) in the liver and colonic mucosa as compared to control rats. Silibinin supplementation modulates the xenobiotic metabolizing enzymes favoring carcinogen detoxification. Evaluation of lipid peroxidation and antioxidants status showed that silibinin supplementation counteracts DMH induced hepatic and circulatory oxidative stress. Tumor burden in experimental animals was assessed both macroscopically and microscopically in the colon tissues. Our findings emphasize the potential chemopreventive action of silibinin against DMH induced colon carcinogenesis.  相似文献   

2.
Chemopreventive agents are used to diminish the morbidity and mortality of cancer by delaying the course of carcinogenesis. Formation of ACF and amplified activity of colon biotransforming enzymes were considered to be hallmarks of colon carcinogenesis. Morin, a bioflavonoid present in fruits and show various pharmacological and biological activities. Our present study, shows the modulatory effect of morin administration on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in rat colon, and fecal and mucosal biotransforming enzyme activities. A total of 64 rats were randomized into four groups. Group 1 served as control, groups 2 and 4 received 50 mg/kg b.w. of morin intragastrically for the entire period of the study (30 weeks). Groups 3 and 4 received subcutaneous injection of DMH (20 mg/kg b.w.) for 15 weeks. Rats were sacrificed at the end of 30 weeks. The incidence of tumors/polyps in the colon cancer of rats and treated with morin showed reduced incidence (40%) of tumors, as compared to DMH (100%) treated rats. Morin administration significantly reduced ACF formation and lowered the activities of fecal and mucosal biotransforming enzymes. Our findings suggest that morin (50 mg/kg b.w.) may be a possible chemopreventive agent against colon cancer.  相似文献   

3.
Male mice were treated with structurally diverse herbicides to study their effect on liver xenobiotic-metabolizing enzymes. Chlorfiurecol, trifluralin, alachlor, propham, MCPP and 2,4-DP caused increases in phase I (cytochrome P-450, ethoxycoumarin O-deethylase, and/or aminopyrine N-demethylase) and phase II (microsomal epoxide hydrolase and cytosolic glutathione S-transferase) activities. MCPP and 2,4-DP also increased cytosolic epoxide hydrolase and carnitine acetyltransferase activities suggestive of peroxisome proliferation. Benthiocarb and molinate increased only some phase II enzyme activities. Dicamba, at the dose employed, caused mortality and decreases in some of the enzymes monitored. Most of the herbicides tested induced xenobiotic-metabolizing enzyme activities, the pattern of induction being dependent on herbicide structure.  相似文献   

4.
1,2‐Dimethylhydrazine (DMH), an environmental toxicant specifically targets the colon. The present study was aimed to evaluate the efficacy of gallic acid (GA) against colon toxicity induced by DMH in Wistar rats. GA, a phenolic acid has numerous beneficial properties, which include antiviral, antifungal and antioxidant properties which help cells to overcome oxidative stress and balance the redox homeostasis. GA was administered orally at two doses (25 and 50 mg/kg body weight) once daily for 14 days and a single dose (40 mg/kg body weight) of DMH was administered subcutaneously on 14th day. Animals were sacrificed on the 15th day and we could find that GA at both the doses significantly ameliorates DMH‐induced increased toxicity markers and also substantially increases the glutathione content level and activities of detoxifying enzymes. It also ameliorates the expression of proliferation, inflammation, apoptosis, goblet cell disintegration, and mucin depletion in the colon that was elevated upon administration of DMH. Histological alterations provide further confirmation of the protective role of GA against DMH‐induced colon toxicity. The results of this study clearly indicate supplementation of GA is beneficial in ameliorating DMH‐induced oxidative stress, inflammation, proliferation, apoptosis, mucin depletion, and goblet cell disintegration in colon of Wistar rats.  相似文献   

5.
The effect of Semecarpus anacardium Linn. nut milk extract on host detoxification system in aflatoxin B(1) induced hepatocellular carcinoma, which is a vital mechanism in cancer treatment, was studied in male albino rats. Oral administration of nut extract (200 mg kg(-1)body weight per day for 14 days) is found to be highly effective in inducing phase I and phase II biotransformation enzymes. The obtained results have shown an overall decrease of liver microsomal cytochrome P450, cytochrome b5, NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, and aniline hydroxylase with a subsequent decrease of phase II enzymes, glutathione-S-transferase and UDP-glucuronyl transferase in cancer-bearing animals. The Semecarpus anacardium nut extract affords anticancer activity by enhancing both phase I and phase II enzymes to near normal levels. We propose that, much of the anticarcinogenic potency of Semecarpus anacardium nut extract on aflatoxin B(1)-induced hepatocarcinogenesis is mediated through the induction of hepatic biotransformation enzymes.  相似文献   

6.
Red beetroot, a common ingredient of diet, is a rich source of a specific class of antioxidants, betalains. Our previous studies have shown the protective role of beetroot juice against carcinogen induced oxidative stress in rats. The aim of this study was to examine the effect of long term feeding (28 days) with beetroot juice on phase I and phase II enzymes, DNA damage and liver injury induced by hepatocarcinogenic N-nitrosodiethylamine (NDEA). Long term feeding with beetroot juice decreased the activities of enzymatic markers of cytochrome P450, CYP1A1/1A2 and CYP2E1. NDEA treatment also reduced the activities of these enzymes, but increased the activity of CYP2B. Moreover, combined treatment with beetroot juice and NDEA enhanced significantly CYP2B only. Modulation of P450 enzyme activities was accompanied by changes in the relevant proteins levels. Increased level and activity of NQO1 was the most significant change among phase II enzymes. Beetroot juice reduced the DNA damage increased as the result of NDEA treatment, as well as the biomarkers of liver injury.  相似文献   

7.
Bowman-Birk inhibitors (BBIs) are protein molecules containing two inhibitory domains for enzymes similar to trypsin and chymotrypsin. Interest in these inhibitors arose from their properties against the cancer chemically induced by 1,2-dimethylhydrazine (DMH). In this study the effect of two BBI preparations (from Glycine max and Macrotyloma axillare) were evaluated for the prevention of colorectal neoplasia induced by intraperitoneal injections of DMH, given at a dose of 30 mg/kg, during 12 weeks. Mice treated with DMH presented histopathological alterations consistent with tumor development, augmented CD44 expression and increased proteasome peptidase activities. Lysosomal fractions, obtained from the intestines, were chromatographed in a Sepharose-BBI column and increased activity for trypsin and chymotrypsin-like proteases recovered from DMH-treated animals. In parallel, mice treated for eight weeks with BBIs showed a decrease in the chymotrypsin and trypsin-like proteasome activities compared to animals fed on normal diet. For the groups receiving simultaneous treatment with DMH and BBIs, dysplasic lesions were not observed and proteasome peptidase activities were similar to the control group after the 24th week. These results suggest that the mechanism by which BBIs could prevent the appearance of pre neoplastic lesions is associated with inhibition of both the lysosomal and proteasome-dependent proteolytic pathways.  相似文献   

8.
Profile of drug-metabolizing enzymes in human ileum and colon   总被引:1,自引:0,他引:1  
Six patients (4 women and 2 men, age between 60 and 90 years), subjected to right hemicolectomy, were gut donors. The mucosa was isolated from the last portion of the ileum and the first portion of the colon. Tissue specimens were free from pathological changes. The activities of the enzymes of phase I (NADPH cytochrome c reductase, ethoxycoumarin O-deethylase, aminopyrine N-demethylase, microsomal epoxide hydrolase, cytosolic epoxide hydrolase, glutathione reductase and glutathione peroxidase) and the enzymes of phase II (glutathionetransferase, glucuronyltransferase, acetyltransferase, thioltransferase, sulphotransferase and glyoxalase) were measured in the microsomal or cytosolic fractions obtained from ileum and colon mucosa. The activity in the ileum was higher than in the colon for NADPH cytochrome c reductase (p less than 0.05) and cytosolic epoxide hydrolase (p less than 0.001) (phase I enzymes), and glutathionetransferase (p less than 0.02), sulphotransferase (p less than 0.05) and glyoxalase (p less than 0.02) (phase II enzymes). The other enzymes had similar activities in two mucosa. The distribution pattern of drug metabolizing enzymes cannot be considered as a single pattern in human ileum and colon because of the observed enzyme-dependent differences.  相似文献   

9.
The present study was aimed to investigate the chemopreventive potential of troxerutin on 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the antioxidant and lipid peroxidation (LPO) status. Rats were randomly divided into six groups. Group I rats served as control. Group II rats received troxerutin (50 mg/kg b.w., p.o.) for 16 weeks. Groups III–VI rats received subcutaneous injections of DMH (20 mg/kg b.w., s.c.) once a week, for the first 4 weeks. In addition to DMH, groups IV–VI rats received troxerutin at the doses of 12.5, 25 and 50 mg/kg b.w., respectively. In DMH treated rats, our results showed decreased activities of antioxidants and increased levels of LPO in the liver. Moreover, LPO and antioxidants in the colon were found to be significantly diminished in DMH the treated rats. Furthermore, enhanced activity of colonic vitamin C and vitamin E levels were observed in DMH alone treated rats (group III), which was significantly reversed on troxerutin supplementation. Troxerutin at the dose of 25 mg/kg b.w. had shown profound beneficial effects by exhibiting near normal biochemical profile and well-preserved colon histology as compared to the other two tested doses (12.5 and 50 mg/kg b.w.). These findings suggest that troxerutin could serve as a novel agent for colon cancer chemoprevention.  相似文献   

10.
Colon cancer is a major cause of morbidity and mortality in developed and developing countries and its etiology is known to be a combination of hereditary, environmental, dietary factors and lack of physical activity. Chemoprevention offers a novel approach to control the incidence of colon cancer. Gallic acid (GA) is a polyphenol widely present in tea and other plants which is popularly used in the traditional medicine of China. The present study was to evaluate the efficacy of GA supplementation on tissue lipid peroxidation and antioxidant defense system in 1,2-dimethyhydrazine (DMH) induced colon carcinogenesis in male Wistar rats. The rats were assorted into six groups, viz., group1 control rats received modified pellet diet; group 2 rats received GA (50 mg/kg body weight) orally along with modified pellet diet; group 3 rats received DMH (20 mg/kg body weight) subcutaneously once a week for the first 15 weeks; groups 4, 5 and 6 rats received GA along with DMH during the initiation, post- initiation stages and the entire period of study respectively. All the rats were sacrificed at the end of 30 weeks and the tissues were evaluated biochemically. We observed decreased lipid peroxidation (LPO) products such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD) and diminished levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) in the tissues of DMH treated rats, which were elevated significantly on GA supplementation. Moreover, enhanced activity of ascorbic acid and α-tocopherol levels were also observed in DMH alone treated rats which were significantly reduced on GA supplementation. Our results suggest that GA could exert a significant chemopreventive effect on DMH induced colon carcinogenesis.  相似文献   

11.
Mycotoxicosis has been produced in the rat by daily oral administrations of ochratoxin A (1.5 mg/kg/day) or aflatoxin B1 (1 mg/kg/day). Hepatic microsomal cytochrome P-450 and b5 contents and many phase I and II biotransformation systems have been measured in the course of ochratoxicosis (4 to 15 dosings) and aflatoxicosis (1 to 8 dosings). In case of ochratoxicosis, decreases in cytochrome P-450 level, aminopyrine demethylase and aniline hydroxylase activities were observed in rats receiving 15 administrations of the toxin. Aflatoxicosis induced more severe decreases in cytochrome P-450, aminopyrine demethylase and ethoxycoumarin deethylase following 8 daily gavages. In the two studies, there was no significant change in activities of liver phase II biotransformation enzymes.  相似文献   

12.
The ability of tobacco smoke (TS) to modulate phase I and II enzymes and affect metabolism of tobacco carcinogens is likely an important factor in its carcinogenicity. For the first time several types of TS particulates (TSP) were compared in different primary cultured human oral epithelial cells (NOE) for their abilities to affect metabolism of the tobacco carcinogen, (BaP) to genotoxic products, and expression of drug metabolizing enzymes. TSP from, reference filtered (2RF4), mentholated (MS), reference unfiltered, (IR3), ultra low tar (UL), and cigarettes that primarily heat tobacco (ECL) were tested. Cells pretreated with TSP concentrations of 0.2-10 μg/ml generally showed increased rates of BaP metabolism; those treated with TSP concentrations above 10 μg/ml showed decreased rates. Effects of TSPs were similar when expressed on a weight basis. Weights of TSP/cigarette varied in the order: MS ≈ IR3 > 2RF4 > ECL > UL. All TSPs induced the phase I proteins, cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1), phase II proteins, NAD(P)H dehydrogenase quinone 1 (NQO1), and microsomal glutathione S-transferase 1 (MGST1), and additionally, hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2), as assessed by qRT-PCR. The pattern of gene induction at probable physiological levels favored activation over detoxification.  相似文献   

13.
Aluminum phosphide (AlP), a widely used fumigant and rodenticide leads to high mortality if ingested. Its toxicity is due to phosphine liberated when it comes in contact with moisture. The exact mechanism of action of phosphine is not known. In this study male Wistar rats were used. The animals received a single dose (20 mg AlP/kg body weight i.g.) orally. Basic serum biochemical parameters, activity of mitochondrial complexes, antioxidant enzymes and parameters of oxidative stress, individual mitochondrial cytochrome levels were measured along with tissue histopathology and immunostaining for cytochrome c and compared with controls. The serum levels of creatinine kinase-MB, lactate dehydrogenase, magnesium and cortisol were higher (p < 0.01); the activities of mitochondrial complexes I, II, IV were observed to be significantly decreased in liver tissue in treated rats (p < 0.01). The activity of catalase was lower (p < 0.05) with a significant increase in lipid peroxidation (p < 0.05) whereas superoxide dismutase and glutathione peroxidase were unaffected in them. There was a significant decrease in all the cytochromes in brain and liver tissues (p < 0.05) with the exception of cytochrome b in brain, the levels of which remained same. Histopathology revealed congestion in most organs with centrizonal hemorrhagic necrosis in liver. Ultra structural changes indicating mitochondrial injury was observed in heart, liver and kidney tissues. There was also a marked reduction in the cytochrome-c immunostaining compared to the controls. Toxicity due to AlP appears to result as a consequence of both-energy insufficiency and oxidative stress, with a possible and preferential interaction with the tissue cytochromes.  相似文献   

14.
Asiatic acid (AA), a pentacyclic triterpenoid, derived from the tropical medicinal plant Centella asiatica is known to exhibit numerous pharmacological properties. We hypothesized that AA will have chemopreventive potential against 1,2-dimethylhydrazine (DMH)-induced experimental colon carcinogenesis in male Wistar rats. Rats were arbitrarily divided into six groups. Group I rats were processed as control. Group II rats received AA (8?mg/kg b.w., p.o.) and groups III–VI rats received subcutaneous injections of DMH (20?mg/kg b.w.) once a week, for the first four weeks. In addition, groups IV–VI rats received AA at the doses of 2, 4 and 8?mg/kg b.w., respectively, for 16 weeks. Our results discovered that supplementation with AA to the DMH-exposed rats significantly decreased the incidence of polyps and Aberrant crypt foci (ACF) as compared to the DMH-alone-exposed rats. Moreover, in the AA-supplemented DMH-exposed rats, we ascertained increased activities of the antioxidants and decreased levels of lipid peroxidation (LPO) in the liver and circulation and enhanced levels of both LPO and antioxidants in the colon, which were altered in the DMH-alone-exposed rats. Furthermore, we also observed altered activities of vitamins C and E and biotransforming enzymes in DMH-alone-exposed rats, which were reversed on AA supplementation. All the observations were supported by our histological findings. Thus, we can conclude that, AA could be used as an effective chemopreventive agent against DMH-induced colon carcinogenesis.  相似文献   

15.
The protective effect of a curcumin analog [bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione] was investigated on hepatic lipid peroxidation (LPO) and antioxidant status during 1,2-dimethylhydrazine-induced colon carcinogenesis in male Wistar rats. The effects were compared with that of curcumin, a known antioxidant and anticarcinogen. Colon cancer was induced by sub-cutaneous injection of DMH at a dosage of 20mg/kg body weight (15 doses, at 1-week intervals). DMH administered rats developed gross tumours in the colon. Enhanced lipid peroxidation in the liver of colon tumour bearing rats was accompanied by a significant decrease in the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT). Intragastric administration of curcumin (80mg/kg body weight) and curcumin analog (80mg/kg body weight) to DMH-injected rats significantly reduced the number and size of tumour in the colon, lowered lipid peroxidation and enhanced the activities of GPx, GST, SOD and CAT in the liver. We speculate that the curcumin analog used in the present study exerts chemoprevention against cancer development at extrahepatic sites by modulating hepatic biotransformation enzymes and antioxidant status. The effect is comparable with that of curcumin. This shows that the hydroxyl group in the aromatic ring is responsible for the protective effect rather than the methoxy group.  相似文献   

16.
Because of the evidence for the involvement of xenobiotic bioactivation in pulmonary toxicity and carcinogenesis, it is important to improve our understanding of the xenobiotic-metabolizing enzymes in isolated and cultured specific pulmonary cell populations. Some phase I and phase II xenobiotic-metabolizing enzyme activities, reduced glutathione (GSH), and gamma-glutamyl transferase (gamma-GT) were studied in rat type II pneumocytes and alveolar macrophages cultured for up to 48 h and 3 h, respectively. In type II pneumocytes, 7-ethoxyresorufin activity was not detected. 7-Benzyloxyresorufin (BROD) and 7-pentoxyresorufin (PROD) O-dealkylation decreased at 24 h by 84 and 82%, respectively, and continued to decline over the next 24 h with no measurable PROD at 48 h. The activity of NADPH- and NADH-cytochrome c reductase at 48 h decreased by 31 and 67%, respectively. GST activity decreased by 25 and 42% at 24 and 48 h, respectively. A transient increase in DT-diaphorase activity was observed at 24 h (by 55%). GSH content and gamma-GT activity increased significantly with time in culture. In freshly isolated alveolar macrophages, BROD activity was the only cytochrome P450-dependent alkoxyresorufin-O-dealkylase activity measured. BROD activity decreased by 38% in 3-h-attached macrophages. There were no changes in NADPH- and NADH-cytochrome c reductase, GST, and DT-diaphorase. An increase of GSH (by 24%) was observed in attached macrophages. In conclusion, type II pneumocytes and to a lesser extent alveolar macrophages in primary cultures undergo changes in biotransformation-related enzyme activities and intracellular GSH level that may affect xenobiotic toxicity at different times in culture.  相似文献   

17.
This study analyses the expression and induction of several drug-metabolising enzyme activities involved in either phase I or phase II biotransformations in NCTC 2544 human keratinocytes. The phase I activities 7-ethoxycoumarin O-deethylase (ECOD), 7-ethoxyresorufin O-deethylase (EROD) and 7-pentoxyresorufin O-depenthylase (PROD) were easily detectable in basal conditions. During incubations lasting up to 144 h in the presence of the classical cytochrome P450 inducers β-naphthoflavone (BNF), 3-methylcholanthrene (MC) and phenobarbital (PB), a considerable and significant increase in all the three activities was observed. PROD activity was induced up to 4.5-fold after 96 h in the presence of PB. The MC-induced ECOD and EROD activities were also dose-dependently inhibited by -naphothflavone, which was given to the cells during the incubation with CYP 1A1 inducers. Also the PB-induced PROD activity was decreased by the simultaneous addition of the CYP 2B inhibitor metyrapone. Both cytochrome P450 inhibitors were used at non-cytotoxic concentrations. The phase II enzymes glutathione S-transferase, aldehyde dehydrogenase and quinone reductase were all highly expressed and inducible by MC. The exposure (24 h) of the cells to four hair dyes used in cosmetic formulations resulted in a marked increase in ECOD activity. All data give sustained evidence for the suitability of NCTC 2544 cell line to skin toxicology studies.  相似文献   

18.
In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To determine their relative contribution, these activities were compared to those of untreated adult male rat liver, using commonly accepted assays. The enzymes comprised cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), esterase, UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). In contrast to liver, no activities were measurable for 7-ethylresorufin-O-dealkylase (CYP1A), 7-pentylresorufin-O-dealkylase (CYP2B), 7-benzylresorufin-O-dealkylase (CYP2B, 2C and 3 A), UGT1, UGT2 and GST in placenta, indicating that the placental activity of these enzymes was well below their hepatic activity. Low activities in placenta were determined for FMO (4%), and esterase (8%), whereas the activity of placental ADH and ALDH accounted for 35% and 40% of the hepatic activities, respectively. In support of the negligible placental CYP activity, testosterone and six model azole fungicides, which were readily metabolized by rat hepatic microsomes, failed to exhibit any metabolic turnover with rat placental microsomes. Hence, with the possible exception of ADH and ALDH, the activities of xenobiotic-metabolizing enzymes in rat placenta are too low to warrant consideration in PBTK modelling.  相似文献   

19.
The aim of present study was to elucidate anti-initiating efficacy of galangin against benzo(a)pyrene (B(a)P)-induced lung carcinogenesis in male Swiss albino mice. Therefore, the activities of xenobiotic metabolic enzymes such as phase I and II were examined in lung as well as liver tissues (to compare the effects between target and non-target organs). Besides, the activities/levels of tissue marker enzymes, antioxidants, lipid peroxidation (LPO), cytochrome P450 1A1 (CYP1A1) expressions and histological observation of lungs were also analyzed. B(a)P (50 mg/kg body weight) was administered to male Swiss albino mice (20–25 g) to experimentally induce lung cancer. B(a)P-induced animals showed increased activity of phase I (Cytochrome P450, Cytochrome b5, NADPH Cytochrome P450 redcutase and NADH Cytochrome b5 reductase) drug metabolic enzymes, LPO levels, tissue marker enzymes and decreased activity of phase II metabolic enzymes (glutathione-S-transferase, DT-diaphorase and UDP-glucuronyl transferase) as well as antioxidant levels. Histological examination of lungs revealed severe alveolar and bronchiolar damages in B(a)P-induced mice. Immunohistochemical and western blot analysis of CYP1A1 increased significantly in lung tissues of B(a)P-induced animals. Treatment with galangin (20 mg/kg body weight) efficiently counteracted all the above anomalies and restored cellular homeostasis. Our results demonstrate that galangin can modify xenobiotic enzymes in murine model of pulmonary tumorigenesis.  相似文献   

20.
Human lung is a major target organ for all inhaled drugs, environmental toxicants and carcinogens. Recent hypotheses suggesting a role for environmental toxicants in the pathogenesis of lung diseases, such as lung cancer and chronic obstructive pulmonary disease have stimulated interest in research on the xenobiotic metabolizing capability of the lung. Many of the compounds associated with these diseases require enzymatic activation to exert their deleterious effects on pulmonary cells. Interindividual differences in in situ activation and inactivation of xenobiotics may contribute to the risk of developing of lung diseases associated with these compounds. The major xenobiotic metabolizing enzymes, including both phase I and phase II enzymes, have been detected in animal and human lung tissues. Although the lung cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes share many common features with those present in other tissues such as liver, kidney and gut, there are some distinctive differences. It is evident from the studies carried out to date CYP1A1, 1B1, 2A13, 2F1, 2S1 and 4B1 are preferentially expressed in the lung together with CYP2E1 and 3A5. This review provides a detailed picture of major xenobiotic-metabolizing phase I (CYPs, epoxide hydrolases, flavin monooxygenases, etc.) and phase II enzymes (conjugation enzymes, including several transferases) expressed in human lung. The roles of individual metabolizing enzymes and their genetic polymorphisms are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号