首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the state of vitamin D production by the developing kidney, firstly, we measured serum levels of 1,25(OH)2D and 24,25(OH)2D in humans of different ages (pregnant and nonpregnant women, adult males, children and newborn infants) and secondly, we measured 1- and 24-hydroxylase activity in the kidney mitochrondria of rats at different ages. The mean serum levels of 1,25(OH)2D in pregnant women, cord blood and newborns were significantly higher than those in children and non-pregnant women and adult males. In newborns, the level increased with gestational age. Synthesis of 1,25(OH)2D was, at least in part, under the control of the fetus and newborn, rather then being solely a reflection of the conditions prevailing in the mother. The 1-hydroxylase activity in mitochondria was highest in the 1- to 2-month-old rats, and it decreased gradually thereafter. The change in 1-hydroxylase activity with age was due to a change in the Vmax of the system.  相似文献   

2.
Summary The ability of 1,25(OH)2D3 and of 24,25(OH)2D3 to prevent or to heal rickets in chicks was evaluated by studies of plasma biochemistry, growth plate histology, bone morphometry and microradiography, and bone mineralization. 1,25(OH)2D3 at a dose of 100 ng/day produced fewest abnormalities compared with vitamin D3-treated control chicks. Bone growth was slightly greater than vitamin D3-treated controls in chicks given a lower dose of this metabolite; the reverse was observed in chicks given a higher dose. 24,25(OH)2D3 was less effective than 1,25(OH)2D3 in preventing rickets even at doses as high as 400 ng/day. Treatment of rachitic chicks with doses of 24,25(OH)2D3 up to 300 ng/day produced no healing effect on the bone lesions, in marked contrast to the beneficial effects observed with 1,25(OH)2D3.  相似文献   

3.
Summary Vitamin D3 metabolites have been shown to affect proliferation, differentiation, and maturation of cartilage cells. Previous studies have shown that growth zone chondrocytes respond primarily to 1,25(OH)2D3 whereas resting zone chondrocytes respond primarily to 24,25(OH)2D3. To examine the role of calcium in the mechanism of hormone action, this study examined the effects of the Ca ionophore A23187, 1,25(OH)2D3, and 24,25(OH)2D3 on Ca influx and efflux in growth zone chondrocytes and resting zone chondrocytes derived from the costochondral junction of 125 g rats. Influex was measured as incorporation of45Ca. Efflux was measured as release of45Ca from prelabeled cultures into fresh media. The pattern of45Ca influx in unstimulated (control) cells over the incubation period was different in the two chondrocyte populations, whereas the pattern of efflux was comparable. A23187 induced a rapid influx of45Ca in both types of chondrocytes which peaked by 3 minutes and was over by 6 minutes. Influx was greatest in the growth zone chondrocytes. Addition of 10−8–10−9 M 1,25(OH)2D3 to growth zone chondrocyte cultures results in a dose-dependent increase in45Ca influx after 15 minutes. Efflux was stimulated by these concentrations of hormone throughout the incubation period. Addition of 10−6–10−7 M 24,25(OH)2D3 to resting zone chondrocytes resulted in an inhibition in ion efflux between 1 and 6 minutes, with no effect on influx during this period. Efflux returned to control values between 6 and 15 minutes.45Ca influx was inhibited by these concentrations of hormone from 15 to 30 minutes. These studies demonstrate that changes in Ca influx and efflux are metabolite specific and may be a mechanism by which vitamin D metabolites directly regulated chondrocytes in culture.  相似文献   

4.
The effects of retinoic acid (RA), and calcitriol are mediated by specific nuclear receptors (RARs and VDR, respectively). Induction of RAR and VDR responsive elements in target genes requires a cofactor, the retinoid-X-receptor (RXR), with its ligand 9-cis RA. We have previously demonstrated the expression of RARs and RXRs in osteoblasts, and herein investigated the effects of the retinoids all-trans RA and 9-cis RA alone and combined with calcitriol on bone resorption in vitro, measured by 45Ca-release from prelabeled neonatal mouse calvarial bones. All-trans RA and 9-cis RA were powerful stimulators of bone resorption and essentially equipotent. At threshold concentrations (1 nM) both 9-cis RA and at-RA markedly inhibited the resorption induced by calcitriol (1 pM). The findings are compatible with a physiological role for retinoids in bone metabolism.  相似文献   

5.
Summary Vitamin D-deficient, second generation, rachitic rats showed significant decrease in bone Gla protein (BGP) levels in circulation and in the skeleton. 1,25 dehydroxyvitamin D3 (1,25 (OH)2D3) exhibited the most potent influence on serum BGP levels in a dose-dependent manner. At a dose 25 ng/100 g body weight 1,25 (OH)2D3 showed a cumulative effect, i.e., the longer the treatment, the more circulating BGP was detected 24,25 dehydroxyvitamin D3 (24,25(OH)2D3) at the same doses did not show similar effect on the serum BGP levels, regardless of the serum calcium levels. Bone BGP levels assayed at various sites representing endochondral and intramenbranous ossification demonstrated an opposite pattern. 1,25(OH)2D3 administration was not sufficient to restore bone BGP levels to normalcy, whereas in animals treated with 24,25(OH)2D3 bone BGP and calcium levels were significantly higher than control (Vitamin D3-repleted) levels. The present results can be explained by the dual action of 1,25 (OH)2D3 on both synthesis and release of BGP by bone turnover, whereas 24,25 (OH)2D3 stimulates synthesis and accumulation of BGP in bone. These observations imply that caution is required in the interpretation of clinical data based solely on serum BGP determination.  相似文献   

6.
Summary Vitamin D and its metabolites are tightly bound to the serum vitamin D-binding protein (DBP) and only the free hormone is considered to be physiologically active. On the other hand, DBP could interact with cell membranes and even favor its intracellular entry. The present study was undertaken to examine the effects of DBP on bone resorption stimulated by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Forelimb bones from 19-day-old fetal rats were cultured for 5 days in the presence of purified human or rat serum albumin (hSAP or rSAP) and 1,25(OH)2D3, with or without human or rat DBP (hDBP or rDBP). Bone resorption was assessed by measuring the release of previously incorporated45Ca. We found that the resorptive response to 1,25(OH)2D3 was minimally altered by hDBP (5 μM). The minimal effects of hDBP on 1,25(OH)2D3 activity on rat bones might be explained by a 6-fold lower affinity of hDBP (1.1×107 M−1) than rDBP (5.9×107 M−1) for 1,25(OH)2D3 or by species differences in cellular recognition of DBP. In a homologous rat system, however, rDBP at low (0.5 μM) or physiological (5 μM) concentration significantly decreased 1,25(OH)2D3-induced bone resorption. These data therefore support the hypothesis that free rather than DBP-bound 1,25(OH)2D3 is physiologically important.  相似文献   

7.
Summary The purpose of this study was to evaluate whether the 1,25(OH)2D3-induced increased bone mineralization in the mouse occurs in response to stimulation of bone resorption. In order to inhibit bone resorption, 35-day-old mice were given 16 μmol/kg/day of (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (AHPrBP) for 10 days, the first injection occurring 3 days prior to the continuous infusion of 0.06, 0.13, or 0.20 μg/kg/day of 1,25(OH)2D3 for 7 days. Two groups of mice were treated with AHPrBP or 1,25(OH)2D3 alone. The skeletal changes were assessed by histomorphometric study of caudal vertebrae after double3H-proline and double tetracycline labelings for evaluation of the matrix apposition rate (MaAR) and mineral apposition rate (MiAR), respectively. Treatment with AHPrBP alone or combined to 1,25(OH)2D3 decreased the number of acid phosphatase-stained osteoclasts and reduced the endosteal MaAR and MiAR and the amount of osteoid. When given alone, 1,25(OH)2D3 increased serum calcium above normal, enhanced the number of histochemically active osteoclasts, and stimulated the endosteal MiAR. Pretreatment with AHPrBP blocked both the increase in serum calcium and the stimulation of the MiAR induced by 1,25(OH)2D3 infusion though serum 1,25(OH)2D3 levels rose according to the dose given. The results show that 1) the serum calcium and the bone resorbing responses to 1,25(OH)2D3 infusion are prevented by pretreatment with AHPrBP, and 2) the stimulatory effect of 1,25(OH)2D3 on the mineralization rate is blocked when bone resorption is inhibited. The data indicate that 1,25(OH)2D3 promotes bone mineralization in the mouse mainly in response to stimulation of bone resorption.  相似文献   

8.
Conclusion In our experience, after a few months of therapy, every patient showed a marked improvement in both X-ray abnormalities derived from osteitis fibrosa and symptoms of renal osteodystrophy, especially bone pain, unless the serum phosphorus level was very high. The effectiveness of this therapy on the suppression of PTH secretion apparently depends on the initial PTH level, and also on the size of the gland itself. One of the major current difficulties in this therapy is the prevention of hypercalcemia when calcium carbonate is used. The calcium concentration of the dialysate must be reduced to 2.5 mEq/l not only for pulse therapy, but also for conventional therapy by vitamin D with calcium carbonate. Parathyroidectomy should be indicated only for the patient who does not respond to pulse therapy.  相似文献   

9.
Three pediatric patients with renal osteodystrophy were treated with 1αOHD3 and 24, 25(OH)2D3. While serum calcium level significantly decreased, no significant effects were found on serum phosphorus, alkaline phosphatase, parathyroid hormone and urinary excretion of calcium. These results suggest that 24, 25(OH)2D3 may play some roles in bone and mineral metabolism.  相似文献   

10.
Summary A large dose of 24R,25(OH)2D3 was administered to the vitamin D-repleted rat to examine its effect on the bone. Male Wistar rats were fed a diet containing 0, 0.025, 1.25, 4.0, and 12.5 ppm 24R,25(OH)2D3 for 2 years starting at age 6 weeks. The estimated amounts of daily intake of 24R,25(OH)2D3 were 0, 93, 4640, 14680, and 49580 ng/100 g body weight, respectively. No notable difference was found in either the weight or the death rate of the animal. The long-term administration of massive doses of 24R,25(OH)2D3 did not lead to hypercalcemia nor did it affect the blood phosphorus, alkaline-phosphatase, or creatinine levels. Radiographs revealed a striking increase in the bone density on the bones from the animals treated with 1.25 ppm or more 24R,25(OH)2D3. Direct single photon absorptiometry revealed a dose-dependent increase in total bone minerals of both the femur and coccyx. Histological examination revealed a marked increase in the cortical thickness of the femur as well as in the cancellous bone volume of the coccyx. Polarizing microscopy demonstrated the lamellar structure of the bone, and undecalcified sections confirmed the increase of mineralized bone. Ash weight, calcium, phosphorus, and magnesium contents on the tibia and fibula also indicated the ascending dose-dependent increase up to 150% of the control. The parameters of bone size were not altered in any group. These results clearly suggest that 24R,25(OH)2D3 given in massive doses has the pharmacological action of increasing bone volume in the rat without causing remarkable hypercalcemia.  相似文献   

11.
Summary Calvarial bones from hypophosphatemic (Hyp) mice and normal littermates were cultured in a chemically defined medium to determine: (a) the effect of medium phosphate (Pi) concentration (1, 2, and 3 mM) on collagen synthesis; (b) the effect of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] (10−12M–10−7M) on collagen synthesis; and (c) whether bone responsiveness to 1,25(OH)2D3 was affected by changes in medium Pi concentration. Bone collagen synthesis was evaluated by measuring [3H]hydroxyproline formation. The distribution of labeled hydroxyproline between bone explant and culture medium (total and dialyzable fraction) was studied. These experiments confirm that 1,25(OH)2D3 inhibits specifically bone collagen synthesis in vitro. We did not detect any effect of medium Pi concentration on basal collagen synthesis but were able to demonstrate that lowering medium Pi concentration increased the 1,25(OH)2D3-induced inhibition of collagen synthesis. Bones from both genotypes responded to 1,25(OH)2D3, but modulation of this response by changes in Pi concentration was altered in Hyp bone as, in contrast to normal bone, its response to 1,25(OH)2D3 was unaffected when medium Pi concentration was decreased from 3 to 2 mM. These findings support the hypothesis of an altered response of bone to 1,25(OH)2D3 in the Hyp mouse.  相似文献   

12.
Summary In 22 epileptic outpatients treated for at least 1 year with phenobarbitone/phenytoin the local and total bone mass, together with serum and urinary indices of calcium metabolism, were measured before and during treatment with either vitamin D2 or D3, 4,000 IU daily for 24 weeks. The results showed a distinct difference in the action of the two vitamins on bone metabolism during anticonvulsant treatment. The bone mass increased during treatment with vitamin D2, whereas the vitamin D3-treated patients showed unchanged values of bone mass, but an increased excretion rate of calcium, probably caused by increased intestinal calcium absorption. The data demonstrate that vitamins D2 and D3 (or their metabolites) have quantitative different effects in patients treated with phenobarbitone/phenytoin.  相似文献   

13.
Summary The hormonal metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], exerts its biological effects by binding to a cytosolic receptor protein. Such a protein has been demonstrated in vitamin D3 target organs including fetal rat calvariae and more recently in rat osteogenic sarcoma cells. In this study we have compared the binding of 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] to that of 1,25-(OH)2D3 in fetal rat calvariae and osteogenic sarcoma (OS) cells. Sucrose density sedimentation, DNA-cellulose chromatography, and intracellular uptake studies have been employed to evaluate these interactions. In cytosol preparations from calvariae, [3H]-1,25(OH)2D3 bound to a 3.3S macromolecule and to a much greater extent to a 5.8S macromolecule while both [3H]25(OH)D3 and [3H]24,25(OH)2D3 bound to the 5.8S macromolecule. By incubating intact calvariae and OS cells with labeled metabolites and thus establishing binding intracellularly prior to cell disruption, we have found that the 3.3S protein which has high specificity for 1,25(OH)2D3 occurs inside the cells; the 5.8S protein, however, does not occur inside the cells but is generated after cell disruption. The [3H]-1,25(OH)2D3-receptor complex adsorbed to DNA-cellulose and was eluted from this affinity resin at 0.28M KCl. In contrast, [3H]25(OH)D3 and [3H]-24,25(OH)2D3 binding activity did not adsorb to DNA-cellulose. We conclude that, in contrast to the 3.3S protein, the 5.8S macromolecule does not fulfill receptor criteria but is rather generated by the experimental manipulation of the bone cells. Our data suggest that the vitamin D3 actions on bone are mediated only via the 3.3S receptor, and hence quantitative but not qualitative differences of the effects of the various metabolites are feasible. With technical assistance by M. Larsen, D. Meler, and M. LaFrance.  相似文献   

14.
Summary The active vitamin D metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] causes marked suppression of both pre-proparathyroid hormone messenger RNA (pre-proPTH mRNA) and parathyroid hormone (PTH) secretion. These effects are dose dependent and reversible when tested in anin vitro primary tissue culture cell system using normal bovine parathyroid cells. In the current studies, the precursors of 1,25(OH)2D3 and the related metabolite 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], were used in the same culture system to test for possible regulatory effects. The results were compared with identically prepared cells exposed to 1,25(OH)2D3. In short-term studies (30–120 minutes), none of the vitamin D-related compounds produced any effect on PTH secretion. In long-term studies (24–48 hours, using primary tissue culture in the presence of test agents), neither vitamin D3 nor 25(OH)D3 affected PTH secretion or pre-proPTH mRNA over the concentration range 10−11–10−7M. On the other hand, 24,25(OH)2D3 produced significant suppression of both pre-proPTH mRNA (77% of control,P<.01) and PTH secretion (75% of control,P<.005) at 10−7 M. By comparison, 10−11 M 1,25(OH)2D3 produced levels of suppression (25–30%) of both pre-proPTH mRNA and PTH secretion comparable to 10−7 M 24,25(OH)2D3, while even greater suppression (40–50%) occurred at 10−9-10−7 M 1,25(OH)2D3. From these studies, we conclude that vitamin D3 and 25(OH)D3 do not have significant effects on PTH synthesis and secretion over the range of doses tested. Compared with 1,25(OH)2D3, 24,25(OH)2D3 exhibits mild suppression at pharmacologic concentrations. The effect of 24,25(OH)2D3 prabably occurs through weak interaction of 24,25(OH)2D3 with the 1,25(OH)2D3 receptor.  相似文献   

15.
Summary In order to determine whether the administration of 24R,25(OH)2D3 had any beneficial effect on the regulation of bone turnover and the prevention of bone atrophy, we examined beagles for 31 months after ovariectomy (OVX). Fourteen beagle dogs (8.54±1.22 kg body wt-b.w.) were divided into four groups. Group 1 (n=3) was the sham, and Group 2 (n=3) served as the OVX control. In Group 3 (n=4) and Group 4 (n=4), 24,25-dihydroxyvitamin D3(24R,25(OH)2D3) was given daily at dose levels of 2 and 10 mcg/kg B.W., respectively. In Group 4, the dose level was increased to 100 mcg/kg by 17 months. During the experiments, urinary hydroxyproline (U-HPr), serum chemistry, serum bone gla-protein (BGP), and vitamin D metabolite levels were monitored. At the end of the experiment, bone mineral content (BMC) in the 6th and 7th lumbar vertebrae and right femur was determined by single photon absorptiometry. The left iliac bone sample was obtained after tetracycline labeling, and undecalcified sections were observed. In Group 2, excretion of U-HPr increased after OVX and had reached a level of approximately twice the baseline values by 10 months; then it gradually came down to the original level. In Group 3, however, U-HPr excretion remained at the same level as the baseline value, as it did in Group 1. In Group 4, it was remarkably reduced down to 50–60% of the baseline values. Serum BGP level was markedly reduced in Group 4. Serum 24,25(OH)2D levels were markedly increased in Groups 3 and 4. BMC levels of both vertebrae and epi-metaphyseal regions in the femur showed a significant reduction of approximately 25% in Group 2. In Groups 3 and 4, however, they remained at the same level as in Group 1. Histomorphometrical data showed a reduction in the parameters of osteoblast functions in Group 2. In Group 3, both kinetic and static parameters maintained the same level as in Group 1. In Group 4, eroded surface and osteoclast number decreased significantly, but mineral appositional rate and wall thickness maintained the same level as in Group 1. From these findings, it was concluded that, in beagle dogs, the administration of 24R,25(OH)2D3 inhibited the increase of bone turnover and prevented the reduction of cancellous bone mass after a long time postovariectomy.  相似文献   

16.
Summary The effect of oral 24R,25(OH)2-vitamin D3 as a prophylactic for postmenopausal bone loss was examined. Fifty-eight healthy, early postmeno-pausal women entered a double blind therapeutic trial for 2 years. After an initial examination the women were randomized to treatment with 10 μg 24R,25(OH)2D3 daily or placebo. Participants were thereafter examined every 3 months (nine examinations in all). In both groups the forearm bone mineral (measured by single photon absorptiometry), the lumbar spine mineral, and the total body mineral (measured by dual photon absorptiometry) fell significantly and the same magnitude. Further-more, serum calcium, serum alkaline phosphatase concentration, and fasting urinary hydroxyproline were unchanged, as were the 24-hour urinary calcium excretion and the intestinal radiocalcium absorption. Our findings demonstrate that 24R,25(OH)2D3 treatment has no prophylactic effect on postmenopausal bone loss and does not alter calcium metabolic variables.  相似文献   

17.
Summary This study presents measurements of serum vitamin D metabolites, calcium and phosphorus as well as measurements of the equilibrium dissociation constant for duodenal 1,25(OH)2D3 receptor in 15-, 18-, 19-, and 20-day chick embryos in comparison to that in 1- and 118-day-old chicks and to vitamin D-deficient chicks. The present results showed that: (a) serum 1,25(OH)2D and 24,25(OH)2D levels rise from 15 and 18 to days 19 and 20 of embryonic development while serum phosphate levels are stable; (b) serum calcium levels rise at hatching to adult levels; (c) the duodenal 1,25(OH)2D3 receptor is detectable in 15-day-old embryo and has a Kd similar to that of 118-day-old vitamin D-replete chicks; and (d) the activity of 1,25(OH)2D3 receptor in chick duodenal cytosol is maximal at hatching.  相似文献   

18.
Summary The role of 24,25(OH)2D3 on parathyroid gland function remains controversial. The present studies were performedin vitro using (a) dispersed normal bovine parathyroid cells (bPTC) and (b) dispersed canine PTC (cPTC) prepared from glands of normal dogs, dogs with chronic renal failure (CRF), and dogs with CRF treated with 24,25(OH)2D3, 2.5 μg orally every day for more than 6 months. Bovine parathyroid cells were incubated for up to 180 min at 0.5, 1.0, and 3.0 mM external calcium in the presence or absence of 24,25(OH)2D3 (100 or 1000 nM). Similar experiments were conducted with cells incubated for 24 h in the presence of either the ethanol vehicle or 24,25(OH)2D3 (1000 nM). Parathyroid hormone secretion, measured in the supernatant by both C-terminal and N-terminal assays, did not show any differences between control and experimental groups at any time interval. Canine parathyroid cells obtained from uremic animals showed an average threefold increase in the total amount of PTH secreted, on a per cell basis over 180 min at 0.5 mM Ca2+, when compared with normal controls. However, there was no significant difference in PTH secretion at any level of calcium concentration between the cells obtained from parathyroid glands of CRF dogs and 24,25(OH)2D3-treated CRF dogs. Acute exposure to 24,25(OH)2D3 (1000 nM)in vitro of the cells obtained from the glands of CRF dogs also had no effect on PTH secretion. We conclude that 24,25(OH)2D3 has no direct effect on PTH secretion from dispersed parathyroid cells of either normal or uremic animals.  相似文献   

19.
The biological activity of synthetic 24,25 and 25,26 diOHD3 was studied in vitamin D-deficient rats. The purpose of this study was to investigate the influence of small doses of both metabolites (0.125–0.250 μg) upon intestinal calcium transport and bone calcium mobilization. Both metabolites were able to increase calcium absorption in rats maintained on a calcium-deficient diet, but failed to do it in rats on a normal calcium diet. Bilateral nephrectomy suppressed this effect. The “bone calcium mobilization” of both derivatives was measured in vitamin D and calcium- or phosphorus-deprived rats after one intravenous dose. When serum calcium was initially low, 24,25 and 25,26 diOHD3 increased serum calcium moderately, but the increment was only significant with 24,25 diOHD3. When serum calcium was normal before the injection, both metabolites decreased serum calcium significantly, and the decrease was greater with 24,25 diOHD3. Intraperitoneal administration of the metabolites for 5 consecutive days produced a significant increase of calcium in serum and bone ash.  相似文献   

20.
Summary Binding of [3H] 1,25 (OH)2D3 and effects of 1,25 (OH)2D3 on cell ultrastructure were evaluated in vascular smooth muscle cells (VSMC) primary cultures (aortic media). Specific reversible binding of [3H] 1,25 (OH)2D3 by a 3.5 S macromolecule with DNA binding, KD 6.2×10−10M and Nmax 16 fmol/mg protein was demonstrated. Incubation of VSMC with 10−8 M 1,25 (OH)2D3, but not 25 (OH)D3, in the presence of 10% FCS for up to three weeks caused rapid reversible appearance in the cytoplasm of membrane-bounded electron-dense lysosomal particles which on electronspectroscopic imaging contained Ca and Pi. VSMC are targets for vitamin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号