首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Small-dose pentobarbital enhances synaptic transmission in rat hippocampus.   总被引:1,自引:0,他引:1  
D P Archer  N Samanani  S H Roth 《Anesthesia and analgesia》2001,93(6):1521-5, table of contents
We investigated the contribution of bicarbonate ion, gamma-aminobutyric acid-A (GABA(A)) receptors, and N-methyl-D-aspartate (NMDA) receptors to pentobarbital-induced enhancement of excitatory synaptic transmission in the hippocampal slice. Transverse hippocampal slices (400 microm thick) were prepared from 20- to 30-day-old Sprague-Dawley rats and maintained in an interface chamber perfused with warmed (35 degrees C) oxygenated artificial cerebrospinal fluid. Extracellular field potentials, evoked by orthodromic paired-pulse stimulation of the Schaffer collateral CA1 pathway, were analyzed for the population spike (PS) amplitude. Pentobarbital had a concentration-dependent, biphasic effect on PS amplitudes, which were increased approximately twofold (P < 0.001) when the slice was exposed to pentobarbital concentrations of 1 and 5 microM and depressed at drug concentrations larger than 10 microM. Pentobarbital (5 microM) did not increase the PS amplitude when stimulation was stopped during exposure to the drug. The enhancement of PS amplitude was suppressed in the presence of 10 microM acetazolamide, a nonselective carbonic anhydrase inhibitor, and when the slice was bathed in CO(2)/HCO(3)(-)-free artificial cerebrospinal fluid. Pretreatment with 1 microM picrotoxin, a GABA(A) receptor antagonist, or 5 microM 2-amino-5-phosphopentanoic acid, a specific NMDA receptor antagonist, also suppressed enhancement of PS amplitude by 5 microM pentobarbital. The results suggest that small concentrations of pentobarbital (1 and 5 microM) enhance synaptic transmission through mechanisms involving GABA(A) and NMDA receptors and the HCO(3)(-) ion. IMPLICATIONS: Enhanced hippocampal synaptic transmission after exposure to subanesthetic concentrations of pentobarbital persists during drug washout. This finding may help to explain why some patients experience excitation and enhanced pain during emergence from anesthesia.  相似文献   

3.
Isoflurane blocks synaptic plasticity in the mouse hippocampus   总被引:19,自引:0,他引:19  
BACKGROUND: The volatile anesthetic isoflurane depresses glutamatergic transmission. In this study, the authors investigated the effects of isoflurane on the induction of long-term potentiation (LTP) and long-term depression (LTD) in slices from the juvenile and adult mouse hippocampus. Both forms of synaptic plasticity involve the activation of glutamate receptors. METHODS: Field excitatory postsynaptic potentials and excitatory postsynaptic currents from neurons in the CA1 area were evoked by stimulation of the Schaffer collateral-commissural pathway. Two independent synaptic inputs were stimulated. Clinically relevant concentrations (0.2-0.3 mM) of isoflurane were added to the perfusion solution. RESULTS: Field excitatory postsynaptic potentials from slices of juvenile and adult mice were depressed to 37.3 +/- 6.1% and 58.3 +/- 7.4%, respectively, and excitatory postsynaptic currents were reduced to 36.7 +/- 5.4% by isoflurane. A brief tetanic stimulation (100 Hz, 1 s) induced stable LTP of field excitatory postsynaptic potentials. In the presence of isoflurane, tetanization failed to induce LTP. The effect of isoflurane on LTP induction was reversible and could be prevented by antagonizing gamma-aminobutyric acid type A receptors (GABAA). Low-frequency stimulation (1 Hz/900 pulses) induced LTD. In the presence of isoflurane, low-frequency stimulation failed to induce LTD. CONCLUSIONS: The prevention of the isoflurane-induced depression of LTP by the GABAA antagonist picrotoxin suggests an involvement of GABAA receptors. An enhancement of the efficacy of GABA-mediated inhibitory synaptic transmission prevents the depolarization of the postsynaptic membrane during tetanus, necessary for the induction of use-dependent alteration of synaptic strength. An impairment of these processes may be a cause for the transient loss of recall and cognitive impairment after anesthesia in juvenile and adult brains.  相似文献   

4.
In rat prefrontal cortex (the prelimbic area of medial frontal cortex), the induction of long-term depression (LTD) and long-term potentiation (LTP) of glutamatergic synapses is powerfully modulated by dopamine. The presence of dopamine in the bathing medium facilitates LTD in slice preparations, whereas in the anesthetized intact brain, dopamine released from dopaminergic axon terminals in the prefrontal cortex facilitates LTP. Dopaminergic facilitation of LTD is at least partly achieved by postsynaptic biochemical mechanisms in which enzymatic processes triggered by dopamine receptor activation cooperate with those triggered by glutamate metabotropic receptor activation. Evidence suggests that dopamine facilitates LTP also in the slice condition. In this case, dopamine receptors must be pre-stimulated ('primed') before the application of high-frequency stimuli in the presence of dopamine. This procedure may mimic baseline stimulation of dopamine receptors that occurs under physiological conditions.  相似文献   

5.
6.
Effect of volatile anesthetics on synaptic transmission in the rat hippocampus   总被引:17,自引:0,他引:17  
The synaptic effects of halothane, isoflurane, and enflurane were examined in the rat hippocampus in vivo and compared with the effects of ketamine and urethane. Actions of the agents on excitatory amino acid-mediated neurotransmission were studied by observing evoked responses and long-term potentiation in the stratum pyramidale of CA1 with stimulation of the contralateral CA3 region. Long-term potentiation is a long-lasting increase in synaptic efficacy, which follows a brief stimulus train. It has been shown to be established through activation of the NMDA subclass of excitatory amino acid receptors and is thought to be involved in memory processing. Volatile anesthetics had no effect on evoked excitatory responses or on long-term potentiation. Actions of the anesthetics on inhibitory processes in the hippocampus were studied by pairing stimuli at a range of interpulse intervals. The first stimulus activated inhibitory processes that caused the response to the second stimulus to be smaller than the initial response, a phenomenon termed paired pulse depression. Paired pulse depression was significantly prolonged by the volatile anesthetics compared with that under urethane or ketamine. These results indicate that the mechanism of action of the volatile anesthetics at the hippocampal CA1 synapse does not involve amino acid-mediated excitation but does involve enhancement of inhibition.  相似文献   

7.
The purpose of this investigation was to study the effect of isoflurane on excitatory synaptic transmission. Rat hippocampal slices maintained in vitro were used as a model. Isoflurane caused a dose-dependent reduction of the excitatory postsynaptic potential (EPSP); 1.5% isoflurane reduced the EPSP by 35 +/- 9% (mean +/- s.d.) and 3% by 57 +/- 11%. Neither spontaneous nor potassium-stimulated efflux of the glutamate analogue D-(3H)aspartate was changed, but the content of D-(3H)aspartate in slices loaded during isoflurane was reduced to 83 +/- 12% of control (P less than 0.05). The intracellularly recorded response to direct application of glutamate increased by 37 +/- 20% during isoflurane (3%) and 50 +/- 5% during halothane (2%). Isoflurane (3%) enhanced the response to the glutamate receptor agonist quisqualate by 44 +/- 19%, whereas the N-methyl-D-aspartate response was unchanged. Isoflurane enhanced the tetanic depression of the population spike. The present results suggest that isoflurane reduces excitatory synaptic transmission by a presynaptic mechanism.  相似文献   

8.
Kaye AD  Hoover JM  Baber SR  Ibrahim IN  Fields AM 《Anesthesia and analgesia》2004,99(3):758-63, table of contents
In this investigation, we sought to identify the role of gamma-aminobutyric acid (GABA)(A) and GABA(B) receptors in the feline pulmonary vascular bed. Using adult mongrel cats and in separate experiments, we investigated the effects of l-N(5)-(1-iminoethyl) ornithine hydrochloride (l-NIO) (a nitric oxide synthase inhibitor), glibenclamide (an adenosine triphosphate (ATP)-sensitive K(+) channel blocker), meclofenamate (a nonselective cyclooxygenase inhibitor), bicuculline (a GABA(A) receptor antagonist), and saclofen (a GABA(B) receptor antagonist) on pulmonary arterial responses to pinacidil (an ATP-sensitive K(+) channel activator), bradykinin (a nitric oxide synthase inducer), muscimol (a GABA(A) receptor agonist), and 3-aminopropyl(methyl)phosphinic acid, hydrochloride (SKF-97541; a GABA(B) receptor agonist). Under increased tone conditions in the isolated left lower lobe vascular bed of the cat, muscimol induced a dose-dependent vasodepressor response that was not significantly altered after the administration of l-NIO, glibenclamide, meclofenamate, and saclofen. SKF-97541-induced vasodepression was not significantly attenuated after the administration of l-NIO, meclofenamate, and bicuculline. Responses to SKF-97541 were significantly attenuated after the administration of glibenclamide and saclofen. Responses to muscimol were significantly reduced after the administration of bicuculline. The results suggest that muscimol and SKF-97541 have potent vasodepressor activity in the feline pulmonary vascular bed and that these responses are modulated by, respectively, GABA(A) and GABA(B) receptor-sensitive pathways. Further, SKF-97541-induced vasodepression is mediated or modulated by an ATP-sensitive K(+) channel.  相似文献   

9.
BACKGROUND: Although it is well recognized that anesthetics modulate the central control of cardiorespiratory homeostasis, the cellular mechanisms by which anesthetics alter cardiac parasympathetic activity are poorly understood. One common site of action of anesthetics is inhibitory neurotransmission. This study investigates the effect of propofol on gamma-aminobutyric acid-mediated (GABAergic) and glycinergic neurotransmission to cardiac parasympathetic neurons. METHODS: Cardiac parasympathetic neurons were identified in vitro by the presence of a retrograde fluorescent tracer, and spontaneous GABAergic and glycinergic synaptic currents were examined using whole cell patch clamp techniques. RESULTS: Propofol at concentrations of 1.0 microm and greater significantly (P < 0.05) increased the duration and decay time of spontaneous GABAergic inhibitory postsynaptic currents. To determine whether the action of propofol was at presynaptic or postsynaptic sites, tetrodotoxin was applied to isolate miniature inhibitory postsynaptic currents. Propofol at concentrations of 1.0 microm and greater significantly (P < 0.05) prolonged the decay time and duration of miniature inhibitory postsynaptic currents, indicating that propofol directly alters GABAergic neurotransmission at a postsynaptic site. Propofol at high concentrations (> or =50 microm) also inhibited the frequency of both GABAergic inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents. Propofol at concentrations up to 50 microm had no effect on glycinergic neurotransmission. CONCLUSIONS: Propofol may vary heart rate by modulating GABAergic neurotransmission to cardiac parasympathetic neurons. At clinically relevant concentrations (> or =1.0 microm), propofol facilitated GABAergic responses in cardiac vagal neurons by increasing decay time, which would increase inhibition of cardioinhibitory cardiac vagal neurons and evoke an increase in heart rate. At higher supraclinical concentrations (> or =50 microm), propofol inhibits GABAergic neurotransmission to cardiac vagal neurons, which would evoke a decrease in heart rate.  相似文献   

10.
11.
Background and objective: The use of dexmedetomidine (DEX), a selective alpha‐2 agonist, in pediatric practice is expanding as a result of its desirable properties. To clarify the long‐term neurological consequences of neonatal administration of DEX, we investigated the long‐term effects of neonatal administration of DEX on hippocampal synaptic activity. Methods: The rat pups received a bolus intraperitoneal injection of either 5 or 10 μg·kg?1 DEX, or an equivalent volume of vehicle on postnatal day 7 (P7). Nine weeks after administration, evoked potentials (population spike, PS) and long‐term potentiation (LTP) in the hippocampal CA1 region of rats were studied in vivo. Results: Dexmedetomidine had a considerable sedative effect at these doses with little respiratory depression on P7. Nine weeks after administration of DEX, the amplitude of PS in the two treated groups was similar to that in the control group. DEX‐treated rats showed no impairment in the induction of LTP. Furthermore, the response in PS to the paired stimuli was not impaired by neonatal administration of DEX. Conclusion: These findings demonstrate that a single administration of DEX to rats on P7 preserves hippocampal synaptic plasticity as well as synaptic transmission later in life. In view of the some evidence that have demonstrated the permanent detrimental impact of commonly used anesthetics on neurological outcomes after neonatal exposure, our findings may suggest the relative safety of DEX administered as a sedative agent to neonatal animals with regard to the development of hippocampal synaptic functions.  相似文献   

12.
The effects of halothane on diazepam binding to the rat cerebral synaptic membranes were investigated. Halothane at the concentrations of 0.63, 1.3 and 4.1 mmol/l increased the binding by 12, 23 and 33%, respectively, compared to the control in the absence of halothane. The increments were dependent on the presence of Cl-. The findings indicate that halothane and diazepam have an interaction at receptor level.  相似文献   

13.
Freeze-lesion induced neocortical dysplasias in rats mimic numerous aspects of human polymicrogyria and are used as a model for the study of developmental migration disorders. Since memory tests have demonstrated learning deficits in rodents with neocortical malformations, we investigated the expression and properties of long-term potentiation (LTP) in neocortical slices from adult freeze-lesioned and control rats. Field potentials, recorded in layer II/III at a distance of 2-3 mm lateral to perinatally induced microgyri, were strongly enhanced following theta-burst stimulation in layer VI (amplitude: 174 +/- 4%) compared to controls (110 +/- 2%). In contrast, in layer IV of the freeze-lesioned cortex LTP could not reliably be induced. Histochemical analysis, performed to elucidate the cellular basis of the impaired plasticity, revealed diminished amounts of the GABAA-receptor subunit gamma2 in the paramicrogyral zone, likely representing a diminished GABA-ergic filter, which is thought to prevent LTP induced in layer VI under normal conditions. Cytochrome-oxidase staining after electrophysiological examination disclosed that LTP in layer IV of the freeze-lesioned cortex could only be elicited, when stimulation was applied within a preserved barrel cortex. Our study provides evidence that focal cryolesions during cortical development cause an impaired synaptic plasticity that may underlie learning disabilities.  相似文献   

14.
Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation. To test this hypothesis we constructed computer models of neocortex incorporating a biologically based homeostatic plasticity rule that operates to maintain firing rates. After deafferentation, homeostatic upregulation of excitatory synapses on pyramidal cells, either with or without concurrent downregulation of inhibitory synapses or upregulation of intrinsic excitability, initiated slowly repeating burst discharges that closely resembled the epileptiform burst discharges recorded in chronically isolated neocortex. These burst discharges lasted a few hundred ms, propagated at 1-3 cm/s and consisted of large (10-15 mV) intracellular depolarizations topped by a small number of action potentials. Our results support a role for homeostatic synaptic plasticity as a novel mechanism of post-traumatic epileptogenesis.  相似文献   

15.
背景 钙黏蛋白(cadherin)是一类存在于细胞表面的跨膜糖蛋白,最初被认为是一种钙离子依赖性的细胞黏附分子,主要参与调节细胞黏附、促进细胞增殖、维持细胞极性等过程.近几年对cadherin调节突触发育和突触可塑性的研究取得了较大进展. 目的 围绕cadherin在突触发育和突触可塑性过程中的作用及其相关分子机制简要作一综述,旨在为神经系统疾病的治疗提供理论依据. 内容 Cadherin的概述,cadherin在突触发育和突触可塑性调节中的作用以及相关分子机制,cadherin与神经疾病. 趋向 随着cadherin在调节突触发育和突触可塑性过程中的研究不断深入,cadherin将成为治疗神经疾病的一个新型的靶点.  相似文献   

16.
Purpose. To investigate the potential effects of pentobarbital and ketamine on serum concentrations of sex hormones, the present study was performed using pregnant mare serum gonadotropin (PMSG)-primed cyclic female Sprague-Dawley rats. Methods. Pentobarbital sodium (37 mg·kg−1, i. p.) or ketamine-hydrochloride (229 mg·kg−1, i. m.) was injected 2 and 3 days after PMSG treatment. At 0, 1, 2, 3, 4, and 5 days after PMSG treatment, sera were collected by cardiac puncture. The serum concentrations of progesterone (P4), testosterone (T), and estradiol-17β (E2) were determined by radioimmunoassay. Results. The serum concentrations of P4 tended to be lower in both the pentobarbital- and the ketamine-treated groups compared with the control group. Significant differences were found on days 3 and 4 after pentobarbital and on days, 1, 4, and 5 after ketamine administration. Serum concentrations of T were also suppressed in both the pentobarbital and the ketamine-treated groups, whereas E2 concentrations decreased only in the ketamine-treated group. Conclusion. Pentobarbital and ketamine decrease serum sex hormone concentrations in PMSG-primed female rats. Received: March 18, 2000 / Accepted: June 26, 2000  相似文献   

17.
目的 探讨神经病理性痛大鼠海马突触长时程增强(LTP)的变化.方法 成年雄性Wistar大鼠18只,体重190~240 g,随机分为3组(n=6):对照组(C组)、假手术组(S组)和神经病理性痛组(NP组).采用结扎左侧L4,5脊神经的方法 制备大鼠神经病理性痛模型.对照组不制备模型;假手术组仅暴露左侧L4,5脊神经.于模型制备后7、14和21 d时观察大鼠痛行为学及足部形态;于模型制备前(基础状态)、制备后7、14和21 d时测定痛阈;于最后一次痛阈测定结束后3 d时记录海马CA1区兴奋性突触后电位(EPSP),以高频刺激(HFS)诱发LTP,LTP为HFS后EPSP峰值较基础值增大10%以上且维持时间≥60 min,行LTP分级,以评价其程度.结果 NP组模型制备后痛阈低于基础值及C组和S组,LTP程度高于C组和S组(P<0.05).结论 神经损伤可易化大鼠海马CA1区突触LTP,提示神经病理性痛可能与海马突触LTP的易化有关.  相似文献   

18.
We investigated rapid protection effect by estradiol on corticosterone (CORT)-induced suppression of synaptic transmission. Rapid suppression by 1 μM CORT of long-term potentiation (LTP) at CA3-CA1 synapses was abolished via coperfusion of 1 nM estradiol. N-methyl-D-aspartate (NMDA) receptor-derived field excitatory postsynaptic potential (NMDA-R-fEPSP) was used to analyze the mechanisms of these events. Estradiol abolished CORT-induced suppression of NMDA-R-fEPSP slope. This CORT-induced suppression was abolished by calcineurin inhibitor, and the rescue effect by estradiol on the CORT-induced suppression was inhibited by mitogen-activated protein (MAP) kinase inhibitor. The CORT-induced suppressions of LTP and NMDA-R-fEPSP slope were abolished by glucocorticoid receptor (GR) antagonist, and the restorative effects by estradiol on these processes were mimicked by estrogen receptor α (ERα) and ERβ agonists. Taken together, estradiol rapidly rescued LTP and NMDA-R-fEPSP slope from CORT-induced suppressions. A GR→calcineurin pathway is involved in these suppressive effects. The rescue effects by estradiol are driven via ERα or ERβ→MAP kinase pathway. Synaptic/extranuclear GR, ERα, and ERβ probably participate in these rapid events. Mass-spectrometric analysis determined that acute hippocampal slices used for electrophysiological measurements contained 0.48 nM estradiol less than exogenously applied 1 nM. In vivo physiological level of 8 nM estradiol could protect the intact hippocampus against acute stress-induced neural suppression.  相似文献   

19.
No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.  相似文献   

20.
Basic fibroblast growth factor (bFGF) has been shown to influence the survival, proliferation and differentiation of a variety of cell types in the nervous system. In this investigation we have examined the action of bFGF on: (i) the rate of proliferation; (ii) cell cycle parameters; (iii) the maintenance of cell division; (iv) the recruitment of quiescent cells; and (v) the degree of differentiation of cortical progenitor cells in cultures prepared from E16 rat embryos. The proliferation rate (labelling index) of cortical progenitor cells doubled in the presence of bFGF over 48 h. However, the lengths of the cell cycle phases were unchanged. Clones marked with a recombinant retrovirus on the first day in vitro (DIV) grew significantly larger in the presence of bFGF. Furthermore, many of the clones examined in control cultures had ceased to divide after a maximum of four cell cycles, whereas almost all clonally related cells were still dividing in the presence of bFGF 4 days later, i.e. for at least six cell cycles. Basic FGF also stimulated the division of quiescent progenitor cells, which otherwise would have differentiated or undergone cell death. The degree of neuronal and glial differentiation was studied after 5 DIV using MAP-2 and GFAP immunocytochemistry. In the presence of bFGF, the percentage of MAP-2-labelled cells was less than half that of control cultures, whereas the number of cells immunoreactive for nestin (a marker of progenitor cells) remained very high. Cells immunoreactive for GFAP were present in bFGF-treated cultures, yet were extremely rare in control conditions. These experiments show that bFGF, a potent mitogen for cortical progenitor cells, has no effects on the parameters of their cell cycle but extends their proliferative capability, promotes their survival and delays their differentiation into neurons.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号