首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

BACKGROUND AND PURPOSE

The compound NS5806 increases the transient outward current (Ito) in canine ventricular cardiomyocytes and slows current decay. In human and canine ventricle, Ito is thought to be mediated by KV4.3 and various ancillary proteins, yet, the exact subunit composition of Ito channels is still debated. Here we characterize the effect of NS5806 on heterologously expressed putative Ito channel subunits and other potassium channels.

EXPERIMENTAL APPROACH

Cloned KV4 channels were co-expressed with KChIP2, DPP6, DPP10, KCNE2, KCNE3 and KV1.4 in Xenopus laevis oocytes or CHO-K1 cells.

KEY RESULTS

NS5806 increased KV4.3/KChIP2 peak current amplitudes with an EC50 of 5.3 ± 1.5µM and significantly slowed current decay. KCNE2, KCNE3, DPP6 and DPP10 modulated KV4.3 currents and the response to NS5806, but current decay was slowed only in complexes containing KChIP2. The effect of NS5806 on KV4.2 was similar to that on KV4.3, and current decay was only slowed in presence of KChIP2. However, for KV4.1, the slowing of current decay by NS5806 was independent of KChIP2. KV1.4 was strongly inhibited by 10 µM NS5806 and KV1.5 was inhibited to a smaller extent. Effects of NS5806 on kinetics of currents generated by KV4.3/KChIP2/DPP6 with KV1.4 in oocytes could reproduce those on cardiac Ito in canine ventricular myocytes. KV7.1, KV11.1 and Kir2 currents were unaffected by NS5806.

CONCLUSION AND IMPLICATIONS

NS5806 modulated KV4 channel gating depending on the presence of KChIP2, suggesting that NS5806 can potentially be used to address the molecular composition as well as the physiological role of cardiac Ito.  相似文献   

2.
Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (Isc), transepithelial potential (Vt) and resistance (Rt) were recorded in the continuous presence of cadmium. Addition of cadmium (20 µM to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in Isc cannot be explained by an action on: 1) H2 histamine receptor, 2) Ca2+ signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H+/K+-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H+/K+-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.  相似文献   

3.
Low solubility of drug candidates generated in research contributes to their elimination during subsequent development due to insufficient oral bioavailability (BA) of crystalline compound. Therefore, the purpose of the study was to identify critical in vitro solubility and dissolution parameter that would predict critical in vivo dissolution by means of in vitro-in vivo correlation. Thermodynamic solubility and apparent dissolution rate (ADR) were determined using the shake-flask method and mini-flow-through-cell, respectively. Oral BA studies in rats and humans were conducted from drug solution and suspension/tablets. Relative BA was calculated using Frel [%] = AUCsuspension/AUCsolution * 100, representing a measure of in vivo dissolution. Roughly, Frel rat >50% translates into Frel human of >90%. Both, ADR and log volume to dissolve applied dose (VDAD), when plotted against Frel rat, revealed certain threshold levels, (ADR, ∼150-200 μg of compound dissolved under respective assay conditions; VDAD, ∼100-500 ml/kg) which translate into Frel in rats of >50%.Thus, assuming that Frel > 50% in rats is indicative of sufficient in vivo dissolution in humans after oral application, drugs should exhibit a VDAD of ∼100-500 ml/kg or less in aqueous media to avoid insufficient or varying drug absorption.  相似文献   

4.

AIMS

The immunosuppressant ciclosporin is an efficient prophylaxis against transplant organ rejection but its clinical use is limited by its nephrotoxicity. Our previous systematic studies in the rat indicated urine metabolite pattern changes to be sensitive indicators of the negative effects of ciclosporin on the kidney. To translate these results, we conducted an open label, placebo-controlled, crossover study assessing the time-dependent toxicodynamic effects of a single oral ciclosporin dose (5 mg kg−1) on the kidney in 13 healthy individuals.

METHODS

In plasma and urine samples, ciclosporin and 15-F2t-isoprostane concentrations were assessed using HPLC-MS and metabolite profiles using 1H-NMR spectroscopy.

RESULTS

The maximum ciclosporin concentrations were 1489 ± 425 ng ml−1 (blood) and 2629 ± 1308 ng ml−1 (urine). The increase in urinary 15-F2t-isoprostane observed 4 h after administration of ciclosporin indicated an increase in oxidative stress. 15-F2t-isoprostane concentrations were on average 2.9-fold higher after ciclosporin than after placebo (59.8 ± 31.2 vs. 20.9 ± 19.9 pg mg−1 creatinine, P < 0.02). While there were no conclusive changes in plasma 15-F2t-isoprostane concentrations or metabolite patterns, non-targeted metabolome analysis using principal components analysis and partial least square fit analysis revealed significant changes in urine metabolites typically associated with negative effects on proximal tubule cells. The major metabolites that differed between the 4 h urine samples after ciclosporin and placebo were citrate, hippurate, lactate, TMAO, creatinine and phenylalanine.

CONCLUSION

Changes in urine metabolite patterns as a molecular marker are sufficiently sensitive for the detection of the negative effects of ciclosporin on the kidney after a single oral dose.  相似文献   

5.
The algorithms in the literature focusing to predict tissue:blood PC (Ptb) for environmental chemicals and tissue:plasma PC based on total (Kp) or unbound concentration (Kpu) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that Ptb, Kp and Kpu for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such a way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat Ptb, Kp or Kpu of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.  相似文献   

6.
Respiratory depression has been attributed to buprenorphine (BUP) misuse or combination with benzodiazepines. BUP/naloxone (NLX) has been marketed as maintenance treatment, aiming at preventing opiate addicts from self-injecting crushed pills. However, to date, BUP/NLX benefits in comparison to BUP alone remain debated. We investigated the plethysmography effects of BUP/NLX in comparison to BUP/solvent administered by intravenous route in naive and BUP-tolerant Sprague-Dawley rats, and in combination with diazepam (DZP) or its solvent. In naive rats, BUP/NLX in comparison to BUP significantly increased respiratory frequency (f, P < 0.05) without altering minute volume (VE). In combination to DZP, BUP/NLX significantly increased expiratory time (P < 0.01) and decreased f (P < 0.01), tidal volume (VT, P < 0.001), and VE (P < 0.001) while BUP only decreased VT (P < 0.5). In BUP-tolerant rats, no significant differences in respiratory effects were observed between BUP/NLX and BUP. In contrast, in combination to DZP, BUP/NLX did not significantly alter the plethysmography parameters, while BUP increased inspiratory time (P < 0.001) and decreased f (P < 0.01) and VE (P < 0.001). In conclusion, differences in respiratory effects between BUP/NLX and BUP are only significant in combination with DZP, with increased depression in naive rats but reduced depression in BUP-tolerant rats. However, BUP/NLX benefits in humans remain to be determined.  相似文献   

7.

BACKGROUND AND PURPOSE

Flupirtine is a non-opioid analgesic that has been in clinical use for more than 20 years. It is characterized as a selective neuronal potassium channel opener (SNEPCO). Nevertheless, its mechanisms of action remain controversial and are the purpose of this study.

EXPERIMENTAL APPROACH

Effects of flupirtine on native and recombinant voltage- and ligand-gated ion channels were explored in patch-clamp experiments using the following experimental systems: recombinant KIR3 and KV7 channels and α3β4 nicotinic acetylcholine receptors expressed in tsA 201 cells; native voltage-gated Na+, Ca2+, inward rectifier K+, KV7 K+, and TRPV1 channels, as well as GABAA, glycine, and ionotropic glutamate receptors expressed in rat dorsal root ganglion, dorsal horn and hippocampal neurons.

KEY RESULTS

Therapeutic flupirtine concentrations (≤10 µM) did not affect voltage-gated Na+ or Ca2+ channels, inward rectifier K+ channels, nicotinic acetylcholine receptors, glycine or ionotropic glutamate receptors. Flupirtine shifted the gating of KV7 K+ channels to more negative potentials and the gating of GABAA receptors to lower GABA concentrations. These latter effects were more pronounced in dorsal root ganglion and dorsal horn neurons than in hippocampal neurons. In dorsal root ganglion and dorsal horn neurons, the facilitatory effect of therapeutic flupirtine concentrations on KV7 channels and GABAA receptors was comparable, whereas in hippocampal neurons the effects on KV7 channels were more pronounced.

CONCLUSIONS AND IMPLICATIONS

These results indicate that flupirtine exerts its analgesic action by acting on both GABAA receptors and KV7 channels.  相似文献   

8.

BACKGROUND AND PURPOSE

Hypoxia causes vasodilatation of coronary arteries, but the underlying mechanisms are poorly understood. We hypothesized that hypoxia reduces intracellular Ca2+ concentration ([Ca2+]i) by opening of K channels and release of H2S.

EXPERIMENTAL APPROACH

Porcine coronary arteries without endothelium were mounted for measurement of isometric tension and [Ca2+]i, and the expression of voltage-gated K channels KV7 channels (encoded by KCNQ genes) and large-conductance calcium-activated K channels (KCa1.1) was examined. Voltage clamp assessed the role of KV7 channels in hypoxia.

KEY RESULTS

Gradual reduction of oxygen concentration from 95 to 1% dilated the precontracted coronary arteries and this was associated with reduced [Ca2+]i in PGF (10 μM)-contracted arteries whereas no fall in [Ca2+]i was observed in 30 mM K-contracted arteries. Blockers of ATP-sensitive voltage-gated potassium channels and KCa1.1 inhibited hypoxia-induced dilatation in PGF-contracted arteries; this inhibition was more marked in the presence of the Kv7 channel blockers, XE991 and linopirdine, while a KV7.1 blocker, failed to change hypoxic vasodilatation. XE991 also inhibited H2S- and adenosine-induced vasodilatation. PCR revealed the expression of KV7.1, KV7.4, KV7.5 and KCa1.1 channels, and KCa1.1, KV7.4 and KV7.5 were also identified by immunoblotting. Voltage clamp studies showed the XE991-sensitive current was more marked in hypoxic conditions.

CONCLUSION

The KV7.4 and KV7.5 channels, which we identified in the coronary arteries, appear to have a major role in hypoxia-induced vasodilatation. The voltage clamp results further support the involvement of KV7 channels in this vasodilatation. Activation of these KV7 channels may be induced by H2S and adenosine.  相似文献   

9.
Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels NaV1.3–1.5 and exhibited the strongest ability to inhibit NaV1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the NaV1.5 channel. The effects of VAs on NaV1.3 and NaV1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.  相似文献   

10.
Wu SN  Chen BS  Lo YC 《Toxicology》2011,289(1):11-18
Aconitine (ACO) is a highly toxic diterpenoid alkaloid and known to exert the immunomodulatory action. However, whether it has any effects on ion currents in immune cells remains unknown. The effects of ACO and other related compounds on ion currents in Jurkat T-lymphocytes were investigated in this study. ACO suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner. Margatoxin (100 nM), a specific blocker of KV1.3-encoded current, decreased the IK(DR) amplitude in these cells and the ACO-induced inhibition of IK(DR) was not reversed by 1-ethyl-2-benzimidazolinone (30 μM) or nicotine (10 μM). The IC50 value for ACO-mediated inhibition of IK(DR) was 5.6 μM. ACO accelerated the inactivation of IK(DR) with no change in the activation rate of this current. Increasing the ACO concentration not only reduced the IK(DR) amplitude, but also accelerated the inactivation time course of the current. With the aid of minimal binding scheme, the inhibitory action of ACO on IK(DR) was estimated with a dissociation constant of 6.8 μM. ACO also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for IK(DR) was enhanced in the presence of ACO. In Jurkat cells incubated with amiloride (30 μM), the ACO-induced inhibition of IK(DR) remained unaltered. In RAW 264.7 murine macrophages, ACO did not modify the kinetics of IK(DR), although it suppressed IK(DR) amplitude. Taken together, these effects can significantly contribute to its action on functional activity of immune cells if similar results are found in vivo.  相似文献   

11.
Two approaches used for bioavailability determination of drugs with Michaelis-Menten elimination kinetics were examined by computer simulation. The first method involved treating the drug as though its clearance remained constant during elimination, and the conventional method of taking the ratio of areas under the curve resulting from the oral and intravenous doses was used to calculate bioavailability. The second approach involved using the Michaelis parameters, Vmax and Km,to determine concentration dependent clearance values, but based these calculations on peripheral drug concentrations rather than on concentrations entering or in the liver. We have developed a simulation method that was used to test the accuracy of the above two methods. In the simulations described, Vmax, Km,and hepatic blood flow were chosen to represent a drug with an extraction ratio of 0.9 under linear conditions, but with Michaelis-Menten kinetics occurring at the doses given. Absorption was assumed to be first-order, and metabolism was assumed to occur only in the liver. These simulations showed that the most accurate determination of bioavailability requires knowledge of the direct contribution of oral absorption to the concentration of drug entering the liver. Unexpectedly, the results also showed that if a drug has a large volume of distribution or a large absorption rate constant, or both, use of the much simpler conventional method of bioavailability determination may be appropriate even in cases where the degree of saturation is substantial.This work was supported in part by grant GM26556 from the Institute of General Medical Sciences of the National Institutes of Health.  相似文献   

12.

AIMS

Axitinib is a potent and selective second generation inhibitor of vascular endothelial growth factor receptors 1, 2 and 3 approved for second line treatment of advanced renal cell carcinoma. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in axitinib disposition following single dose administration in healthy volunteers.

METHODS

Plasma concentration–time data from 337 healthy volunteers in 10 phase I studies were analyzed, using non-linear mixed effects modelling (nonmem) to estimate population pharmacokinetic parameters and evaluate relationships between parameters and food, formulation, demographic factors, measures of renal and hepatic function and metabolic genotypes (UGT1A1*28 and CYP2C19).

RESULTS

A two compartment structural model with first order absorption and lag time best described axitinib pharmacokinetics. Population estimates for systemic clearance (CL), central volume of distribution (Vc), absorption rate constant (ka) and absolute bioavailability (F) were 17.0 l h−1, 45.3 l, 0.523 h−1 and 46.5%, respectively. With axitinib Form IV, ka and F increased in the fasted state by 207% and 33.8%, respectively. For Form XLI (marketed formulation), F was 15% lower compared with Form IV. CL was not significantly influenced by any of the covariates studied. Body weight significantly affected Vc, but the effect was within the estimated interindividual variability for Vc.

CONCLUSIONS

The analysis established a model that adequately characterizes axitinib pharmacokinetics in healthy volunteers. Vc was found to increase with body weight. However, no change in plasma exposures is expected with change in body weight; hence no dose adjustment is warranted.  相似文献   

13.

Background and purpose

In vitro inhibitory potency (Ki)-based predictions of P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) are hampered by the substantial variability in inhibitory potency. In this study, in vivo-based [I]/Ki values were used to predict the DDI risks of a P-gp substrate dabigatran etexilate (DABE) using physiologically based pharmacokinetic (PBPK) modelling.

Experimental approach

A baseline PBPK model was established with digoxin, a known P-gp substrate. The Km (P-gp transport) of digoxin in the baseline PBPK model was adjusted to Kmi to fit the change of digoxin pharmacokinetics in the presence of a P-gp inhibitor. Then ‘in vivo’ [I]/Ki of this P-gp inhibitor was calculated using Kmi/Km. Baseline PBPK model was developed for DABE, and the ‘in vivo’ [I]/Ki was incorporated into this model to simulate the static effect of P-gp inhibitor on DABE pharmacokinetics. This approach was verified by comparing the observed and the simulated DABE pharmacokinetics in the presence of five different P-gp inhibitors.

Key results

This approach accurately predicted the effects of five P-gp inhibitors on DABE pharmacokinetics (98–133% and 89–104% for the ratios of AUC and Cmax respectively). The effects of 16 other P-gp inhibitors on the pharmacokinetics of DABE were also confidently simulated.

Conclusions and implications

In vivo’ [I]/Ki and PBPK modelling, used in combination, can accurately predict P-gp-mediated DDIs. The described framework provides a mechanistic basis for the proper design of clinical DDI studies, as well as avoiding unnecessary clinical DDI studies.  相似文献   

14.
  1. Experiments carried out on guinea-pig isolated ileum with carbachol as agonist and diphenyl- acetoxyethyl- dimethyl-ethyl- ammonium (DADMEA) bromide as antagonist gave results which fit the theoretical relation between fractional inhibition (Q) of the effects of an agonist ([A]) and the concentration of a competitive antagonist ([B]): this also involves the Hill coefficient (logistic slope factor, P) for the agonist concentration-response curve and the degree of agonist stimulation, [A]/[A]50, where [A]50 produces a half-maximum response.
  2. Values of IC50 and an exponent, P′, can be obtained by fitting Q to [B] using a logistic approximation to the relation. Both P′ and IC50 should be greater with higher agonist stimulation but the increase in P′ may be masked by errors in extreme values of Q. Estimates of IC50, however, invariably increased with higher agonist stimulation but with a steep concentration-response curve (P>1) and low agonist stimulation ([A]/[A]50 <1), IC50 can be less than KD.
  3. KD was calculated from the results in three ways: (i) by a least-squares fit of Q to [B] using the values of P and [A]/[A]50 calculated from the control concentration-response curve; (ii) from the value of IC50 for each line and the values of P and [A]/[A]50 and (iii) by using the agonist concentration-response curve to calculate the dose-ratio and estimate of KD for each response in the presence of the antagonist. The methods gave similar results (nM: 11 experiments), 12.4±1.1 (i), 11.7±0.9 (ii), 14.8±1.6 (iii) but there are advantages in using methods (i) or (ii) rather than (iii).
  4. The method by which KD is calculated is less important than the experimental design: the plan used in this work, with alternative small and large responses from the tissue, is very suitable for estimating KD with low concentrations of antagonists and small dose-ratios. Although it is not a sensitive test for competitive behaviour because only a small range of concentrations of antagonist is tested, the estimate of affinity should be free from complications involved in the use of higher concentrations of antagonist (and agonist) and the nature of the antagonism can always be checked by doing further experiments in the presence of a known competitive antagonist.
  相似文献   

15.

BACKGROUND AND PURPOSE

3-iodothyronamine (T1AM) is a metabolite of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. Because of the importance of mitochondrial F0F1-ATP synthase as a drug target, here we evaluated interactions of T1AM with this enzyme.

EXPERIMENTAL APPROACH

Kinetic analyses were performed on F0F1-ATP synthase in sub-mitochondrial particles and soluble F1-ATPase. Activity assays and immunodetection of the inhibitor protein IF1 were used and combined with molecular docking analyses. Effects of T1AM on H9c2 cardiomyocytes were measured by in situ respirometric analysis.

KEY RESULTS

T1AM was a non-competitive inhibitor of F0F1-ATP synthase whose binding was mutually exclusive with that of the inhibitors IF1 and aurovertin B. Both kinetic and docking analyses were consistent with two different binding sites for T1AM. At low nanomolar concentrations, T1AM bound to a high-affinity region most likely located within the IF1 binding site, causing IF1 release. At higher concentrations, T1AM bound to a low affinity-region probably located within the aurovertin binding cavity and inhibited enzyme activity. Low nanomolar concentrations of T1AM increased ADP-stimulated mitochondrial respiration in cardiomyocytes, indicating activation of F0F1-ATP synthase consistent with displacement of endogenous IF1,, reinforcing the in vitro results.

CONCLUSIONS AND IMPLICATIONS

Effects of T1AM on F0F1-ATP synthase were twofold: IF1 displacement and enzyme inhibition. By targeting F0F1-ATP synthase within mitochondria, T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low, endogenous, concentrations. T1AM putative binding locations overlapping with IF1 and aurovertin binding sites are described.  相似文献   

16.
The inhibitory effects and types of inhibition of asiaticoside and madecassoside on human CYPs were studied in vitro using recombinant human CYPs. The median inhibitory concentrations (IC50) of asiaticoside and madecassoside were determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Asiaticoside inhibited CYP2C19 (IC50 = 412.68 ± 15.44 μM) and CYP3A4 (IC50 = 343.35 ± 29.35 μM). Madecassoside also inhibited CYP2C19 (IC50 = 539.04 ± 14.18 μM) and CYP3A4 (IC50 = 453.32 ± 39.33 μM). Asiaticoside and madecassoside had no effect on the activities of CYP1A2, CYP2C9 and CYP2D6 and CYP2E1. Assessment of mechanism-based inhibition and the type of inhibition were performed for asiaticoside and madecassoside with CYP2C19 and CYP3A4. These results suggested that madecassoside is a mechanism-based inhibitor of CYP2C19 and CYP3A4. Assessment of mechanism-based inhibition by asiaticoside was limited by its low solubility. Asiaticoside exhibited non-competitive inhibition of CYP2C19 (Ki = 385.24 ± 8.75 μM) and CYP3A4 (Ki = 535.93 ± 18.99 μM). Madecassoside also showed non-competitive inhibition of CYP2C19 (Ki = 109.62 ± 6.14 μM) and CYP3A4 (Ki = 456.84 ± 16.43 μM). These results suggest that asiaticoside and madecassoside could cause drug-drug interactions via inhibition of CYP2C19 and CYP3A4. An in vivo study is needed to examine this further.  相似文献   

17.
Cylindrospermopsin (CYN) is a cytotoxic cyanotoxin produced by several species of freshwater cyanobacteria (i.e., Aphanizomenon ovalisporum). CYN is a tricyclic alkaloid combined with a guanidine moiety. It is well known that CYN inhibits both protein and glutathione synthesis, and also induces genotoxicity and the alteration of different oxidative stress biomarkers. Although the liver and kidney appear to be the main target organs for this toxin based on previous studies, CYN also affects other organs. In the present study, we studied the distribution of CYN in fish (Oreochromis niloticus) under two different exposure scenarios using immunohistochemical (IHC) techniques. In the first method, fish were exposed acutely by intraperitoneal injection or by gavage to 200 µg pure CYN/Kg body weight (bw), and euthanized after 24 h or five days of exposure. In the second method, fish were exposed by immersion to lyophilized A. ovalisporum CYN-producing cells using two concentration levels (10 or 100 µg/L) for two different exposure times (7 or 14 days). The IHC was carried out in liver, kidney, intestine, and gills of fish. Results demonstrated a similar pattern of CYN distribution in both experimental methods. The organ that presented the most immunopositive results was the liver, followed by the kidney, intestine, and gills. Moreover, the immunolabeling signal intensified with increasing time in both assays, confirming the delayed toxicity of CYN, and also with the increment of the dose, as it is shown in the sub-chronic assay. Thus, IHC is shown to be a valuable technique to study CYN distribution in these organisms.  相似文献   

18.
Expression and function of the K+ channel KCNQ genes in human arteries   总被引:1,自引:0,他引:1  

BACKGROUND AND PURPOSE

KCNQ-encoded voltage-gated potassium channels (Kv7) have recently been identified as important anti-constrictor elements in rodent blood vessels but the role of these channels and the effects of their modulation in human arteries remain unknown. Here, we have assessed KCNQ gene expression and function in human arteries ex vivo.

EXPERIMENTAL APPROACH

Fifty arteries (41 from visceral adipose tissue, 9 mesenteric arteries) were obtained from subjects undergoing elective surgery. Quantitative RT-PCR experiments using primers specific for all known KCNQ genes and immunohistochemsitry were used to show Kv7 channel expression. Wire myography and single cell electrophysiology assessed the function of these channels.

KEY RESULTS

KCNQ4 was expressed in all arteries assessed, with variable contributions from KCNQ1, 3 and 5. KCNQ2 was not detected. Kv7 channel isoform-dependent staining was revealed in the smooth muscle layer. In functional studies, the Kv7 channel blockers, XE991 and linopirdine increased isometric tension and inhibited K+ currents. In contrast, the Kv7.1-specific blocker chromanol 293B did not affect vascular tone. Two Kv7 channel activators, retigabine and acrylamide S-1, relaxed preconstricted arteries, actions reversed by XE991. Kv7 channel activators also suppressed spontaneous contractile activity in seven arteries, reversible by XE991.

CONCLUSIONS AND IMPLICATIONS

This is the first study to demonstrate not only the presence of KCNQ gene products in human arteries but also their contribution to vascular tone ex vivo.

LINKED ARTICLE

This article is commented on by Mani and Byron, pp. 38–41 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.01065.x  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis–Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, μM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.  相似文献   

20.
Autoimmune diseases are usually accompanied by tissue injury caused by autoantigen-specific T-cells. KV1.3 channels participate in modulating calcium signaling to induce T-cell proliferation, immune activation and cytokine production. Effector memory T (TEM)-cells, which play major roles in many autoimmune diseases, are controlled by blocking KV1.3 channels on the membrane. Toxins derived from animal venoms have been found to selectively target a variety of ion channels, including KV1.3. By blocking the KV1.3 channel, these toxins are able to suppress the activation and proliferation of TEM cells and may improve TEM cell-mediated autoimmune diseases, such as multiple sclerosis and type I diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号