首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The ontogeny of T cells in T-cell receptor (TCR) transgenic mice, which express a transgenic alpha beta heterodimer, specific for the male (H-Y) antigen in association with H-2Db, was determined. The transgenic alpha chain was expressed on about 10% of the fetal thymocytes on day 14 of gestation. About 50% of day-15 fetal thymocytes expressed both alpha and beta transchains and virtually all fetal thymocytes expressed the transgenic alpha beta heterodimer by day 17. The early expression of the transgenic TCR on CD4-8- thymocytes prevented the development of gamma delta cells, and led to accelerated growth of thymocytes and an earlier expression of CD4 and CD8 molecules. Up to day 17, no significant differences in T-cell development could be detected between female and male thymuses. By day 18 of gestation, the male transgenic thymus contained more CD4-8- thymocytes than the female transgenic thymus. The preponderance of CD4-8- thymocytes in the male transgenic thymus increased until birth and was a consequence of the deletion of the CD4+8+ thymocytes and their CD4-8+ precursors. By the time of birth, the male transgenic thymus contained half the number of cells as the female transgenic thymus. The deletion of autospecific precursor cells in the male transgenic mouse began only at day 18 of gestation, despite the fact that the ligand could already be detected by day 16. The preferential accumulation of CD4-8+ T cells, which expressed a high density of the transgenic TCR, occurred only after birth and was obvious in 6-week-old female thymus. These data support the hypothesis that the positive selection of T cells expressing this transgenic heterodimer may involve two steps, i.e., the commitment of CD4+8+ thymocytes to the CD4-8+ lineage following the interaction of the transgenic TCR with restricting major histocompatibility molecules, followed by a slow conversion of CD4+8+ thymocytes into CD4-8+ T cells. In normal mice, the precursors of CD4+8+ and single positive thymocytes have the CD4-8- CD3-J11d+ (or M1/69+) phenotype. Because of the early expression of the transgenic alpha beta heterodimer, this population was not detected in adult transgenic mice. All CD4-8- M1/69+ cells expressed the transgenic receptor associated with CD3 and could be readily grown in media containing T-cell lectins and interleukin 2.  相似文献   

3.
Natural killer T (NKT) cells develop in the thymus from the same precursors as conventional CD4(+) and CD8(+) αβ T cells, CD4(+) CD8(+) double-positive cells. In contrast to conventional αβT cells, which are selected by MHC-peptide complexes presented by thymic epithelial cells, invariant NKT cells are selected by lipid antigens presented by the non-polymorphic, MHC I-like molecule CD1d, present on the surface of other double-positive thymocytes, and require additional signals from the signalling lymphocytic-activation molecule (SLAM) family of receptors. In this review, we provide a discussion of recent findings that have modified our understanding of the NKT cell developmental programme, with an emphasis on events that affect the early stages of this process. This includes factors that control double-positive thymocyte lifespan, and therefore the ability to generate the canonical Vα rearrangements that characterize this lineage, as well as the signal transduction pathways engaged downstream of the T-cell receptor and SLAM molecules.  相似文献   

4.
Previously we described a monoclonal antibody (mAb) that reacted with a cell-surface antigen, immature thymocyte antigen-1 (IMT-1), which is expressed on thymocytes of late CD4- CD8- (double negative) to early CD4+ CD8+ (double positive) differentiation stages. In this study, we investigated the expression of IMT-1 on various cell lineages in thymus as well as in peripheral lymphoid organs. We found that IMT-1 is expressed on T-cell receptor (TCR)-betalo and TCR-deltalo thymocytes, but not on TCR-betahi, TCR-deltahi or natural killer (NK)1.1+ thymocytes, or on peripheral alpha beta or gamma delta T cells. We also investigated the kinetics of expression of IMT-1 during fetal thymocyte development and compared it with the expression of the pre-TCR complex, comprising CD3, pre-TCR-alpha (pTalpha) and TCR-beta. We found that expression of both was similar, starting at day 14.5 of gestation, peaking on day 16.5 and gradually decreasing thereafter. Furthermore, the expression of both IMT-1 and pTalpha was drastically reduced when DN thymocytes in recombination activating gene (RAG)-2-/- mice were challenged in vivo with anti-CD3 mAb. These results indicate that IMT-1 is expressed on not only immature thymocytes of alpha beta T-cell lineage but also on those of gamma delta T-cell lineage, and that the expression of IMT-1 and the pre-TCR complex is co-ordinately regulated during the alpha beta lineage thymocyte development.  相似文献   

5.
The generation of thymic NK1.1(+)alpha beta T (NKT) cells involves positive selection of cells enriched for V(alpha)14/V(beta)8 TCR by CD1d MHC class I molecules. However, it has not been determined whether positive selection is preceded by pre-TCR-dependent beta selection. Here we studied NKT cell development in CD3 signaling-deficient mice (CD3 zeta/eta(-/-) and/or p56(lck-/-)) and TCR alpha-deficient mice. In contrast to wild-type mice, NK1.1(+) thymocytes in CD3 signaling-deficient mice are approximately 10-fold reduced in number, do not exhibit V(alpha)14-J(alpha)281 rearrangements and fail to express alpha beta TCR at the cell surface. However, they exhibit TCR beta VDJ rearrangements and pre-T alpha mRNA, suggesting that they contain pre-NKT cells. Strikingly, pre-NKT cells of CD3 zeta/Lck double-deficient mice fail to express TCR beta mRNA and protein. Whereas in wild-type NKT cells TCR beta VDJ junctions are selected for productive V(beta)8 and against productive V(beta)5 rearrangements, V(beta)8 and V(beta)5 rearrangements are non-selected in pre-NKT cells of CD3 signaling-deficient mice. Thus, pre-NKT cell development in CD3 signaling-deficient mice is blocked after rearrangement of TCR beta VDJ genes but before expression of TCR beta proteins. Most NKT cells of TCR alpha-deficient mice exhibit cell surface gamma delta TCR. In contrast to pre-NKT cells of CD3 signaling-deficient mice, approximately 25% of NKT cells of TCR alpha-deficient mice exhibit intracellular TCR beta polypeptide chains. Moreover, both V(beta)8 and V(beta)5 families are selected for in-frame VDJ joints in the TCR beta(+) NKT cell subset of TCR alpha-deficient mice. The data suggest that CD3 signals regulate initial TCR beta VDJ gene expression prior to beta selection in developing pre-NKT cells.  相似文献   

6.
We describe a novel CD8(+)NKT cell population expressing TCRalpha /beta or TCRgamma /delta. These CD8(+)NKT cells were prominent in the liver, and except for the thymus, virtually absent in other lymphoid organs. CD8(+)NKT cells expressed activation markers and comprised a high proportion of Ly49(+) cells. The development of the majority of CD8(+)NKT cells expressing TCRalpha /beta, but not TCRgamma /delta, depended on classical MHC class I. No CD8(+)NKT cells were detectable in young athymic mice, whereas the cells expressing TCRgamma /delta, but not TCRalpha /beta, appeared randomly in aged athymic mice. CD8(+)NK1(+) TCRalpha /beta cells showed polyclonal TCRVbeta usage and were virtually devoid of TCRValpha14. CD8(+)NK1(+) TCRgamma /delta cells predominantly expressed TCRVgamma1, 2 and 4, and Vdelta4, 5, 6 and 7. CD8(+)NKT cells, in particular those expressing TCRgamma /delta, were a major population in early life. IFN-gamma, but not IL-4, was induced in CD8(+)NKT cells by in vitro stimulation, independent of the TCRalpha /beta or TCRgamma /delta lineage. Hence, these cells represent a unique, though heterogeneous T cell population that shares markers with, but is distinct from, both conventional NKT cells and conventional CD8(+) T cells, and that may play a role in immune regulation.  相似文献   

7.
8.
CD4(-)CD8(-) thymocytes expressing a transgenic T cell receptor (TCR) alpha chain have decreased capacity to give rise to CD4(+)CD8(+) thymocytes when compared with wild-type thymocytes. This inefficient CD4(-)CD8(-) to CD4(+)CD8(+) maturation is mediated by the transgenic TCR alpha chain pairing with endogenous TCR beta chain but not with endogenous TCR gamma chain. Comparison between TCR alpha chain-transgenic mice with or without a functional pre-TCR alpha (pT alpha ) chain reveals that the formation of transgenic alpha/endogenous beta TCR on CD4(-)CD8(-) thymocytes inhibits the formation of pre-TCR, but at the same time mediates CD4(-)CD8(-) to CD4(+)CD8(+) maturation in the absence of pre-TCR, albeit inefficiently. These results indicate that alpha beta TCR and pre-TCR provide different signals for thymocyte development. They also suggest that the precise regulation of the sequential rearrangements of TCR beta and alpha loci and the cellular expansion induced by the pre-TCR may both be evolved to ensure the efficient generation of mature alpha beta T cells.  相似文献   

9.
Studies of type 1 diabetes indicate that autoaggressive T cells specific to beta-cell antigens, reaching certain threshold levels, may play critical roles in the development of the disease. Flow cytometric analyses found that autoreactive T-cell lines from patients induced by beta-cell antigens consisted of four major subsets (CD4(+)CD56(-), CD4(+)CD56(+), CD8(+)CD56(-), and CD8(+)CD56(+)) and that CD56(+) NKT cells might be derived from CD56(-) T cells. Moreover, the proportion of CD56(+) NKT cells in the T-cell lines was influenced by time course of repeated antigen stimulation. beta-cell antigen-specific CD56(+) NKT (CD4(+) or CD8(+)) cells were more aggressive (HLA-restricted and -unrestricted) effector cells lysing target cells such as K562, Jurkat, P815 plus anti-CD3 antibody, and autologous B cells sensitized by beta-cell peptides, when compared with their CD56(-) counterparts. beta-cell antigen- specific CD4(+)CD56(+) NKT cells showed non-HLA-restricted cytotoxicity to human beta cells, insulinoma cell line CM, and to islet cell lines TRM-6 and HP62 expressing CD56 but not to four CD56(-) pancreatic cell lines of non- islet origin. The CD4(+)CD56(+) NKT cells showed stronger cytotoxicity to CM, TRM-6 and HP62 cells than did CD4(+)CD56(-) T cells. Moreover, isotope-unlabelled CD56(+) cells and anti-CD56 antibodies were able to inhibit cytotoxicity of CD4(+)CD56(+) NKT to CD56(+) target cells. These results suggest that CD56(+) NKT cells are aggressive cytotoxic cells to beta cells and that CD56 expression might be associated with the aggressiveness of effector T cells and the susceptibility of target cells.  相似文献   

10.
Expression of the receptor-type tyrosine phosphatase LAR was studied in cells of the murine hemopoietic system. The gene is expressed in all cells of the T cell lineage but not in cells of any other hemopoietic lineage and the level of expression in T cells is developmentally regulated. The CD4(-)8(-)44(+) early thymic immigrants and mature (CD4(+)8(-)/CD4(-)8(+)) thymocytes and T cells express low levels, whereas immature (CD4(-)8(-)44(-) and CD4(+)8(+)) thymocytes express high levels of LAR. Among bone marrow cells only uncommitted c-kit(+)B220(+)CD19(-) precursors, but not B cell lineage committed c-kit(+)B220(+)CD19(+) precursors, express low levels of LAR. In contrast to the c-kit(+)B220(+)CD19(+) pre-BI cells from normal mice, counterparts of pre-BI cells from PAX-5-deficient mice express LAR, indicating that PAX-5-mediated commitment to the B cell lineage results in suppression of LAR. During differentiation of PAX-5-deficient pre-BI cell line into non-T cell lineages, expression of LAR is switched off, but it is up-regulated during differentiation into thymocytes. Thus, within the hemopoietic system, LAR appears to be a T cell lineage-specific receptor-type phosphatase. However, surprisingly, truncation of its phosphatase domains has no obvious effect on T cell development, repertoire selection or function.  相似文献   

11.
To further define the relationship between thymocyte subsets and their developmental sequence, multi-parameter flow cytometry was used to determine the distribution of the CD3-TCR complex and the accessory molecules CD4 and CD8 on chicken thymocytes. As in mammals, adult thymocytes could be subdivided into CD3-, CD3lo, and CD3hi staining populations. CD4 and CD8 distribution on such populations revealed the presence of CD3-CD4+CD8- and CD3-CD4-CD8+ thymocytes, putative precursors to CD4+CD8+ cells, detectable in the adult and at high frequency during ontogeny. Of particular interest was the existence of CD3lo expression on CD4+CD8- and CD4-CD8+, and in some instances, on CD4-CD8- thymocytes. Such phenotypes are not easily detectable in the mammalian thymus but were readily observed in both adult and embryonic chicken thymus from 16 days of embryogenesis. Further analysis of the TCR lineage of these CD3lo cells revealed that they were essentially all of the alpha beta TCR type. Mature CD3hi thymocytes were found within the CD4+CD8+ and CD4+CD8- and CD4-CD8+ subsets. Both alpha beta and gamma delta TCR lineage thymocytes were detected within all CD4- and CD8-defined subsets, thus identifying novel thymocyte subsets in the chicken thymus, namely alpha beta TCR+CD4-CD8- and gamma delta TCR+ CD4+CD8- cells. Hence, this analysis of chicken thymocytes, while confirming the phylogenically conserved nature of the thymus, has revealed novel T cell subsets, providing further insight into the complexity of mainstream thymocyte maturation pathways.  相似文献   

12.
CD8 plays an important role in the activity of cytolytic T cells (CTL). However, whether or not CD8 is required for the development of CTL has not been clearly determined. Cytotoxic activity in the CD8alpha knockout mouse is difficult to induce, and has only been demonstrated against allogenic MHC targets. The lack of cytotoxicity may result from impaired lineage commitment of CTL in the absence of CD8, or diminished competitiveness during selection against (unimpaired) development of CD4(+) T cells on MHC class II (MHC II). To differentiate between these possibilities, we have generated a double-knockout mouse (MHC II(-/-)CD8alpha(-/-)). In MHC II(-/-)CD8alpha(-/-) mice, developing MHC class I (MHC I)-reactive thymocytes cannot rely upon CD8 for selection, but they also cannot be overwhelmed by efficient selection of MHC II-reactive thymocytes. In this mouse, a large, heterogeneous population of peripheral coreceptor double-negative (DN) and CD4(+) T cells develops. Peripheral DN T cells are fully functional CTL. They display cytolytic activity against allogeneic MHC, and against syngeneic MHC following lymphocytic choriomeningitis virus (LCMV) infection. Cells from LCMV-infected mice bind more MHC I tetramer at lower concentrations than their wild-type CTL counterparts. These results demonstrate unequivocally that CD8 is not required for commitment of thymocytes to the CTL lineage.  相似文献   

13.
The expression of T-cell antigen receptor (TCR) alpha beta was investigated in rat CD4- CD8- thymocytes during thymic reconstitution after the exposure of animals to irradiation or glucocorticoid. The effect of the immunosuppressant FK506 on the expression of TCR alpha beta in rat CD4- CD8- thymocytes was also examined. The percentage of CD4- CD8- thymocytes constituted 2.6% of total thymocytes and that of CD4- CD8- TCR alpha beta high cells constituted 12.6% of CD4- CD8- thymocytes in normal adult Lewis rats. The percentage of CD4- CD8- TCR alpha beta high cells increased during thymic reconstitution after irradiation, and maximally constituted 28.6% of CD4- CD8- thymocytes on day 7. Similar results were obtained during thymic reconstitution after glucocorticoid treatment. In contrast, continuous treatment with FK506 for 7 days markedly decreased not only the percentages of CD4+ CD8- TCR alpha beta high and CD4- CD8+ TCR alpha beta high thymocytes, but also that of CD4- CD8- TCR alpha beta high thymocytes. These results indicate that rat CD4- CD8- thymocytes contain a subpopulation of mature (TCR alpha beta high) cells. The possible implications of the existence of this subpopulation with regard to thymocyte differentiation and maturation are discussed.  相似文献   

14.
Dang Y  Beckers J  Wang CR  Heyborne KD 《Immunology》2000,101(4):484-491
When the developing embryo implants into the uterine wall, resident maternal immune cells may encounter antigens present on the fetal tissues. The nature and constituents of the ensuing maternal immune response, and its regulation, are of considerable interest in understanding normal and abnormal pregnancy. Here, we report the presence of natural killer (NK)1.1(+) alpha beta T cells in the murine periimplantation uterus. These cells account for a large portion of both the T-cell and natural killer cell populations in early pregnancy, while their numbers in the non-pregnant uterus and later in pregnancy are greatly reduced. Phenotypically, these NK1.1+ alpha beta T cells belong to a previously described subset of cells that bear a V alpha 14-J alpha 281-encoded T-cell receptor. Unlike other organs, where both CD4(+) and CD4(-)/CD8(-) NK1.1(+) alpha beta T cells are found, the placental/decidual population appears to be entirely CD4(-)/CD8(-). The V beta repertoire of the placental/decidual population is also altered from that of other organs, with a majority of cells expressing V beta 3. Together, these features suggest the possibility of local development. NK1.1(+) alpha beta T cells are known to recognize the class I-like CD1 molecule. Consistent with this association, we demonstrate CD1 expression by tissues within the pregnant uterus. Our findings define an additional organ-specific immune environment where NK1.1(+) alpha beta T cells may play a role, and continue to demonstrate the specialized nature of the maternal intrauterine immune system during pregnancy.  相似文献   

15.
A major problem after clinical hematopoietic stem cell transplantations is poor T-cell reconstitution. Studying the mechanisms underlying this concern is hampered, because experimental transplantation of human stem and progenitor cells into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice usually results in low T-lymphocyte reconstitution. Because tumor necrosis factor alpha (TNFalpha) has been proposed to play a role in T-lineage commitment and differentiation in vitro, we investigated its potential to augment human T-cell development in vivo. Administration of TNF to irradiated NOD/SCID mice before transplantation of human mononuclear cells from either cord blood or adult G-CSF-mobilized peripheral blood (MPBL) led 2-3 weeks after transplantation to the emergence of human immature CD4(+)CD8(+) double-positive T-cells in the bone marrow (BM), spleen, and thymus, and in this organ, the human cells also express CD1a marker. One to 2 weeks later, single-positive CD4(+) and CD8(+) cells expressing heterogenous T-cell receptor alpha beta were detected in all three organs. These cells were also capable of migrating through the blood circulation. Interestingly, human T-cell development in these mice was associated with a significant reduction in immature lymphoid human CD19(+) B cells and natural killer progenitors in the murine BM. The human T cells were mostly derived from the transplanted immature CD34(+) cells. This study demonstrates the potential of TNF to rapidly augment human T lymphopoiesis in vivo and also provides clinically relevant evidence for this process with adult MPBL progenitors.  相似文献   

16.
Notch proteins influence cell fate decisions in many developmental systems. During lymphoid development, Notch1 signaling is essential to direct a bipotent T/B precursor toward the T cell fate, but the role of Notch1 at later stages of T cell development remains controversial. We have recently reported that tissue-specific inactivation of Notch1 in immature (CD44(-) CD25(+)) thymocytes does not affect subsequent T cell development. Here, we demonstrate that loss of Notch1 signaling at an earlier (CD44(+)CD25(+)) developmental stage results in severe perturbation of alpha beta but not gamma delta lineage development. Immature Notch1(-/-) thymocytes show impaired VDJ beta rearrangement and aberrant pre-TCR-independent survival. Collectively, our data demonstrate that Notch1 controls several nonredundant functions necessary for alpha beta lineage development.  相似文献   

17.
18.
19.
NKT cells are a heterogeneous population characterized by the ability to rapidly produce cytokines, such as interleukin 2 (IL-2), IL-4, and gamma interferon (IFN-gamma) in response to infections by viruses, bacteria, and parasites. The bacterial superantigen staphylococcal enterotoxin B (SEB) interacts with T cells bearing the Vbeta3, -7, or -8 T-cell receptors, inducing their expansion and cytokine secretion, leading to death in some cases due to cytokine poisoning. The majority of NKT cells bear the Vbeta7 or -8 T-cell receptor, suggesting that they may play a role in regulating this response. Using mice lacking NKT cells (CD1d(-/-) and Jalpha18(-/-) mice), we set out to identify the role of these cells in T-cell expansion, cytokine secretion, and toxicity induced by exposure to SEB. We find that Vbeta8(+) CD4(+) T-cell populations similarly expand in wild-type (WT) and NKT cell-null mice and that NKT cells did not regulate the secretion of IL-2. By contrast, these cells positively regulated the secretion of IL-4 and IFN-gamma production and negatively regulated the secretion of tumor necrosis factor alpha (TNF-alpha). However, this negative regulation of TNF-alpha secretion by NKT cells provides only a minor protective effect on SEB-mediated shock in WT mice compared to mice lacking NKT cells. These data suggest that NKT cells may regulate the nature of the cytokine response to exposure to the superantigen SEB and may act as regulatory T cells during exposure to this superantigen.  相似文献   

20.
NKT cells are phenotypically and functionally diverse   总被引:14,自引:0,他引:14  
NK1.1(+)alpha betaTCR(+) (NKT) cells have several important roles including tumor rejection and prevention of autoimmune disease. Although both CD4(+) and CD4(-)CD8(-) double-negative (DN) subsets of NKT cells have been identified, they are usually described as one population. Here, we show that NKT cells are phenotypically, functionally and developmentally heterogeneous, and that three distinct subsets (CD4(+), DN and CD8(+)) are differentially distributed in a tissue-specific fashion. CD8(+) NKT cells are present in all tissues but the thymus, and are highly enriched for CD8alpha(+)beta(-) cells. These subsets differ in their expression of a range of cell surface molecules (Vbeta8, DX5, CD69, CD45RB, Ly6C) and in their ability to produce IL-4 and IFN-gamma, with splenic NKT cell subsets producing lower levels than thymic NKT cells. Developmentally, most CD4(+) and DN NKT cells are thymus dependent, in contrast to CD8(+) NKT cells, and are also present amongst recent thymic emigrants in spleen and liver. TCR Jalpha281-deficient mice show a dramatic deficiency in thymic NKT cells, whereas a significant NKT cell population (enriched for the DN and CD8(+) subsets) is still present in the periphery. Taken together, this study reveals a far greater level of complexity within the NKT cell population than previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号