首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to evaluate the effects of ABCB1 ( MDR1 ) gene polymorphism on P-glycoprotein model substrate, i.e. digoxin, salivary secretion. The study was carried out in 77 patients diagnosed with congestive heart failure administered digoxin, who were subdivided into two groups: 1) co-administered P-glycoprotein inhibitors and 2) without any known P-glycoprotein inhibitors. The ABCB1 2677G >A,T and 3435C >T polymorphisms were evaluated using PCR-RFLP methods. Steady-state digoxin concentrations were measured in blood serum as well as in unstimulated and stimulated saliva using FPIA method. It was found that values of Pearson's coefficient were significantly higher in patients co-administered P-glycoprotein inhibitors in comparison with subjects who were not administered any inhibitor both for stimulated (Pearson's coefficient r = 0.832, p < 0.01) and unstimulated saliva (r = 0.812, p < 0.01). Evaluation of the impact of ABCB1 2677G >A,T and 3435C >T polymorphism on salivary digoxin secretion revealed significant differences in digoxin stimulated saliva/serum ratio between patients stratified by 2677G >A,T genotype (TT, TA> GT, GA> GG, p < 0.01). The results from the present study suggest that administration of P-glycoprotein inhibitors as well as ABCB1 gene polymorphism may affect salivary digoxin secretion.  相似文献   

2.
BACKGROUND AND OBJECTIVE: Digoxin is a known substrate of ATP-binding cassette B1 (ABCB1/MDR1). The results of studies on the association between ABCB1 polymorphisms and digoxin kinetics, however, remain contradictory. Almost all studies were small and involved only single dose kinetics. The goal of this study was to establish ABCB1 genotype effect on digoxin blood concentrations in a large cohort of chronic digoxin users in a general Dutch European population. METHODS: Digoxin users were identified in the Rotterdam Study, a prospective population-based cohort study of individuals aged 55 years and above. Digoxin blood levels were gathered from regional hospitals and laboratories. ABCB1 single nucleotide polymorphisms (SNPs) 1236C-->T, 2677G-->T/A, and 3435C-->T were assessed on peripheral blood DNA using Taqman assays. We studied the association between the ABCB1 genotypes and haplotypes, and digoxin blood levels using linear regression models adjusting for potential confounders. RESULTS: Digoxin serum levels and DNA were available for 195 participants (56.4% women, mean age 79.4 years). All three ABCB1 variants were significantly associated with serum digoxin concentration (0.18-0.21 microg/l per additional T allele). The association was even stronger for the 1236-2677-3435 TTT haplotype allele [0.26 mug/l (95% CI 0.14-0.38)], but absent for other haplotypes (CGC allele considered referent), suggesting an interaction of SNPs in a causal haplotype instead of individual SNP effects. CONCLUSION: We found that the common ABCB1 1236C-->T, 2677G-->T, and 3435C-->T variants and the associated TTT haplotype were associated with higher digoxin serum concentrations in a cohort of elderly European digoxin users in the general population.  相似文献   

3.
AIMS: The aim of the study was to determine whether a correlation exists between MDR1 (ABCB1) gene polymorphisms at positions 3435 (C3435T) and 2677 (G2677T(A)) and the expression of human hepatic P-glycoprotein (P-gp). METHODS: P-gp protein expression in 26 human livers was assessed by Western blotting and ABCB1 mRNA expression was determined by real time RT-PCR. The C3435T and G2677T(A) polymorphisms were identified by RFLP and direct sequence analysis, respectively. RESULTS: The C and G allele frequencies for the C3435T and G2677T(A) polymorphisms were 0.48 and 0.79, respectively, and the genotypes were in Hardy-Weinberg equilibrium. There was a 200- and 20-fold variation in the expression of ABCB1 mRNA and Pgp protein expression, respectively. There were no differences in mRNA and protein expression identified amongst the different genotypes attributable to the C3435T and G2677T(A) polymorphisms in the ABCB1 gene. Exposure to a PXR ligand prior to death did not influence mRNA or protein expression. CONCLUSIONS: There is substantial variability in the expression of Pgp in human liver, but this is not due to the presence of C3435T and G2677T(A) polymorphisms in the ABCB1 gene, although our study is limited by a small sample size.  相似文献   

4.
OBJECTIVE: Mutations in the ABCB1 gene have been associated with decreased expression and net function of P-glycoprotein (P-gp). We investigated the modulation of the central nervous effects of loperamide resulting from ABCB1 genetic variants. METHODS: On two occasions, 20 healthy volunteers received 24 mg loperamide suspension orally and, in a double-blind randomized two-way crossover fashion, 800 mg quinidine or placebo orally 1 h before loperamide. Pupil size was measured for 5 h following loperamide administration, and plasma concentrations of loperamide and quinidine were measured for 6 h. Single nucleotide polymorphisms and haplotypes including G2677T(A) (exon 21) and C3435T (exon 26) were analysed for their relation to plasma concentrations of quinidine and loperamide and to the miotic effects of loperamide. RESULTS: Loperamide plasma concentrations with quinidine co-administration were about twice as high as those without quinidine. The ABCB1 haplotype G2677/T3435 was associated with the highest loperamide plasma concentrations, which were about 1.5 times higher than in non-carriers of this haplotype. Plasma concentrations of quinidine did not differ among carriers and non-carriers of genetic variants. When quinidine was co-administered with loperamide, pupil size decreased. Without quinidine it changed only minimally. The ABCB1 TT3435 genotype was associated with the most pronounced increase of the miotic effects of loperamide when quinidine was co-administered. This was accompanied by a tendency toward higher plasma loperamide in TT3435 carriers. CONCLUSIONS: Our data support a functional importance of the ABCB1 mutations for plasma concentrations and central nervous actions of the opioid loperamide.  相似文献   

5.
Our objective was to examine the influence of ritonavir on P-glycoprotein (P-gp) activity in humans by characterizing the effect of ritonavir on the pharmacokinetics of the P-gp substrate digoxin in individuals with known MDR1 genotypes. Healthy volunteers received a single dose of digoxin 0.4 mg orally before and after 14 days of ritonavir 200 mg twice daily. After each digoxin dose blood and urine were collected over 72 hours and analyzed for digoxin. Digoxin pharmacokinetic parameter values were determined using noncompartmental methods. MDR1 genotypes at positions 3435 and 2677 in exons 26 and 21, respectively, were determined using PCR-RFLP analysis. Ritonavir increased the digoxin AUC(0-72) from 26.20 +/- 8.67 to 31.96 +/- 11.24 ng x h/mL (P = 0.03) and the AUC(0-8) from 6.25 +/- 1.8 to 8.04 +/- 2.22 ng x h/mL (P = 0.02) in 12 subjects. Digoxin oral clearance decreased from 149 +/- 101 mL/h x kg to 105 +/- 57 mL/h x kg (P = 0.04). Other digoxin pharmacokinetic parameter values, including renal clearance, were unaffected by ritonavir. Overall, 75% (9/12) of subjects had higher concentrations of digoxin after ritonavir administration. The majority of subjects were heterozygous at position 3435 (C/T) (6 subjects) and position 2677 (G/T,A) (7 subjects); although data are limited, the effect of ritonavir on digoxin pharmacokinetics appears to occur across all tested MDR1 genotypes. Concomitant low-dose ritonavir reduced the nonrenal clearance of digoxin, thereby increasing its systemic availability. The most likely mechanism for this interaction is ritonavir-associated inhibition of P-gp. Thus, ritonavir can alter the pharmacokinetics of coadministered medications that are P-gp substrates.  相似文献   

6.
This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. One hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p<0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p<0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p=0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4+/-12.4%) and apolipoprotein B (apoB) (17.0+/-31.3%) when compared with the higher quartile (>0.085: LDL-c=40.3+/-14.3%; apoB=32.5+/-10.7%; p<0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin.  相似文献   

7.
Advances in transplantation technology have brought about great benefits to patients suffering from organ failure, but the problem still remains of complications induced by steroids used for post-transplant immunosuppression. Among the side-effects caused by steroids, non-traumatic osteonecrosis of the femoral head (ONF) constitutes a serious problem. The same protocol for steroid administration induces ONF in some patients, but not in others, indicating the presence of individual difference in steroid sensitivity. We hypothesized that this difference might be mediated by the drug-transport protein, P-glycoprotein (P-gp), and investigated the relationship between single nucleotide polymorphisms in the multidrug resistance gene 1 (ABCB1, MDR1) encoding P-gp and ONF. Subjects comprised 136 patients receiving kidney transplantation. Thirty patients developed post-transplant ONF. Genomic DNA was extracted from peripheral blood, and genotypes of ABCB1 C3435T (exon 26) and G2677T/A (exon 21) were determined by direct sequencing. Multivariate analyses based on clinical information were performed to determine the relationship between ABCB1 genotypes and ONF. The dose/concentration (D/C) ratios of tacrolimus were also determined to estimate the activity of P-gp in patients with different genotypes of ABCB1 C3435T (CC, CT, TT), and in those who did and did not develop ONF. The ABCB1 3435TT genotype showed a significantly lower incidence of ONF (adjusted odds ratio = 0.10, P = 0.034). The D/C ratio in the 3435TT genotype was significantly higher than that in the 3435CC genotype. The D/C ratio in patients developing ONF was significantly higher than in those patients who did not develop ONF. The results suggest increased activity of P-gp in patients with the 3435TT genotype and in those who did not develop ONF. The ABCB1 2677 homozygous variant type also showed a lower incidence of ONF (adjusted odds ratio = 0.26, P = 0.056). The 3435T and 3435C alleles were in linkage disequilibrium with the 2677T and the 2677G alleles, respectively, in the study population. An assessment of C3435T and G2677T/A polymorphisms preceding steroid treatment could be useful for predicting the resistance to ONF development.  相似文献   

8.
P-glycoprotein (P-gp) is a transmembrane transporter playing an important role in drug efflux. There is growing evidence that P-gp activity may be related to haplotypes of MDR1 gene. In the current study, the frequencies of common functional polymorphisms in MDR1 gene (2677G > A,T and 3435C > T) were evaluated using PCR-RFLP and allele-specific amplification, in a group of 204 healthy individuals of Caucasian origin from Poland. It was found that the frequencies of the studied single nucleotide polymorphisms were similar to those reported for other Caucasian populations, and were as follows: 2677G-3435C--0.453, 2677G-3435T--0.143, 2677T-3435C--0.015, 2677T-3435T--0.370, 2677A-3435C--0.008, 2677A-3435T--0.011. The results of our study may give the basis for predicting pharmacokinetic and pharmacodynamic effects of many commonly used drugs in the Polish population.  相似文献   

9.
BACKGROUND: The ATP-dependent drug-efflux pump, P-glycoprotein (P-gp) encoded by ABCB1 (MDR1), plays a crucial role in several tissues forming blood-tissue barriers. Absence of a normally functioning P-gp can lead to a highly increased tissue penetration of a number of clinically important drugs. METHODS: We have studied the dose-response effect of exogenous ATP on the placental transfer of the well-established P-gp substrate saquinavir in 17 dually perfused human term placentas. We have also studied the influence of the ABCB1 polymorphisms 2677G>T/A and 3435C>T on placental P-gp expression (n = 44) and the transfer (n = 16) of saquinavir. RESULTS: The present results indicate that the addition of exogenous ATP to the perfusion medium does not affect the function of P-gp as measured by saquinavir transfer across the human placenta. The variant allele 3435T was associated with significantly higher placental P-gp expression than the wild-type alleles. However, neither polymorphism affected placental transfer of saquinavir nor there was any correlation between P-gp expression and saquinavir transfer. CONCLUSIONS: Our results indicate that addition of exogenous ATP is not required for ATP-dependent transporter function in a dually perfused human placenta. Although the ABCB1 polymorphism 3435C>T altered the expression levels of P-gp in the human placenta, this did not have any consequences on P-gp-mediated placental transfer of saquinavir.  相似文献   

10.
The MDR1 gene product P-glycoprotein in the human placenta is important for protecting the fetus from unintended, harmful drug exposure, but also for limiting the access of therapeutic drugs to the fetus after maternal drug intake. A polymorphism in exon 26 of the MDR1 gene (C3435T) has previously been shown to be associated with reduced P-glycoprotein expression in the small intestine, kidney and lymphocytes. In the present study, we examined systematically whether MDR1 polymorphisms also have an impact on P-glycoprotein expression in the human placenta. MDR1 mRNA and P-glycoprotein were analysed in 73 full-term human placentas of Caucasians, as well as respective MDR1 genotypes/haplotypes, for the C3435T and G2677T/A polymorphisms of mothers and infants. MDR1 mRNA levels were not different between these genotype groups. However, P-glycoprotein expression was significantly lower when both mother and infant were homozygous for the 3435T allele (TT/tt) compared to maternal and fetal homozygotes for the C-allele (0.40 +/- 0.18 a.u. for TT/tt versus 0.66 +/- 0.30 a.u. for CC/cc, P = 0.01). Moreover, placentas from mothers carrying both polymorphisms (3435T and 2677T; TT/TT) also had a significantly lower P-glycoprotein expression (0.31 +/- 0.12 a.u.) compared to placentas of wild-type individuals (CC/GG, 0.71 +/- 0.31 a.u., P = 0.02). Taken together, the MDR1 polymorphisms C3435T and G2677T are associated with altered P-glycoprotein expression in the human placenta, and may have clinical consequences due to genetically determined, variable drug exposure of the fetus.  相似文献   

11.
To date, research on the effect of single nucleotide polymorphisms (SNPs) on P-glycoprotein (P-gp) expression and functionality has rendered inconsistent results. This study systematically evaluates the impact of MDR1 haplotypes (1236/2677, 1236/3435, 2677/3435, 1236/2677/3435) on P-gp functionality compared to individual SNPs (1236, 2677, and 3435) in validated stable recombinant epithelial cells. Recombinant LLC-PK1 cells expressing MDR1wt or its variants were developed and validated for this purpose. Intracellular accumulation and time-dependant efflux of a P-gp substrate, Rhodamine 123 (R123, 5 microM) were evaluated in control and recombinant cells. Additionally, the transepithelial transport of R123 (1 microM) and Vinca alkaloids (5 microM) was evaluated. Except for MDR1(2677T) and MDR1(1236T/2677T/3435T), cells expressing MDR1 variants displayed intermediate R123 intracellular accumulation (1.5-2-fold higher) and lower effluxed R123 (10-20% vs. 52%) compared to those expressing MDR1wt. Efflux ratios across MDR1wt expressing cells were significantly larger for R123 (3.95+/-1.1), Vinblastine (3.75+/-0.26), and Vincristine (2.8+/-0.29). Recombinant cells expressing MDR1 variants displayed 0%-22.7% P-gp activity (approximately 80%-100% efflux loss). Results suggest that MDR1 polymorphisms at the 1236, 2677, and/or 3435 positions significantly minimize P-gp functionality in vitro, the extent of which appears to be substrate dependant.  相似文献   

12.
OBJECTIVES: Variable expression of the ABC-type multidrug resistance membrane protein P-glycoprotein (P-gp, MDR1, ABCB1) in human heart is a potential modulator of drug effects or drug-induced cardiotoxicity. Expression of P-gp is known to be affected by single nucleotide polymorphisms in the MDR1 gene. Therefore, genotype-dependent expression of P-gp could be an important modulator of action of cardiac drugs. METHODS: Heart tissue (auriculum) from 51 patients undergoing coronary artery bypass graft surgery was screened for genotype-dependent P-gp expression. P-gp was identified by immunoblotting and localized using immunohistochemistry. MDR1 mRNA was quantified by real-time PCR and immunohistochemistry and related to the MDR1 genotypes G2677T/A (Ala893Ser/Thr) and C3435T. RESULTS: MDR1/18S rRNA mRNA copy numbers in heart auriculum were 3.48 +/- 2.25 x 10(-6) compared to 4.56 +/- 0.58 x 10(-6) in non-failing ventricular samples studied before. While the exon 26 C3435T genotype did not influence MDR1 mRNA expression, we found significantly elevated MDR1 mRNA expression in 10 patients carrying the exon 21 2677 AT or TT genotype as compared to 12 patients carrying the GG-variant with intermediate MDR1 mRNA expression in 29 heterozygous samples. P-gp was detected in the endothelial wall. Quantitative immunohistochemistry of protein expression, however, did not reveal significant influence of the studied SNPs. CONCLUSION: The present study based on auricular samples suggests that genetic factors play a rather limited role in modulating P-gp expression in human heart. Therefore, the substantial interindividual variability in cardiac P-gp expression is likely related to environmental or disease related factors.  相似文献   

13.
目的:探讨ABCB1基因多态性对卡马西平血药浓度的影响。方法:采用荧光偏振免疫法(FPIA)测定275例口服卡马西平癫痫患者的血药浓度,聚合酶链式反应-限制性片段长度多态性方法(PCR-RFLP)或直接测序法检测ABCB1多态性位点C1236T、G2677T/A和C3435T的基因型。单因素方差分析计算各SNP位点不同基因型对应的卡马西平血药浓度是否有差异。结果:G2677T/A不同基因型对应的调整后血药浓度均值之间差别有显著性,TT基因型对应的调整后血药浓度显著高于GG型(P=0.001)。C1236T、C3435T各基因型对应的调整后血药浓度均值差别无统计学意义(P>0.05)。结论:ABCB1基因SNP位点G2677T/A的基因多态性对口服卡马西平癫痫患者的血药浓度有影响,提示TT基因型的患者可适当减少药物使用剂量。  相似文献   

14.
Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600?mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C?>?T (rs1045642), 2677G?>?T (rs2032582) and 1236C?>?T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p?=?0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p?=?0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.  相似文献   

15.
BACKGROUND: The effect of MDR1 C3435T single nucleotide polymorphism (SNP) in exon 26 on digoxin pharmacokinetics has recently been challenged. OBJECTIVE. To clarify the relationships between MDR1 genetic polymorphisms in exon 26 (C3435T) and 21 (G2677T/A) and digoxin pharmacokinetics. MATERIALS AND METHODS: MDR1 genotypes for C3435T and G2677T/A SNPs were determined in 32 healthy subjects whose single oral dose digoxin pharmacokinetics had been measured over 48 h. RESULTS: A significant relationship was observed between C3435T SNP and digoxin AUCs ( p<0,05). Homozygous TT subjects had 20% higher digoxin plasma concentrations than CT and CC subjects and a trend for higher 48 h digoxin urinary recoveries (TT>CT>CC). Similar results, although not statistically significant, were observed from the MDR1 G2677T/A SNP. CONCLUSIONS: Our results confirm that the MDR1 C3435T single nucleotide polymorphism (SNP) significantly affects digoxin disposition kinetics, with homozygous TT subjects presenting the highest plasma concentrations.  相似文献   

16.
AIM: We aimed to investigate the effect of the ABCB1 gene on the pharmacokinetics of amlodipine. METHODS: Based on polymorphisms of the ABCB1 gene at positions 2677 and 3435, 26 healthy male participants were divided into three groups: subjects with 2677GG/3435CC (n = 9), 2677GT/3435CT (n = 9) and 2677TT/3435TT (n = 8). After a single-dose administration of 5 mg amlodipine, plasma concentrations of amlodipine were measured and its pharmacokinetic characteristics were compared according to ABCB1 genotype. RESULTS: The area under the plasma concentration-time curve was significantly lower in subjects with 2677TT/3435TT (140.8 +/- 35.6 ng h(-1) ml(-1)) and 2677GT/3435CT (149.8 +/- 40.1 ng h(-1) ml(-1)) than in those with 2677GG/3435CC (208.6 +/- 39.2 ng h(-1) ml(-1)) [95% confidence interval (CI) on the difference, 2677GG/3435CC vs. 2677GT/3435CT 12.0, 105.6, P < 0.01; 2677GG/3435CC vs. 2677TT/3435TT 19.6, 116.0, P < 0.01; 2677GT/3435CT vs. 2677TT/3435TT - 39.2, 57.2, P > 0.05]. The peak plasma concentrations were highest in subjects with 2677GG/3435CC (3.8 +/- 0.5 ng ml(-1)), lower in subjects with 2677GT/3435CT (3.2 +/- 0.5 ng ml(-1)) and 2677TT/3435TT (2.7 +/- 0.5 ng ml(-1)) in rank and showed a significant difference between those with 2677GG/3435CC and with 2677TT/3435TT (95% CI on the difference 0.4, 2.0, P < 0.01). However, the oral clearance was higher in subjects with 2677TT/3435TT (37.7 +/- 10.2 l h(-1)) than in those with 2677GT/3435CT (35.7 +/- 9.9 l h(-1)) and with 2677GG/3435CC (24.8 +/- 5.4 l h(-1)) and exhibited a significant difference between ABCB1 genotype groups (95% CI on the difference, 2677GG/3435CC vs. 2677GT/3435CT - 21.5, - 0.3, P < 0.05; 2677GG/3435CC vs. 2677TT/3435TT - 23.8, - 2.0, P < 0.05). CONCLUSION: Amlodipine pharmacokinetics was affected by the genetic polymorphisms of the ABCB1 gene in humans. These findings may provide a plausible explanation for interindividual variation in the disposition of amlodipine, although our study could not explain the exact mechanism(s) by which the polymorphic ABCB1 gene paradoxically reduces the plasma levels of amlodipine. Further evaluation is thus warranted.  相似文献   

17.
OBJECTIVE: The ABCB1 haplotype combinations have been demonstrated to be associated with epilepsy treatment outcomes. The aim of this study is to investigate whether ABCB1 haplotype combinations would affect P-glycoprotein (Pgp) function and impact the clinical responses of antiepileptic drugs (AEDs). METHODS AND RESULTS: Transport of substrate rhodamine 123 and calcein-AM by human Pgp carrying 12 haplotype combinations of 1236C>T, 2677G>T/A and 3435C>T were assayed in the absence and presence of known inhibitors and AEDs. The inhibitory potency of the tested drugs from the dose-response relationships was cyclosporin A>verapamil> phenytoin> carbamazepine> lamotrigine>phenobarbital>valproic acid, levetiracetam, gabapentin. The silent polymorphisms combination (1236T-3435T) and triple haplotypes (1236T-2677A/T-3435T) resulted in profoundly less effective inhibition against substrates with significantly lower intracellular substrate concentration. These results confirmed that ABCB1 polymorphisms were associated with clinical responses of AEDs. CONCLUSION: Our findings demonstrated that human ABCB1 polymorphisms may alter the interactions between Pgp and substrates, and provided functional evidence for ABCB1 haplotypes-associated epilepsy treatment responses.  相似文献   

18.
Atypical antipsychotic drugs are well tolerated and thus often preferred in women of fertile age; yet the information on their placental transfer and use during the prenatal period is limited. The aim of this study was to study the placental transfer of quetiapine, a widely used atypical antipsychotic, with special reference to the role of the placental transporter protein, P-glycoprotein (P-gp). This was performed in 18 dually perfused placentas, using the well established P-gp inhibitors PSC833 (valspodar) and GG918 to inhibit the function of P-gp. We also aimed to clarify the significance of two potentially functional ABCB1 single nuclear polymorphisms (SNPs), 2677G>T/A and 3435C>T, on the transplacental transfer (TPT) of quetiapine. The placental transfer of quetiapine in the control group as measured by TPT(AUC) % (absolute fraction of the dose crossing placenta) was 3.7%, which is 29% less than the transfer of the freely diffusible antipyrine, which was 5.2%. The P-gp inhibitors had no significant effect on the transfer of quetiapine as measured by TPT(AUC) % (P = 0.77). No correlation was found between the transplacental transfer of quetiapine (TPT(AUC) %) and placental P-gp expression (P = 0.61). The 3435T allele in exon 26 was associated with significantly higher placental transfer of quetiapine (P = 0.04). We conclude that quetiapine passes the human placenta but that the blood-placental barrier partially limits the transplacental transfer of quetiapine. Administration of P-gp inhibiting drugs with quetiapine is not likely to increase fetal exposure to quetiapine, although the ABCB1 C3435T polymorphism may contribute to inter-individual variation in fetal exposure to quetiapine.  相似文献   

19.
Losartan is oxidized to E3174 by cytochrome P450 2C9 (CYP2C9); it has been suggested as a useful probe drug for CYP2C9 activity. It has also been shown to be a substrate for the drug-efflux transporter ATP-binding cassette sub-family B member 1 (ABCB1, MDR1). Both CYP2C9 and ABCB1 genes are polymorphic. The aim of the study was to determine if losartan disposition was influenced by the 3435C > T polymorphism of ABCB1 in healthy persons. These participants (n = 58) whose CYP2C9 genotypes and phenotypes were determined previously were genotyped for 3435C > T polymorphism in ABCB1. The concentrations of losartan and E3174 were compared across genotypes for ABCB1 3435C > T variation. For persons with the ABCB1 3435 CC, CT, TT genotypes, the concentrations (microM, means +/- S.D.) of neither losartan (1.76 +/- 0.87, 1.68 +/- 0.84 and 1.80 +/- 0.85, respectively, P = 0.70) nor E3174 (2.97 +/- 2.49, 2.53 +/- 2.09 and 3.18 +/- 2.75, respectively, P = 0.65) were significantly different. These results suggest that ABCB1 3435C > T polymorphism does not have any influence on losartan disposition. Therefore, ABCB1 3435C > T polymorphism is probably not a confounding factor in the prediction of CYP2C9 activity by using losartan as a probe agent.  相似文献   

20.
In the present study, we examined whether polymorphisms in the ATP-binding cassette (ABC) transporter genes, MDR1, MRP1 and MRP2, were associated with their respective mRNA expression levels in duodenal enterocytes of 13 healthy Japanese volunteers. MDR1 genotypes of T-129C, G2677(A,T) and C3435T, MRP1 genotypes of G128C, C218T, G2168A and G3173A, and MRP2 genotypes of C-24T, G1249A, C2302T, C2366T and G4348A were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) or direct sequencing. Mutations T-129C, G2677(A,T) and C3435T of MDRI gene were found at allele frequencies of 2/26, 16/26 and 12/26, respectively. Mutations G2168A of the MRPI gene and C-24T of the MRP2 gene were also found at allele frequencies of 1/26 and 6/26, respectively, whereas other mutations were not detected in MRP1 and MRP2 genes. The relative concentrations (mean +/- S.E.) of MDR1 mRNA to villin mRNA were 0.38 +/- 0.15, 0.56 +/- 0.14 and 1.13 +/- 0.42 in the subjects with C/C3435, C/T(3435) and T/T(3435), respectively, which supported the lower serum concentrations of digoxin after single oral administration in the subjects with the mutant T-allele at position 3435. Genetic collaboration between positions 3435 and 2677 was suggested, and those in G/G2677, G/(A,T)(2677) and T/(A,T)(2677) were 0.16 +/- 0.05, 1.10 +/- 0.40, and 0.63 +/- 0.16, respectively (p = 0.107). However, there was no remarkable effect of the G2168A of the MRP1 gene or of C-24T of the MRP2 gene on the relative MRP1 or MRP2 mRNA concentrations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号