首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Ding GX  Cygler JE  Kwok CB 《Medical physics》2000,27(6):1217-1225
We compare the results of absorbed dose determined at reference conditions according to the AAPM TG-21 dose calibration protocol and the new AAPM TG-51 protocol. The AAPM TG-21 protocol for absorbed dose calibration is based on ionization chambers having exposure calibration factors for 60Co gamma rays, N(x). The new AAPM TG-51 dosimetry protocol for absorbed dose calibration is based on ionization chambers having 60Co absorbed dose-to-water calibration factor, N60Co(D,w). This study shows that the dose changes are within 1% for a cobalt beam, 0.5% for photon energies of 6 and 18 MV, and 2%-3% for electron beams with energies of 6 to 20 MeV. The chamber primary calibration factors, Nx and N60Co(D,w), are traceable to the Canadian primary standards laboratory (NRCC). We also present estimated dose changes between the two protocols when calibration factors are traceable to NIST in the United States.  相似文献   

2.
A comparison of the determination of absorbed dose to water in reference conditions with high-energy electron beams (Enominal of 6, 8, 10, 12, 15, and 18 MeV) following the recommendations given in the AAPM TG-51 and in the original TG-21 dosimetry protocols has been made. Six different ionization chamber types have been used, two Farmer-type cylindrical (PTW 30001, PMMA wall; NE 2571, graphite wall) and four plane parallel (PTW Markus, and Scanditronix-Wellh?fer NACP, PPC-05 and Roos PPC-40). Depending upon the cylindrical chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 1%-3%. Approximately 1% of this difference is due to the differences in the data given in the two protocols; another 1.1%-1.2% difference is due to the change of standards, from air-kerma to absorbed dose to water. For plane-parallel chambers, absorbed doses were determined by using two chamber calibration methods: (i) direct use of the ADCL calibration factors N(60Co)D,w and Nx for each chamber type in the appropriate equations for dose determination recommended by each protocol, and (ii) cross-calibration techniques in a high-energy electron beam, as recommended by TG-21, TG-39, and TG-51. Depending upon the plane-parallel chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 0.7%-2.9% for the direct calibration procedures and by 0.8%-3.2% for the cross-calibration techniques. Measured values of photon-electron conversion kecal, for the NACP and Markus chambers were found to be 0.3% higher and 1.7% lower than the corresponding values given in TG-51. For the PPC-05 and PPC-40 (Roos) chamber types, the values of kecal were measured to be 0.889 and 0.893, respectively. The uncertainty for the entire calibration chain, starting from the calibration of the ionization chamber in the standards laboratory to the determination of absorbed dose to water in the user beam, has been analyzed for the two formalisms. For cylindrical chambers, the observed differences between the two protocols are within the estimated combined uncertainty of the ratios of absorbed doses for 6 and 8 MeV; however, at higher energies (10< or =E< or =18 MeV), the differences are larger than the estimated combined uncertainties by about 1%. For plane-parallel chambers, the observed differences are within the estimated combined uncertainties for the direct calibration technique; for the cross-calibration technique the differences are within the uncertainty estimates at low energies whereas they are comparable to the uncertainty estimates at higher energies. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors, and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration.  相似文献   

3.
The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellh?fer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct N(D,w) calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct N(D,w) calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors p(wall) and p(dis) of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.  相似文献   

4.
In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellh?fer-FC65G (previously Wellh?fer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellh?fer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellh?fer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the average 0.1% for IAEA TRS-277, 0.3% for NCS report-2 and AAPM TG-21 and 0.4% for IAEA TRS-398 and AAPM TG-51). Within the air kerma based protocols, the results obtained with the TG-21 protocol were 0.4-0.8% higher mainly due to the differences in the data used. Both absorbed dose to water based formalisms resulted in consistent values within 0.3%. The change from old to new formalisms is discussed together with the traceability of calibration factors obtained at the primary absorbed dose and air kerma standards in the reference beams (60Co). For the particular situation in Belgium (calibrations at the Laboratory for Standard Dosimetry of Ghent) the change amounts to 0.1-0.6%. This is similar to the magnitude of the change determined in other countries.  相似文献   

5.
Araki F  Kubo HD 《Medical physics》2002,29(5):857-868
The American Association of Physicists in Medicine Task Group 51 (TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol, in 1999 and 2000, respectively. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor with a 60Co beam. These are different from the predecessors, the TG-21 and IAEA TRS-277 protocols, which require a 60Co exposure or air-kerma calibration factor. The purpose of this work is to present the dose comparison between various dosimetry protocols and the AAPM TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. The absorbed-dose to water calculated according to the Japanese Association of Radiological Physics (JARP), International Atomic Energy Agency Technical Report Series No. 277 (IAEA TRS-277) and No. 398 (IAEA TRS-398) protocols is compared to that calculated using the TG-51 protocol. For various Farmer-type chambers in photon beams, TG-51 is found to predict 0.6-2.1% higher dose than JARP. Similarly, TG-51 is found to be higher by 0.7-1.7% than TRS-277. For electron beams TG-51 is higher than JARP by 1.5-3.8% and TRS-277 by 0.2-1.9%. The reasons for these differences are presented in terms of the cavity-gas calibration factor, Ngas, and a dose conversion factor, Fw, which converts the absorbed-dose to air in the chamber to the absorbed-dose to water. The ratio of cavity-gas calibration factors based on absorbed-dose to water calibration factors, N60Co(D,w), in TG-51 and cavity-gas calibration factors which are equivalent to absorbed-dose to air chamber factors, N(D,air), based on the IAEA TRS-381 protocol is 1.008 on average. However, the estimated uncertainty of the ratio between the two cavity-gas calibration factors is 0.9% (1 s.d.) and consequently, the observed difference of 0.8% is not significant. The absorbed-dose to water and exposure or air-kerma calibration factors are based on standards traceable to the National Institute of Standards and Technology (NIST). In contrast, the absorbed-dose to water determined with TRS-398 is in good agreement with TG-51 within about 0.5% for photon and electron beams.  相似文献   

6.
M S Huq  R Nath 《Medical physics》1991,18(1):26-35
The IAEA 1987 protocol is an international protocol which has made a number of improvements over the AAPM 1983 protocol for calibration of high-energy photon and electron beams. We present a detailed numerical comparison between the two protocols by calculating (i) Ngas and ND for PTW (PMMA wall), Capintec (air-equivalent plastic wall) and NEL (graphite wall) Farmer type ionization chambers for 60Co gamma rays; (ii) dose-to-water with chamber in water irradiated by 4- or 25-MV x rays; (iii) dose-to-water with chamber in water, PMMA, and polystyrene phantoms irradiated by 5- and 10-MeV electrons; and (iv) dose-to-water with chamber in water irradiated by 20-MeV electrons. For photons, the IAEA protocol gives results which are in good agreement with the AAPM protocol; on average the IAEA results are 0.6% smaller than the AAPM results while discrepancies between the two are in the range of -0.4% to -1.2%. For 10-MeV electrons also, the IAEA protocol gives results which are in excellent agreement with the AAPM protocol; on average the IAEA results are 0.3% smaller than the AAPM results while discrepancies between the two are in the range of -1.0% to +0.5%. In contrast to the above, for 5-MeV electrons, the IAEA protocols give results smaller than the AAPM protocol by 2.0% on average with discrepancies between protocols ranging from -4.1% to -0.7% depending upon the ionization chamber and phantom material used. For 5-MeV electrons, the discrepancies are particularly large for polystyrene phantom; the average discrepancies being -1.4%, -1.1%, and -3.6% for water, PMMA, and polystyrene, respectively. If data for 5-MeV electrons with polystyrene phantom are excluded, then the overall agreement between the two protocols for photons and electrons is within the range of -1.9% to +0.5%. Principal reasons for the observed discrepancies are (i) IAEA uses the correct expression for ND resulting in up to +0.8% correction; (ii) IAEA uses the most recent stopping power ratio for graphite-to-air resulting in up to +0.5% correction; (iii) IAEA uses a correction of up to +0.8% for the central electrode which AAPM ignores; (iv) the present estimates of the percent depth doses which arise from the differences in measurement depths in the two protocols; and (v) IAEA uses measured values of the fluence correction factor while AAPM uses a theoretical estimate resulting in corrections of up to -2.2%.  相似文献   

7.
The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods.  相似文献   

8.
A protocol is prescribed for clinical reference dosimetry of external beam radiation therapy using photon beams with nominal energies between 60Co and 50 MV and electron beams with nominal energies between 4 and 50 MeV. The protocol was written by Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol uses ion chambers with absorbed-dose-to-water calibration factors, N(60Co)D,w which are traceable to national primary standards, and the equation D(Q)w = MkQN(60Co)D,w where Q is the beam quality of the clinical beam, D(Q)w is the absorbed dose to water at the point of measurement of the ion chamber placed under reference conditions, M is the fully corrected ion chamber reading, and kQ is the quality conversion factor which converts the calibration factor for a 60Co beam to that for a beam of quality Q. Values of kQ are presented as a function of Q for many ion chambers. The value of M is given by M = PionP(TP)PelecPpolMraw, where Mraw is the raw, uncorrected ion chamber reading and Pion corrects for ion recombination, P(TP) for temperature and pressure variations, Pelec for inaccuracy of the electrometer if calibrated separately, and Ppol for chamber polarity effects. Beam quality, Q, is specified (i) for photon beams, by %dd(10)x, the photon component of the percentage depth dose at 10 cm depth for a field size of 10x10 cm2 on the surface of a phantom at an SSD of 100 cm and (ii) for electron beams, by R50, the depth at which the absorbed-dose falls to 50% of the maximum dose in a beam with field size > or =10x10 cm2 on the surface of the phantom (> or =20x20 cm2 for R50>8.5 cm) at an SSD of 100 cm. R50 is determined directly from the measured value of I50, the depth at which the ionization falls to 50% of its maximum value. All clinical reference dosimetry is performed in a water phantom. The reference depth for calibration purposes is 10 cm for photon beams and 0.6R50-0.1 cm for electron beams. For photon beams clinical reference dosimetry is performed in either an SSD or SAD setup with a 10x10 cm2 field size defined on the phantom surface for an SSD setup or at the depth of the detector for an SAD setup. For electron beams clinical reference dosimetry is performed with a field size of > or =10x10 cm2 (> or =20x20 cm2 for R50>8.5 cm) at an SSD between 90 and 110 cm. This protocol represents a major simplification compared to the AAPM's TG-21 protocol in the sense that large tables of stopping-power ratios and mass-energy absorption coefficients are not needed and the user does not need to calculate any theoretical dosimetry factors. Worksheets for various situations are presented along with a list of equipment required.  相似文献   

9.
New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (k(att) x k(m) for the air kerma based and p(wall) for the absorbed based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.  相似文献   

10.
The dosimetry protocols DIN 6800-2 and AAPM TG-51, both based on the absorbed dose to water concept, are compared in their theoretical background and in their application to electron dosimetry. The agreement and disagreement in correction factors and energy parameters used in both protocols will be shown and discussed. Measurements with three different types of ionization chambers were performed and evaluated according to both protocols. As a result the perturbation correction factor P(60Co)wall for the Roos chamber was determined to 1.024 +/- 0.5%.  相似文献   

11.
This paper presents a detailed investigation into the calculation of perturbation and beam quality correction factors for ionization chambers in high-energy photon beams with the use of Monte Carlo simulations. For a model of the NE2571 Farmer-type chamber, all separate perturbation factors as found in the current dosimetry protocols were calculated in a fixed order and compared to the currently available data. Furthermore, the NE2571 Farmer-type and a model of the PTW31010 thimble chamber were used to calculate the beam quality correction factor kQ. The calculations of kQ showed good agreement with the published values in the current dosimetry protocols AAPM TG-51 and IAEA TRS-398 and a large set of published measurements. Still, some of the single calculated perturbation factors deviate from the commonly used ones; especially prepl deviates more than 0.5%. The influence of various sources of uncertainties in the simulations is investigated for the NE2571 model. The influence of constructive details of the chamber stem shows a negligible dependence on calculated values. A comparison between a full linear accelerator source and a simple collimated point source with linear accelerator photon spectra yields comparable results. As expected, the calculation of the overall beam quality correction factor is sensitive to the mean ionization energy of graphite used. The measurement setup (source-surface distance versus source-axis distance) had no influence on the calculated values.  相似文献   

12.
A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2-3% overestimation in dose-output determination if accredited dosimetry-calibration laboratory based chamber factors (N(60Co)(D,w,) Nx) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.  相似文献   

13.
The AAPM Task Group 21 protocol for the calibration of high-energy photon and electron beams was produced to accomplish essentially two goals: (1) incorporate the latest physical data available for calculating absorbed dose from ionization measurements and (2) to eliminate inconsistencies in absorbed dose measurements made with various ion chamber and phantom combinations. The ability of the protocol was assessed to consistently determine x-ray absorbed dose from measurements made with four Farmer-type chambers and one parallel-plate chamber in water, polystyrene, and acrylic phantoms. The measurements were performed using seven high-energy x-ray beams from 60Co to 26-MV nominal accelerating potential. The absorbed dose to water calculated from measurements made with the various chamber and phantom combinations were found to be consistent. The doses calculated for the two most common phantom materials, water and polystyrene, were found to be in excellent agreement. This resolved a 1.6% discrepancy in the absorbed dose determined from the two phantoms using the SCRAD protocol. The doses for acrylic phantoms were found to be approximately 1.2%, low for nominal accelerating potentials less than 8.8 MV. For accelerating potentials of 8.8 MV or greater the agreement was considerably better. The mean dose determined for the parallel-plate chamber from measurements in polystyrene was found to be within 0.7% of the mean dose determined using Farmer-type ion chambers in all phantom materials.  相似文献   

14.
A comparison of the AAPM "Protocol for the determination of absorbed dose from high-energy photon and electron beams" (TG21) with currently used protocols for electron and photon dosimetry is presented. These protocols are the International Commission on Radiation Units and Measurements Report 21, "Radiation Dosimetry: Electrons with Initial Energies Between 1 and 50 MeV" (ICRU21), and the AAPM "Protocol for the Dosimetry of X- and Gamma Ray Beams with Maximum Energies Between 0.6 and 50 MeV" (SCRAD). Assuming a given radiation exposure and chamber parameters, doses to water at dmax for electron beams and at 5 g/cm2 for photon beams are calculated using the three protocols and then compared. The doses for photon beams calculated using the TG21 and SCRAD protocols are found to differ by 3% or less at energies below 10 MeV. The largest differences occur in photon doses at high energies where the dose calculated with the TG21 protocol is as much as 5.5% greater than that calculated with the SCRAD protocol for a typical thimble ionization chamber. For low electron beam energies, the doses calculated with the ICRU21 protocol are as much as 5% less than TG21 doses when using thimble chambers constructed of tissue-equivalent materials in a water phantom. If dosimetry measurements are performed in polystyrene, the dose calculated using TG21 may be greater than the ICRU21 dose, depending on chamber size and composition. An explanation for some of the differences between the protocols is presented emphasizing the dependence on chamber geometry, chamber composition, and phantom composition.  相似文献   

15.
A formalism is derived to estimate the absorbed dose to a medium irradiated by high-energy photon and electron beams using an ionization chamber calibrated in terms of the exposure and this is compared with those in particular NACP and AAPM protocols. The influence of the humidity in air on the response of the chamber is taken into account in combination with various correction factors. In the present proposal, the fundamental factors needed for converting the reading of a chamber, calibrated in exposure (or air kerma), into absorbed dose are calculated for dry air in the calibration beam. For the user's beam, correction factors depending on the atmospheric conditions prevailing in the laboratory are given.  相似文献   

16.
Palm A  Mattsson O 《Medical physics》2002,29(12):2756-2762
The implementation of protocols based on absorbed dose to water standards requires beam quality conversion factors, k(Q). Calculated values of k(Q) are available for ionization chambers used for reference dosimetry. Ideally, k(Q) should be experimentally determined at the same beam qualities as that of the user. In this work we measure k(Q) factors in clinical photon beams and compare them with calculated and measured values. Beam quality conversion factors are determined for clinical photon beams of nominal energies 4 MV, 6 MV, 15 MV, and 25 MV, for commonly used cylindrical ionization chambers. Twelve chambers of eight different types are used. For three of them, no experimental data have previously been available. The experimental procedure is based on measurements with ionization chambers and Fricke dosimetry in the reference beam (60Co gamma radiation) and in clinical linear accelerator beams. The k(Q) values determined in this work generally agree within 0.5% with previously reported experimental values both when %dd(10)x and TPR2010 are used for beam quality specification. The agreement with calculated data is generally within 0.5%, except for the 15 MV beam. For this beam the measured values are usually between 0.5% and 1% lower than the data taken from the TG-51 protocol or the TRS-398 code of practice. For three NE2571 chambers and three NE2581 chambers, the maximum observed deviation of individual k(Q) values is 0.2% and 0.4%, respectively.  相似文献   

17.
Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm(3) ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface.  相似文献   

18.
D W Rogers 《Medical physics》1992,19(5):1227-1239
A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.  相似文献   

19.
Kilovoltage dosimetry protocols by the IAEA (TRS-277 and TRS-398), DIN (6809), IPEMB (with addendum), AAPM (TG-61) and NCS (report 10) were compared experimentally in four clinical beams. The beams had acceleration potentials of 30, 80, 120 and 200 kV, with half-value layers ranging from 0.6 mm Al to 1 mm Cu. Dosimetric measurements were performed and data were collected under reference conditions as stipulated within each separate protocol under investigation. The Monte Carlo method was used to derive backscatter factors for the actual x-ray machine. In general, the agreement of the dosimetric data at the surface of a full-scatter water phantom obtained using the guidelines of the various protocols was fairly good, i.e. within 1-2%. However, the in-air calibration method using the IPEMB and AAPM TG-61 protocols yielded an absorbed dose about 7% lower than the IAEA TRS-398 protocol in the 120 kV beam. By replacing the backscatter factors given in the protocols with Monte Carlo calculated backscatter factors, the convergence between the protocols improved (within 4%). The internal consistency obtained for protocols supporting more than one geometry for dosimetry under reference conditions was better than 0.2% for the DIN protocol (120 kV beam), 2-3% for the AAPM TG-61 (120 and 200 kV beams) and about 2% for the IPEMB protocol (200 kV beam). The present study shows that the current-supported dosimetry protocols in the kilovoltage range were in fairly good agreement, and there were only a few exceptions of clinical significance.  相似文献   

20.
Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are available, using %dd(10)x, all published data show a spread of 0.4% and 0.6%, respectively, over the entire measurement range, compared to spreads of up to 1.1% for both chambers when the kQ values are expressed as a function of TPR10(20). For the PR06-C chamber no clear preference of beam quality specifier could be identified. When comparing the differences of our kQ measurements and calculations with an analysis in terms of air-kerma protocols with the same underlying calculations but expressed in terms of a compound conversion factor CQ, we observe that a system making use of absorbed-dose calibrations and calculated kQ values, is more accurate than a system based on air-kerma calibrations in combination with calculated CQ (rms deviation of 0.48% versus 0.67%, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号