首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Following micropressure application of glutamate (500 microM) in stratum lacunosum-moleculare (L-M), inhibitory postsynaptic potentials (glut-IPSPs) were recorded in CA1 pyramidal cells. These glut-IPSPs were blocked by tetrodotoxin (1 microM) and, thus, were probably generated by the activation of local interneurons. The effects of pharmacological antagonists on glut-IPSPs and on electrically-evoked early and late IPSPs were assessed in the same cells during the same application of the antagonist. Local application of the GABAB antagonist 2-OH saclofen (1-4 mM) reduced both glut-IPSPs and late IPSPs but not early IPSPs. In contrast, the GABAB antagonist phaclofen (20 mM) reduced late IPSPs but not early IPSPs but not early IPSPs or glut-IPSPs. Early IPSPs were blocked by the GABAA antagonists bicuculline and picrotoxin but late IPSPs and glut-IPSPs were not. Repetitive electrical stimulation depressed early and late IPSPs as well as glut-IPSPs, suggesting that interneurons activated with glutamate were also stimulated electrically. Thus, interneurons in str. lacunosum-moleculare appear to inhibit pyramidal cells via a GABAB receptor-mediated IPSP. The discrepancy in the pharmacological profile of the GABAB glut-IPSPs and of the GABAB late IPSPs may suggest the presence of two GABAB mechanisms in CA1 pyramidal cells.  相似文献   

2.
We have shown previously that plasmin facilitated the generation of long-term potentiation (LTP) in CA1 and dentate region of rat hippocampus. In the present study, we investigated the effects of plasmin on postsynaptic currents in CA1 pyramidal neurons of rat hippocampal slices. Plasmin (100 nM) had no effect on NMDA nor on non-NMDA receptor-mediated excitatory postsynaptic currents. However, plasmin significantly decreased GABAA receptor-mediated inhibitory postsynaptic currents. This effect of plasmin disappeared when intracellular Ca2+ was strongly chelated with BAPTA. Furthermore, plasmin attenuated the GABA-induced currents in CA1 pyramidal cells. These results suggest that the STP-enhancing effect of plasmin is due to a blockade of postsynaptic GABAA responses and that an increase in intracellular Ca2+ by plasmin may be involved in its mechanism.  相似文献   

3.
Serotoninergic transmission is implicated in the photic and non-photic regulation of circadian rhythms. 5-HT (1-100 microM), carboxamidotryptamine (5-CT 0.1-10 microM) and (+)-8-hydroxy-dipropylaminotetraline (8-OH-DPAT, 1-30 microM) dose-dependently activated an outward current (5-100 pA) in 30% of neurons voltage-clamped at -60 mV in the suprachiasmatic nucleus (SCN) in vitro slice. EC(50) values were 7.0 microM for 5-HT and 0.2 microM for 5-CT. Serotonin-induced outward current was associated with an increase in input conductance, and the current was blocked by Ba(2+) (1 mM). The amplitude of the current was enhanced by depolarization, reduced by hyperpolarization, and reversed its polarity during a hyperpolarization beyond the potassium equilibrium potential. Mean amplitudes of the 5-HT outward current changed with time of the subjective circadian day. The value near CT2 (23.8 pA) was about 4 times greater than that around CT14 (6.7 pA). Cells that responded with an outward current showed four types of morphology: monopolar, simple bipolar, curly bipolar and radial shaped; they were localized in all parts of the SCN. The EPSC evoked by retino-hypothalamic-tract (RHT) stimulation was inhibited 26% but the inward current induced by exogenously applied glutamate or NMDA was not affected by serotonin agonists. Focal stimulation-induced and spontaneous IPSC but not the exogenous GABA-induced outward current were inhibited by 5-HT agonists in a subpopulation of cells. In conclusion, 5-HT regulates SCN neurons by both pre- and post-synaptic inhibitory mechanisms; the latter may play a key role in modulating SCN circadian rhythm by activation of 5-HT receptors and opening of a potassium channel.  相似文献   

4.
In the present study, we investigated the effects of various serotonin (5-HT) antagonists on 5-HT's action on medial prefrontal cortical cells (mPFc) using the techniques of single cell recording and microiontophoresis. The microiontophoretic application of 5-HT (10-80 nA) produced a current-dependent suppression of mPFc cell firing and this effect was blocked by the selective 5-HT3 receptor antagonists (+/-)-zacopride, ICS 205930 and granisetron at currents of 5-20 nA. Furthermore, the intravenous (i.v.) administration of (+/-)-zacopride (5-50 micrograms/kg) markedly attenuates the suppressive action of 5-HT on mPFc cell firing. In contrast, the microiontophoresis of 5-HT1 and 5-HT2 receptor antagonists such as (+/-)-pindolol, spiperone, metergoline, and ritanserin (10-20 nA) failed to block 5-HT's effect. In fact, in some cells, spiperone and ritanserin potentiated 5-HT's action and prolonged neuronal recovery. In addition, the intravenous administration of either ritanserin (5-2,000 micrograms/kg) or metergoline (4-2,400 micrograms/kg) failed to alter 5-HT's action. The electrical stimulation of the caudal linear raphe nucleus (CLi) suppressed the spontaneous activity of 83% of the mPFc cells tested by 45 +/- 2%. This suppression was significantly attenuated by the iontophoresis of granisetron (2.5-5 nA) but not by the 5-HT2 and 5-HT1C receptor antagonist ritanserin or the relatively selective 5-HT2 receptor antagonist (+)-MDL 11,939 (10-40 nA). However, the i.v. administration of ritanserin (0.5-1.5 mg/kg) or S-zacopride (0.1 mg/kg) significantly blocked the suppression of mPFc cell firing produced by CLi stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Summary Adrenal influence on serotonin (5-HT) transmission in the hippocampal and hypothalamic areas was studied in adrenalectomized rats receiving or not corticosterone replacement. After adrenalectomy, the 5-HT presynaptic receptors were desensitized both in hippocampus and hypothalamus: a significant increase in 5-HT 1 and 5-HT 2 receptor binding numbers took place in membranes from the hippocampus, but not in hypothalamus, while no changes in affinity of receptors to radioligands were observed in either brain area. Corticosterone treatment restored the adrenalectomy-impaired 5-HT autoreceptor sensitivity in hippocampus and hypothalamus and 5-HT density receptor sites in the hippocampus. Serotonin autoreceptor down-regulation following adrenalectomy may increase 5-HT release to maintain the constancy of serotonergic transmission in the brain and 5-HT modulated CRH-ACTH release to compensate the plasma corticosteroid drop. Corticosterone seems to display a distinct tonic control on serotonin transmission in both hippocampus and hypothalamus, the diversity being due to the different roles played by the hormone in these brain regions.  相似文献   

7.
The responsiveness of hippocampal CA3 pyramidal neurons to microiontophoretic applications of serotonin (5-HT), norepinephrine (NE), γ-aminobutyric acid (GABA) and isoproterenol (ISO) was assessed in rats following 5,7-dihydroxy-tryptamine (5,7-DHT) and 6-hydroxydopamine (6-OHDA) pretreatments and bilateral locus coeruleus lesions. The intraventricular administration of 200 μg (free base) of 5,7-DHT and of 6-OHDA produced 89% and 93% decreases of 5-HT and NE respectively. None of these pretreatments modified the initial responsiveness to, or recovery from iontophoretic application of 5-HT. In 6-OHDA pretreated and locus-lesioned rats, the initial effectiveness of NE was not altered but its effect was markedly prolonged. However, there was no such prolongation of the effect of ISO which is not a substrate for the high affinity NE reuptake. The effect of GABA was not affected by these pretreatments. Acute pharmacological blockade of the NE reuptake with desipramine (5 mg/kg, i.p.) similarly induced a prolongation of the effect of iontophoretically applied NE, while fluoxetine (10 mg/kg, i.p.) a 5-HT reuptake blocker, failed to alter the recovery of pyramidal cells from iontophoretic application of 5-HT.

It is concluded that 5-HT denervation induces neither pre- nor postsynaptic types of supersensitivity in hippocampal pyramidal cells, contrasting with the previously shown supersensitivity of ventral lateral geniculate and amygdaloid neurons following 5-HT denervation. NE denervation fails to induce a postsynaptic type of supersensitivity but leads to a marked prolongation of the response to NE indicative of a presynaptic mechanism. These results underscore the necessity for regional studies of neurotransmitters and drug action.  相似文献   


8.
CA1 basket cells are identifiable by an axonal arbour largely confined to, and spanning, the entire depth of stratum pyramidale where they innervate pyramidal somata and proximal dendrites. Basket cells display a range of electrophysiological properties and the inhibitory postsynaptic potentials (IPSPs) they elicit in pyramidal cells vary widely in duration. To determine whether these parameters are correlated, we used paired intracellular recordings, with biocytin filling, in pyramidal cells of adult hippocampal slices, and studied gamma-aminobutyric acid (GABAA) IPSPs (n = 43) elicited by putative basket cells (n = 35) with axons largely confined to stratum pyramidale in simultaneously recorded pyramidal cells. Fast-spiking interneurons elicited relatively brief IPSPs, while IPSPs elicited by burst-firing cells were amongst the slowest. Regular spiking interneurons elicited fast and slow GABAA IPSPs, but any one interneuron elicited IPSPs with remarkably similar durations in two to four pyramidal targets. However, with different types of target for a single putative basket cell, IPSPs elicited in postsynaptic interneurons were briefer than in pyramidal cells. Vertical oriens cells with somata in stratum oriens and a narrow, sparse axonal arbour in stratum pyramidale in transverse hippocampal slices, elicited IPSPs whose rise times and half widths clustered around intermediate values. Durations of IPSPs in pyramidal cells thus correlate, to a degree, with the physiological properties of presynaptic basket cells. The seven-fold range of durations observed (10-70 ms half widths) may underlie contributions made by different basket cells to hippocampal rhythms of different frequencies.  相似文献   

9.
The excitatory and inhibitory synaptic inputs to parasympathetic preganglionic neurons in the superior salivatory (SS) nucleus were investigated in brain slices of neonatal (4-8 days old) rat using the whole-cell patch-clamp technique. The SS neurons innervating the submandibular and sublingual salivary glands and innervating the lingual artery in the anterior region of the tongue were identified by retrograde transport of a fluorescent tracer. Whole-cell currents were evoked by electrical stimulation of tissue surrounding the cell. These evoked postsynaptic currents were completely abolished by antagonists for N-methyl-D-aspartate (NMDA) glutamate, non-NMDA glutamate, gamma-aminobutyric acid type A (GABAA), and glycine receptors, suggesting that SS neurons receive glutamatergic excitatory, and GABAergic and glycinergic inhibitory synaptic inputs. In SS neurons for the salivary glands, the ratio of the NMDA component to the total excitatory postsynaptic current (EPSC) was larger than that of the non-NMDA component. This profile was reversed in the SS neurons for the tongue. In SS neurons for the salivary glands, the ratio of the GABAA component to the total IPSC was larger than the ratio of the glycine component to total inhibitory postsynaptic current (IPSC). The decay time constants of the GABAA component were slower than those for glycine. These characteristics of the excitatory and inhibitory inputs may be involved in determining the firing properties of the SS neurons innervating the salivary glands and the tongue.  相似文献   

10.
11.
Previous anatomical evidence indicates that lead (Pb) alters development of the hippocampus and electrophysiological data suggest that Pb interferes with several neuronal systems outside the hippocampus. The present research was undertaken to examine the possibility that exposure to Pb early in development induces electrophysiological alterations in field potentials of CA3 pyramidal cells. Rat pups were exposed to Pb for the first 25 days of age via maternal milk. During this period, dams were fed diets containing either 4% PbCO3 or a Na2CO3 control diet. At 39-54 days of age, 15 sec trains of 20 Hz electrical stimuli at near-maximal intensities were delivered to the dentate granule cells of anaesthetized rats. No significant differences between Pb-treated and control animals were detected for the evoked responses during or after the stimulus trains. However, spreading depression was observed in a greater proportion of Pb-treated animals and more frequently within single Pb-treated animals than in controls. Repetitive bursting, which followed termination of most 20-Hz trains, was significantly longer for Pb-treated animals. The duration of single bursts and the interval between bursts in a given episode were also longer in Pb-treated animals. These data support the hypothesis that developmental Pb exposure alters the electrophysiological properties of CA3 pyramidal cells.  相似文献   

12.
Enkephalin-induced excitation in the hippocampus has been attributed to the attenuation of inhibitory input as well as to augmentation of excitatory input to pyramidal neurons. We have further examined these possible mechanisms of enkephalin action, as well as the possibility that enkephalins may be affecting intrinsic membrane properties, by recording intracellularly from CA1 and CA3 pyramidal cells in the guinea pig hippocampal brain slice preparation. It was observed that the inhibitory synaptic potential was significantly decreased in the presence of leucine enkephalin and D-alanine, D-leucine-enkephalin (DADL), whereas the excitatory synaptic potential, revealed by block of the inhibitory postsynaptic potential (IPSP) by bicuculline, was unaltered. In addition, the response of pyramidal cells to pressure-applied GABA was unaffected by enkephalin, as were the voltage-dependent membrane conductances. The increase in excitability which was observed in both field potential and intracellular recordings to drop application of DADL must, then, be due to a purely presynaptic block of inhibitory interneurons in both the CA1 and CA3 areas of the hippocampus.  相似文献   

13.
The mechanism by which dopamine (DA) decreases the amplitude of the EPSP-IPSP sequences evoked by cortical stimulation was investigated by means of electrophysiological and biochemical methods. Intracellular recordings indicate that DA decreases the amplitude of the excitatory and inhibitory events by reducing the increase in membrane conductance measured at the peaks of the EPSP-IPSP. The non-synaptic input resistance was not modified. In addition the catecholamine (+50/+200 nA balanced current) was shown to decrease the action of glutamate (-30/-80 nA balanced current) and GABA (+40/+100 nA balanced current) when iontophoretically applied. These observations suggest that DA interferes with the excitatory (glutamatergic) and inhibitory (GABAergic) transmission at the postsynaptic site in striatal neurons. However, the depression of cellular excitability elicited by DA could not be ascribed only to its interaction with synaptic transmission at the postsynaptic level. In fact the catecholamine also inhibited spike frequency driven by depolarizing pulses and decreased the depolarization-induced release of glutamate at the presynaptic site, as shown by biochemical experiments with striatal synaptosomal preparations. A neuromodulatory role of DA in the depression of the excitability of striatal neurons by presynaptic and postsynaptic mechanisms is suggested.  相似文献   

14.
To examine regional differences of synaptic transmission, the effects of midazolam were observed on inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices. Midazolam is one of the most popular benzodiazepines. The monosynaptic IPSCs in the CA1-PCs and DG-GCs were evoked by electrical stimulation of GABAergic interneurons and recorded by whole cell patch-clamp techniques. The effects of specific concentrations of midazolam (0.3, 1, 10 and 75 microM) on the IPSCs in CA1-PCs and DG-GCs were examined at particular membrane potentials (20 mV steps, from -120 to +40 mV). In all midazolam concentrations tested, the conductance of the IPSCs was significantly larger than that in control and was increased by increasing the concentration of midazolam in CA1-PCs (normalized conductance, 0.3 microM, 121%; 1 microM, 125%; 10 microM, 147%; 75 microM, 147%). However, midazolam did not significantly change the conductance of the IPSCs in DG-GCs (normalized conductance, 0.3 microM, 92%; 1 microM, 92%; 10 microM, 91%; 75 microM, 115%). The normalized conductance was significantly different between the CA1-PCs and DG-GCs in 1 and 10 microM midazolam. The results strongly suggest that the differential effects of midazolam on IPSCs in CA1-PCs and DG-GCs could be, at least in part, due to the different sensitivity to midazolam of the GABA(A) receptor subtypes.  相似文献   

15.
Changes in hippocampal synaptic networks during aging may contribute to age‐dependent compromise of cognitive functions such as learning and memory. Previous studies have demonstrated that GABAergic synaptic transmission exhibits age‐dependent changes. To better understand such age‐dependent changes of GABAergic synaptic inhibition, we performed whole‐cell recordings from pyramidal cells in the CA1 area of acute hippocampal slices on aged (24–26 months old) and young (2–4 months old) Brown‐Norway rats. We found that the frequency and amplitude of spontaneous inhibitory postsynaptic current (IPSCs) were significantly increased in aged rats, but the frequency and amplitude of mIPSCs were decreased. Furthermore, the regulation of GABAergic synaptic transmission by GluR5 containing kainate receptors was enhanced in aged rats, which was revealed by using LY382884 (a GluR5 kainate receptor antagonist) and ATPA (a GluR5 kainate receptor agonist). Moreover, we demonstrated that vesicular glutamate transporters are involved in the kainate receptor dependent regulation of sIPSCs. Taken together, these results suggest that GABAergic synaptic transmission is potentiated in aged rats, and GluR5 containing kainate receptors regulate the inhibitory synaptic transmission through endogenous glutamate. These alterations of GABAergic input with aging could contribute to age‐dependent cognitive decline. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Kainic acid (KA) (10−6–10−8 M) reversibly depolarized CA3 pyramidal cells when applied topically to the apical dendritic area of these cells in the hippocampal slice. The magnitude of membrane depolarization and the time to recovery of resting membrane potential were concentration-related. Application of 10−5 M KA produced complete membrane depolarization which did not recover to baseline levels. Unlike CA3 neurons cells from the CA1 region were unaffected by KA (10−6–10−8 M). However, 10−5 M KA also proved effective in depolarizing CA1 cells.  相似文献   

17.
Summary 5-HT synthesis, levels and degradation were investigated in the whole brain and regional brain areas in 4,14, and 28 days old rats after administration of gammahydroxybutyric acid (GHBA). 5-HT synthesis was investigated by means of 5-HTP accumulation after decarboxylase inhibition by NSD 1015. 5-HTP accumulation increased in the 14 and 28 days old rats but decreased in the 4 days old animals 90 min after GHBA, 750 mg/kg. In the 28 days old rats a corresponding increase was also noted in the precursor amino acid tryptophan. Regional and whole brain 5-HT levels were not altered by GHBA treatment. Regional as well as whole brain levels of 5-HIAA increased in the 14 and 28 days old rats after GHBA administration.In conclusion, the present data indicate that GHBA increases the synthesis and degradation of 5-HT in adolescent rats. These effects of GHBA were not seen in the neonatal animals.  相似文献   

18.
The effects of trifluoperazine (TFP), a phenothiazine antipsychotic, on hippocampal activity were studied in the CA1 subfield, both in situ and in slices. In the extracellular studies in situ and in vitro, both somatic population spikes and dendritic excitatory postsynaptic potentials (EPSP) fields were depressed reversibly by TFP, applied by microiontophoresis or in the bath (50-100 μM). Similar effects were also seen during iontophoretic applications of sphingosine in situ. Like TFP (at micromolar concentrations) sphingosine is a dual Ca2+/calmodulin-dependent kinase and protein kinase C (PKC) inhibitor. In intracellular recordings from slices, 50-100 μM TFP induced a slow depolarization and a decrease in input resistance (RN), probably through a β-aminobutyric acid (GABA)-mediated increase in Cl? conductance (GCl). TFP also reduced the slow afterhyperpolarization (AHP) as well as electrically evoked inhibitory postsynaptic potentials (IPSPs), but EPSPs were augmented in both amplitude and duration. When CA1 neurons were voltage clamped, TFP elicited a corresponding inward current (consistent with depolarization), increased the leak conductance, and enhanced excitatory synaptic currents; whereas inhibitory synaptic currents and high-threshold Ca2+ currents were reduced. In conclusion, these effects of TFP–which cannot be readily explained by its potent antidopamine action–are in keeping with other evidence that both Ca2+/calmodulin-dependent kinase and PKC can modulate GCl-conductance and high-threshold Ca2+ -conductance, as well as inhibitory and excitatory postsynaptic currents. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Following kainate (KA)-induced lesions of subfield CA3--a lesion relevant to human temporal lobe epilepsy--remaining pyramidal cells in CA1 display synchronous hyperexcitability associated with a loss of synaptic inhibition. Despite this loss, inhibitory interneurons in CA1 remain viable, and the density and function of GABAergic receptors on the CA1 pyramidal cells are maintained at approximately normal levels. To further evaluate inhibition in this system, the authors examined interactions between pyramidal cells and inhibitory interneurons in paired intracellular recordings. Recordings were carried out in rat hippocampal slices 2-4 weeks following bilateral intraventricular KA injections. The frequency of synaptic interactions between CA1 basket cells and pyramidal cells was lower in hyperexcitable slices than in controls; both synapses in the recurrent inhibitory circuit appeared to be involved. No recurrent excitatory interactions were seen between pyramidal cell pairs in lesioned or normal slices. The weakened interconnections between pyramidal cells and interneurons are consistent with the decreased inhibition previously found in this model. Unexpectedly, strong stimulation, which may directly activate local inhibitory circuitry, was effective in reducing hyperexcitability in KA-lesioned slices. These data suggest that development of recurrent excitatory connections among CA1 hippocampal pyramidal cells contribute little to tissue excitability, and support the hypothesis that a functional uncoupling between inhibitory interneurons and CA1 pyramidal cells is responsible for the seizure-like activity typical of KA-lesioned hippocampus. The data are also consistent with the hypothesis that in the KA model, the structural circuitry needed for inhibition in CA1 is maintained, and can be functionally activated by appropriate stimuli.  相似文献   

20.
The interactions between inhibitory fast‐spiking (FS) interneurons and excitatory pyramidal neurons contribute to the fundamental properties of cortical networks. An important role for FS interneurons in mediating rapid inhibition in local sensory and motor cortex microcircuits and processing thalamic inputs to the cortex has been shown in multiple reports; however, studies in the prefrontal cortex, a key neocortical region supporting working memory, are less numerous. In the present work, connections between layer 2/3 pyramidal cells and FS interneurons were studied with paired whole‐cell recordings in acute neocortical slices of the medial prefrontal cortex from juvenile rats. The connection rate between FS interneurons and pyramidal neurons was about 40% in each direction with 16% of pairs connected reciprocally. Excitatory and inhibitory connections had a high efficacy and a low neurotransmission failure rate. Sustained presynaptic activity decreased the amplitude of responses and increased the failure rate more in excitatory connections than in inhibitory connections. In the reciprocal connections between the FS and pyramidal neurons, inhibitory and excitatory neurotransmission was more efficient and had a lower failure rate than in the unidirectional connections; the differences increased during the train stimulation. These results suggest the presence of distinct preferential subnetworks between FS interneurons and pyramidal cells in the rat prefrontal cortex that might be specific for this cortical area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号