首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Treating the 20-30% of patients with schizophrenia whose symptoms are resistant to antipsychotic treatment, a condition known as treatment-resistant schizophrenia (TRS), can be problematic. Recently, an association between Disrupted-in-Schizophrenia-1 (DISC1), a candidate susceptibility gene for schizophrenia, and TRS was reported. Associations between three missense SNPs, rs3738401 (Q264R), rs6675281 (L607F), and rs821616 (S704C) in DISC1, especially rs3738401, showed strong significance. Thus, the main aim of our current study was to examine if the reported possible functional polymorphisms in DISC1 were related to Japanese TRS. First, DISC1 was re-investigated in 485 Japanese patients with schizophrenia and 660 healthy controls with a case-control study using four candidate SNPs, rs751229, rs3738401, rs821597, and rs821616. DISC1 was not associated with schizophrenia in the Japanese population. Second, we investigated whether these SNPs contributed to TRS in 127 inpatients with schizophrenia (35 patients; TRS and 92 patients; non-TRS). The genotypic distributions of these four SNPs were not significantly different between TRS and non-TRS in either genotypic or recessive models of minor alleles. In addition, clinical variables, such as improvement in clinical symptoms, duration of hospitalization, and total antipsychotics dose amounts, were not different among the genotypes of these SNPs. Taken together, results showed that DISC1 had no apparent degree of association with Japanese patients with schizophrenia as a candidate susceptibility gene for disease per se or TRS.  相似文献   

2.
Differences in the levels of the glutamate-related amino acids glycine and serine in brain/plasma between schizophrenic patients and normal subjects and changes in the plasma concentrations of these amino acids according to the clinical course have been reported. It has been hypothesized that glycine and serine metabolism may be altered in schizophrenia. In fact, some genes related to the metabolism of these amino acids have been suggested to be candidate genes for schizophrenia. Thus, we performed a genomic case–control analysis of amino acid metabolism-related genes in Japanese patients with schizophrenia. Case–control genetic association analysis of PHGDH, SHMT1, SRR, and DAO was performed. In addition, the effect of the various genotypes resulting from these four genes on changes in plasma amino acid levels in schizophrenia was assessed. The genetic case–control analysis showed that no individual single-nucleotide polymorphism (SNP) in any of the four genes was associated with schizophrenia; only the two (rs3918347–rs4964770, P = 0.0009) and three (rs3825251–rs3918347–rs4964770, P = 0.002) SNP-based haplotype analysis of the DAO gene showed an association with schizophrenia even after correction for multiple testing. None of the genotypes studied was associated with changes in the plasma glycine and l- and d-serine levels during the schizophrenic clinical course. The DAO gene may be a susceptibility locus for schizophrenia.  相似文献   

3.
Reactive oxygen species (ROS)-mediated damage has been hypothesized to play a role in the development and poor outcome of schizophrenia, as well as the development of neuroleptic-induced abnormal involuntary movements. Recently, the functional polymorphism (Ala-9Val) in the manganese superoxide dismutase (MnSOD) gene (part of the antioxidant defense mechanism) was found to be associated with schizophrenia in a Turkish population. This study was aimed at replicating this finding in a Xhosa population. In addition, the role of Ala-9Val in abnormal involuntary movement and tardive dyskinesia development in the Xhosa population was also investigated. The schizophrenic patient group (n=286) and a healthy control group (n=243) were genotyped for the Ala-9Val polymorphism using heteroduplex-single stranded conformational polymorphism (HEX-SSCP) analysis. No significant difference in genotype or allele frequency could be observed between the schizophrenia and control group (P=0.294 and P=0.528 respectively). In addition no association could be found between the polymorphism and symptom severity (SANS and SAPS). The Xhosa schizophrenia patient group with abnormal involuntary movements (n=54) and a subgroup with tardive dyskinesia (n=30) was found to significantly differ in Ala-9Val genotype frequency (P=0.008 and P=0.011 respectively) compared to the Xhosa schizophrenia patient group without abnormal involuntary movements (n=204). However, no significant difference was found for the allele frequencies (P=0.955 and P=0.161). Further, using ANCOVA no association was found between AIMS score and genotype in the group with abnormal involuntary movements (P=0.1234). However, in the patient group with tardive dyskinesia an association was observed between genotype and AIMS score (P=0.0365). These results do not support a major role of the MnSOD Ala-9Val polymorphism in the development of schizophrenia or symptom severity in the Xhosa population. Yet it seems to be involved in the development of abnormal involuntary movements and tardive dyskinesia and may even modulate the severity of tardive dyskinesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号