首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced glycosylation end products (AGEs) have been implicated in many of the complications of diabetes and normal aging. Markedly elevated vascular tissue and circulating AGEs were linked recently to the accelerated vasculopathy of end-stage diabetic renal disease. To determine the pathogenic role of AGEs in vivo, AGE-modified albumin was administered to healthy nondiabetic rats and rabbits alone or in combination with the AGE-crosslink inhibitor aminoguanidine. Within 2-4 weeks of AGE treatment, the AGE content of aortic tissue samples rose to six times the amount found in controls (P < 0.001). Cotreatment with aminoguanidine limited tissue AGE accumulation to levels two times that of control. AGE administration was associated with a significant increase in vascular permeability, as assessed by 125I label tracer methods. This alteration was absent in animals that received aminoguanidine in addition to AGE. Significant mononuclear cell migratory activity was observed in subendothelial and periarteriolar spaces in various tissues from AGE-treated rats compared to normal cellularity noted in tissues from animals treated with aminoguanidine. Blood pressure studies of AGE-treated rats and rabbits revealed markedly defective vasodilatory responses to acetylcholine and nitroglycerin compared to controls (P < 0.001), consistent with marked NO. inactivation; aminoguanidine treatment significantly prevented this defect. These in vivo data demonstrate directly that AGEs, independent of metabolic or genetic factors, can induce complex vascular alterations resembling those seen in diabetes or aging. AGE administration represents an animal model system for the study of diabetic and aging complications as well as for assessing the efficacy of newly emerging therapies aimed at inhibiting advanced glycosylation.  相似文献   

2.
Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.  相似文献   

3.
Aging is associated with cardiac hypertrophy and arterial stiffening possibly associated with accumulation of advanced glycation end products (AGEs). We evaluated the effect of aminoguanidine, an inhibitor of AGE production, on end-stage alterations of renal and cardiovascular systems. Normotensive WAG/Rij rats were treated from 24 to 30 mo with aminoguanidine and compared with a control group. Aminoguanidine did not modify body and kidney weights but prevented the age-related cardiac hypertrophy (heart weight: 1276 ± 28 mg and 1896 ± 87 mg in 24- and 30-mo-old control animals and 1267 ± 60 mg in 30-mo-old treated rats, P < 0.01). The increase in mesangial surface in aging rats was reduced by 30% by aminoguanidine. Collagen content of the arterial wall increased between 24 and 30 mo whereas elastin content, media thickness, and smooth muscle cell number remained unchanged. Aminoguanidine did not affect these parameters; however, the age-related increase in aortic impedance (12.4 ± 1.4 and 18.2 ± 1.9 103dyneseccm−5 in control 24- and 30-mo-old rats, P < 0.01) and the decrease in carotid distensibility (0.79 ± 0.11 and 0.34 ± 0. 07 mm Hg−1 in control 24- and 30-mo-old rats, P < 0.01) were prevented by aminoguanidine. The prevention of arterial stiffening and cardiac hypertrophy in the absence of changes in collagen and elastin content suggests that the effect of aminoguanidine is related to a decrease in the AGE-induced cross-linking of the extracellular matrix.  相似文献   

4.
Several lines of evidence suggest that the excessive accumulation of extracellular matrix in the glomeruli of diabetic kidneys may be due to reactive intermediates forming between glucose and matrix proteins called advanced glycation end products (AGEs). Normal mice received AGE-modified mouse serum albumin i.p. for 4 weeks, and glomerular extracellular matrix, growth factor mRNA levels, and morphology were examined. We found that AGE induced an increase in glomerular extracellular matrix alpha 1(IV) collagen, laminin B1, and transforming growth factor beta 1 mRNA levels, as measured by competitive PCR, as well as glomerular hypertrophy. The AGE response was specific because the coadministration of an AGE inhibitor, aminoguanidine, reduced all these changes. We conclude that AGEs affected expression of genes implicated in diabetic kidney disease and may play a major role in nephropathy.  相似文献   

5.
We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.  相似文献   

6.
Summary Advanced glycation end products (AGEs) have previously been shown to be increased in the diabetic kidney. Aminoguanidine, an inhibitor of advanced glycation, has been shown to attenuate the development of AGEs as well as the progression of renal disease in experimental diabetes. However, the precise mechanisms through which aminoguanidine acts remain to be elucidated since it is also able to act as an inhibitor of nitric oxide synthase (NOS). This study has therefore compared the effects of aminoguanidine with the effects of two other inhibitors of NOS, L -NAME and methylguanidine, on the development of experimental diabetic nephropathy. Diabetic rats were randomised to receive no treatment, aminoguanidine (1 g/l in drinking water), L -NAME (5 mg/l in drinking water) or methylguanidine (1 g/l in drinking water). Diabetic rats had increased levels of albuminuria and urinary nitrite/nitrate excretion when compared to control rats. Renal AGEs measured by fluorescence as well as by a carboxymethyllysine reactive radioimmunoassay, were elevated in diabetic rats. No changes in inducible NOS (iNOS) protein expression were detected in experimental diabetes nor did aminoguanidine affect iNOS expression. Aminoguanidine did not affect blood glucose or HbA1c but it did prevent increases in albuminuria, urinary nitrites/nitrates and renal AGE levels as measured by fluorescence and radioimmunoassay. L -NAME and methylguanidine did not retard the development of albuminuria, nor did they prevent increases in renal AGE levels, as assessed by fluorescence. However, these treatments did prevent increases in AGEs, as measured by radioimmunoassay. This study indicates that the renoprotective effect of aminoguanidine in experimental diabetes cannot be reproduced by L -NAME or methylguanidine. It is likely that the effect of aminoguanidine is mediated predominantly by decreased AGE formation rather than via NOS inhibition. It also raises the possibility that inhibition of fluorescent AGE formation may be more renoprotective than inhibition of the formation of carboxymethyllysine-containing AGEs. [Diabetologia (1997) 40: 1141–1151] Received: 10 April 1997 and in revised form: 18 June 1997  相似文献   

7.
Aminoguanidine, an inhibitor of advanced glycation reactions in vitro, inhibits the development of diabetic complications in animal models of diabetes, suggesting that it acts by inhibition of advanced glycation reactions in vivo. However, effects of aminoguanidine on the formation of specific advanced glycation end-products (AGEs) in vivo have not been rigorously examined. Therefore, we studied the effects of aminoguanidine on the formation of pentosidine and N(epsilon)-(carboxymethyl)lysine (CML), measured by analytical chemical methods, in collagen of streptozotocin-diabetic Lewis rats at doses which ameliorated urinary albumin excretion, an index of diabetic nephropathy. At 12 weeks, diabetic animals had fivefold higher blood glucose, threefold higher glycated hemoglobin and fivefold higher collagen glycation, compared to metabolically healthy controls; pentosidine and CML in skin collagen were increased by approximately 30 and 150%, respectively. Administration of aminoguanidine, 50 mg/kg by daily intraperitoneal injection, significantly inhibited the development of albuminuria (approximately 60%, P < 0.01) in diabetic rats, without an effect on blood glucose or glycation of hemoglobin or collagen. Surprisingly, aminoguanidine failed to inhibit the increase in pentosidine and CML in diabetic rat skin collagen. Similar results were obtained in an independent experiment in which aminoguanidine was administered in drinking water at a dose of 0.5 g/l. We conclude that the therapeutic benefits of aminoguanidine on albuminuria may not be the result of inhibition of AGE formation.  相似文献   

8.
Cerebral infarction (stroke) is a potentially disastrous complication of diabetes mellitus, principally because the extent of cortical loss is greater in diabetic patients than in nondiabetic patients. The etiology of this enhanced neurotoxicity is poorly understood. We hypothesized that advanced glycation endproducts (AGEs), which have previously been implicated in the development of other diabetic complications, might contribute to neurotoxicity and brain damage during ischemic stroke. Using a rat model of focal cerebral ischemia, we show that systemically administered AGE-modified bovine serum albumin (AGE-BSA) significantly increased cerebral infarct size. The neurotoxic effects of AGE-BSA administration were dose- and time-related and associated with a paradoxical increase in cerebral blood flow. Aminoguanidine, an inhibitor of AGE cross-linking, attenuated infarct volume in AGE-treated animals. We conclude that AGEs may contribute to the increased severity of stroke associated with diabetes and other conditions characterized by AGE accumulation.  相似文献   

9.
Glycation is the process whereby sugars bind to the free amine residues of proteins. These newly formed modified molecular species are known as ‘advanced glycation end-products’, or AGEs. AGE toxicity may occur through at least three mechanisms: interaction with the receptor for AGEs (RAGE); tissue deposition; and in situ glycation. AGEs trigger proinflammatory, profibrotic and procoagulant cellular responses that are capable of damaging tissues, often targeting particular organs. In diabetic patients, the conditions needed to promote AGE formation are all present, and are further accentuated by accompanying renal failure. The aim of this review is to outline the involvement of AGEs in the various forms of renal pathology associated with diabetic and non-diabetic nephropathies. AGEs are present in all renal compartments in diabetic patients, including the vessels, glomeruli, tubules and interstitium. Many cell types may be activated—specifically, endothelial, tubular and mesangial cells, and podocytes. AGEs play a major role in the accumulation of extracellular matrix, as occurs in diabetic glomerulosclerosis, and are also involved in most diabetic (renovascular, microangiopathic and glomerular) and non-diabetic renal injury associated with progressive glomerulosclerosis and ageing.  相似文献   

10.
Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products “glycotoxins.” Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.  相似文献   

11.
目的 探讨糖尿病大鼠血红蛋白糖基化终末产物 (Hb AGE)与肾脏改变的关系。方法采用竞争性酶联免疫吸附分析法 (ELISA)检测 44只 12周和 2 8周病程的链脲佐菌素 (STZ) 糖尿病大鼠和 14只正常对照大鼠的Hb AGE含量 ,并测定尿蛋白 /肌酐 (Pr/Cr)比值及病程 2 8周时的肾小球基底膜厚度 (GBMT)。结果 随着病程的延长 ,Hb AGE水平显著增高 (P <0 .0 1) ,与血糖和HbA1c呈显著性正相关 ,但与HbA1c的关系更密切。Hb AGE与肾小球组织AGE(GTE AGE)含量呈显著性正相关 (r=0 .6 86 2 ,P <0 .0 1) ,二者与尿Pr/Cr比值和GBMT具显著相关性 ;胰岛素和氨基胍可降低Hb AGE水平 ,减少尿蛋白 ,阻止基底膜增厚。结论 Hb AGE可作为AGE循环标志物 ,反映慢性高血糖和肾小球AGE含量 ,有助于了解糖尿病时的肾脏改变 ,其水平长期增高可能是糖尿病肾病的一个危险因素。  相似文献   

12.
We have previously shown that aging is associated with increased lipid peroxidation, reductions in renal function, and increased glomerular sclerosis. The mechanism(s) responsible for these age-related changes are not clear. The purpose of the present studies was to determine if there was an increase in inducible nitric oxide synthase (iNOS) with aging, and if so, whether inhibition of iNOS would prevent aging injury by preventing free radical-mediated lipid peroxidation. iNOS protein expression in the kidney increased by approximately 90% by 24 months. Inhibition of iNOS by aminoguanidine (0.1% in drinking water) for 9 months, beginning at 13 months of age, reduced blood pressure, improved glomerular filtration rate by 70%, and renal plasma flow by 40%, whereas glomerular sclerosis was considerably reduced. Renal F2-isoprostanes and malondialdehyde levels, markers of oxidative stress and lipid peroxidation, were not reduced by aminoguanidine. Aminoguanidine also did not attenuate immunostaining for advanced glycosylation end products (AGE) in the kidneys. These findings suggest that aminoguanidine attenuates aging renal dysfunction by inhibiting a pathophysiologic function of iNOS that is independent of free radical-mediated lipid peroxidation or significant effects on AGE deposition.  相似文献   

13.
Advanced glycation end products (AGEs) increase with aging and induce signaling alterations that lead to inflammation and dysfunction in several tissues. Aging reduces function and insulin signaling in lacrimal glands (LGs). To evaluate whether AGE signaling and insulin secretion in LGs are altered in aging, 24- and 2-month-old male Wistar rats were compared. Immunohistochemistry with confocal microscopy was used to evaluate AGE, AGE receptor (RAGE) and nuclear factor-kappaB (NF-kappaB) expression in LGs. Basal tear secretion volume, insulin, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) levels in tears and LGs and peroxidase activity in LG tissue were measured. Insulin secretion from isolated LGs and pancreatic beta-cells was compared in the supernatant of aging and control rats in vitro by RIA after stimulation with 2.8-16.7 mM glucose, carbachol and KCl. AGE, RAGE and NF-kappaB expression was higher in LGs of aging compared with young rats. Basal tear secretion and peroxidase activity were significantly lower in the aging group (P=0.016 for both assays). IL-1beta and TNF-alpha levels were higher in tears of aging rats compared with young rats (P=0.007 and 0.05 respectively); however, even though aging rats were insulin-resistant (as confirmed by the insulin-tolerance test), the insulin levels in the tear film of aging and control rats were similar in vivo and in vitro. The higher expression of AGEs, RAGE and NF-kappaB in LGs of aging rats is accompanied by systemic insulin resistance and may be involved in LG and tear film alterations but does not affect insulin secretion in the tear film. These observations indicate that metabolic events may be related to LG and tear film dysfunctions in aging.  相似文献   

14.
15.
There is accumulating evidence that engagement of the receptor for advanced glycation end products (RAGE) with ligands such as advanced glycation end products (AGEs) and high mobility group box–1 (HMGB-1) elicits vascular inflammation, thus contributing to the increased risk for cardiovascular disease. Furthermore, enhanced accumulation of asymmetric dimethylarginine (ADMA) plays a role in cardiovascular disease in chronic kidney disease (CKD) patients. However, the relationships among serum levels of AGEs, HMGB-1, soluble form of RAGE (sRAGE), and ADMA are largely unknown. The aim of the present study is to determine their relationships in CKD patients. Twenty nondiabetic normotensive CKD patients with dyslipidemia and 20 age- and sex-matched healthy controls were enrolled. All subjects underwent determination of blood chemistries; urinary proteinuria; and serum levels of AGEs, HMGB-1, sRAGE, and ADMA. Serum AGE, HMGB-1, sRAGE, and ADMA levels in CKD patients were significantly higher than those in control subjects. Circulating levels of AGEs in CKD patients were positively associated with sRAGE and ADMA, and HMGB-1 with ADMA, but not sRAGE. There were no significant associations among these markers and serum creatinine, estimated glomerular filtration rate, proteinuria, and lipid levels. In multiple regression analyses, AGEs and HMGB-1 were independently correlated with ADMA. The present study demonstrated that AGE and sRAGE levels were correlated with each other and that AGEs and HMGB-1 were independently associated with ADMA in nondiabetic CKD patients. Elevation of the RAGE ligands may enhance ADMA levels, suggesting the active involvement of AGE/HMGB-1–RAGE–ADMA axis in CKD patients.  相似文献   

16.
OBJECTIVE: The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) could be one of these mechanisms. We undertook this study to investigate the role of the receptor for AGEs (RAGE) in mediating the cellular effects of AGEs on chondrocytes and fibroblast-like synoviocytes (FLS). METHODS: AGE levels in human cartilage were determined by fluorescence, browning, and pentosidine levels. Chondrocyte activation by AGEs was assessed as the release of proteoglycans and the synthesis of matrix metalloproteinase 1 (MMP-1) and type II collagen messenger RNA (mRNA). The activation of FLS by AGEs was measured by MMP-1 production and invasion through matrix proteins. RESULTS: Patients with focal degeneration of cartilage showed increased AGE levels in their healthy cartilage compared with the levels in healthy cartilage from donors without cartilage degeneration (P < 0.01 for both fluorescence and browning; P not significant for pentosidine content). Stimulation of bovine chondrocytes with glycated albumin increased the release of proteoglycans by 110% (P < 0.001) and the production of MMP-1 mRNA by 200% (P = 0.028). In addition, OA FLS produced 240% more MMP-1 when stimulated with glycated albumin (P < 0.001). Glycated matrix or albumin increased the catabolic activity of OA FLS, which was assessed as invasive behavior, by 150% and 140% (P = 0.001 and P = 0.010), respectively. Effects of stimulation with AGEs were blocked by a neutralizing antibody against RAGE, but not by an isotype control. CONCLUSION: This study shows that AGEs trigger RAGE on chondrocytes and FLS, leading to increased catabolic activity and therefore to cartilage degradation. AGEs, via RAGE, could therefore contribute to the development and/or progression of OA.  相似文献   

17.
We measured serum concentrations of advanced glycation endproducts (AGEs) in patients with type 2 diabetes, to elucidate the mechanisms underlying the elevated serum concentrations of AGEs and to clarify the relationship between serum AGE concentrations and the development of microangiography and macroangiopathy. Serum AGEs were significantly higher in diabetic patients than in age-matched control subjects (p < 0.0001). In diabetic patients, serum AGEs were positively correlated with HbA1c (r = 0.47, p < 0.0001), urinary albumin excretion (UAE) (r = 0.42, p < 0.0001), diabetes duration (r = 0.31, p = 0.0030), and fasting plasma glucose (r = 0.34, p = 0.0010). Multiple regression analysis disclosed that only the HbA1c and UAE levels independently correlated with serum AGE levels. Serum AGEs in diabetic patients with progressive retinopathy and overt nephropathy were significantly higher than in those with less severe retinopathy and nephropathy. Serum AGEs were significantly higher in the diabetic patients with coronary heart disease (CHD) than in those without CHD. These results suggest that the HbA1c and UAE levels are independent risk factors for increased serum AGE concentrations in type 2 diabetic patients, and that higher serum AGE concentrations are associated with increased severity of diabetic retinopathy and nephropathy. Serum AGE concentrations may be a useful marker not only for the severity of diabetic microangiopathy but also for the development of CHD in patients with type 2 diabetes mellitus. Received: 8 May 2000 / Accepted in revised form: 5 September 2000  相似文献   

18.
D S Rampton  G E Sladen    L J Youlten 《Gut》1980,21(7):591-596
In vivo rectal dialysis was used to study rectal mucosal release of immunoreactive prostaglandin E2-like material and its relation to disease activity, rectal electrical potential difference (PD), and treatment in 24 patients with ulcerative colitis. In untreated colitics in remission and in relapse, median values for apparent mucosal prostaglandin E2 (PGE2) release were increased three-fold (P < 0.05) and 13-fold (P < 0.002) respectively over that found in control subjects. In patients in remission during treatment with sulphasalazine and/or corticosteroids, median apparent PGE2 release was similar to that of controls, but in colitics in relapse, despite treatment, it was greatly increased (P< 0.002). Ulcerative colitis in relapse was associated with a significant reduction in rectal PD(P < 0.002); in patients with quiescent ulcerative colitis, a smaller reduction was found (P < 0.05). In nine patients studied serially before and during treatment, there were associations between changes in disease activity assessed sigmoidoscopically, in PD and in apparent mucosal PGE2 release. Furthermore, rectal mucosal PGE2 release and PD were linearly correlated (P < 0.01). These findings indicate that mucosal PGE2 release is markedly enhanced in active ulcerative colitis, and they confirm the value of rectal PD as a guide to disease activity. In addition, they suggest that rectal dialysis may be a useful way of studying rectal prostaglandin metabolism in man.  相似文献   

19.
BACKGROUND: Current knowledge on splanchnic haemodynamics in coeliac disease is limited and incomplete. AIM: To evaluate splanchnic arterial and venous blood flow in coeliac disease. METHODS: In 22 coeliac (13 untreated, nine treated) patients and in nine healthy subjects the following variables were assessed: vessel diameter and mean flow velocity in portal vein, splenic vein, superior mesenteric vein, and superior mesenteric artery. Peak systolic velocity, end diastolic velocity and pulsatility index were also determined in the superior mesenteric artery. Five patients of the untreated group were re-evaluated after nine months on a gluten free diet. RESULTS: Significant differences in haemodynamic variables between the three groups were shown only in the superior mesenteric artery. An increase in both mean flow velocity and end diastolic velocity and a reduction in pulsatility index occurred in untreated patients compared with treated patients (p < 0.002; p < 0.04; p < 0.035) and with healthy controls (p < 0.001; p < 0.025; p < 0.0003). Similar results were obtained for the five patients evaluated before and after treatment (p < 0.03; p < 0.02; p < 0.03), in whom the mean flow velocity in the superior mesenteric vein also decreased after treatment (p < 0.05). No significant differences were noted between treated coeliac patients and healthy controls. CONCLUSIONS: In untreated coeliac disease there is a hyperdynamic mesenteric circulation that decreases after treatment.  相似文献   

20.
BACKGROUND: Methylglyoxal (MG), a metabolite of glucose, and MG-induced advanced glycation endproducts (AGEs) are causatively associated with vascular complications of diabetes mellitus. We have previously reported elevated levels of MG and MG-induced AGEs in spontaneously hypertensive rats (SHR). The purpose of this study was to investigate the causative role of MG and MG-induced AGEs in the pathogenesis of hypertension in SHR. METHODS: Young SHR were treated with an AGE inhibitor, aminoguanidine, for 9 weeks. HPLC was used to determine plasma and aortic MG and reduced glutathione levels. The MG-induced AGEs, N epsilon-carboxyethyl-lysine (CEL) and argpyramidine, in the aorta were determined by immunohistochemistry. Vascular relaxation of small mesenteric arteries was measured using myograph. RESULTS: Chronic treatment with aminoguanidine attenuated age-dependent blood pressure (BP) increase in SHR. Plasma and aortic MG levels, and aortic levels of MG-induced AGEs, were significantly reduced after aminoguanidine treatment, which were comparable to those from age-matched Wistar Kyoto rats. Free radical level was significantly lowered, whereas reduced glutathione level was significantly increased by aminoguanidine treatment in the aortic tissues from SHR. Moreover, aminoguanidine therapy prevented the morphologic damage of vascular tissues in SHR and restored the endothelium-dependent relaxation to acetylcholine. Chronic aminoguanidine treatment also increased aortic endothelial nitric oxide synthase expression and reduced inducible nitric oxide synthase expression. CONCLUSIONS: The MG and MG-induced AGEs contribute to the pathogenesis of hypertension by altering the redox balance, causing vascular eutrophic inward remodeling, and inducing endothelial dysfunction in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号