首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The visual system is thought to represent the direction of moving objects in the relative activity of large populations of cortical neurons that are broadly tuned to the direction of stimulus motion, but how changes in the direction of a moving stimulus are represented in the population response remains poorly understood. Here we take advantage of the orderly mapping of direction selectivity in ferret primary visual cortex (V1) to explore how abrupt changes in the direction of a moving stimulus are encoded in population activity using voltage-sensitive dye imaging. For stimuli moving in a constant direction, the peak of the V1 population response accurately represented the direction of stimulus motion, but following abrupt changes in motion direction, the peak transiently departed from the direction of stimulus motion in a fashion that varied with the direction offset angle and was well predicted from the response to the component directions. We conclude that cortical dynamics and population coding mechanisms combine to place constraints on the accuracy with which abrupt changes in direction of motion can be represented by cortical circuits.  相似文献   

2.
The manipulation of visual perceptual learning is emerging as an important rehabilitation tool following visual system damage. Specificity of visual learning for training stimulus and task attributes has been used in prior work to infer a differential contribution of higher-level versus lower-level visual cortical areas to this process. The present study used a controlled experimental paradigm in felines to examine whether relearning of motion discrimination and the specificity of such relearning are differently influenced by damage at lower versus higher levels of the visual cortical hierarchy. Cats with damage to either early visual areas 17,18, and 19, or to higher-level, motion-processing lateral suprasylvian (LS) cortex were trained to perform visual tasks with controlled fixation. Animals with either type of lesion could relearn to discriminate the direction of motion of both drifting gratings and random dot stimuli in their impaired visual field. However, two factors emerged as critical for allowing transfer of learning to untrained motion stimuli: (1) an intact LS cortex and (2) more complex visual stimuli. Thus, while the hierarchical level of visual cortex damage did not seem to limit the ability to relearn motion discriminations, generalizability of relearning with a damaged visual system appeared to be influenced by both the areas damaged and the nature of the stimulus used during training.  相似文献   

3.
Neuronal responses in primary visual cortex have been found to be highly variable. This has led to the widespread notion that neuronal responses have to be averaged over large numbers of neurons to obtain suitably invariant responses that can be used to reliably encode or represent external stimuli. However, it is possible that the high variability of neuronal responses may result from the use of simple, artificial stimuli and that the visual cortex may respond differently to dynamic, naturalistic images. To investigate this question, we recorded the responses of primary visual cortical neurons in the anesthetized cat under stimulation with time-varying natural movies. We found that cortical neurons on the whole exhibited a high degree of spike count variability, but a surprisingly low degree of spike time variability. The spike count variability was further reduced when all but the first spike in a burst were removed. We also found that responses exhibiting low spike time variability exhibited low spike count variability, suggesting that rate coding and temporal coding might be more compatible than previously thought. In addition, we found the spike time variability to be significantly lower when stimulated by natural movies as compared with stimulation using drifting gratings. Our results indicate that response variability in primary visual cortex is stimulus dependent and significantly lower than previous measurements have indicated.  相似文献   

4.
Retinotopy constrained source estimation (RCSE) is a method for noninvasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
There are two basic types of photoreceptors in the retina: rods and cones. Using a single stimulus viewed at two different light levels, we tested whether input from rods and input from cones are topographically segregated at subsequent levels of human visual cortex. Here we show that rod-mediated visual input produces robust activation in area MT+, and in the peripheral representations of multiple retinotopic areas. However, such activation was selectively absent in: (1) a cortical area selectively activated by colored stimuli (V8) and (2) the foveal representations of lower tier retinotopic areas. These cortical differences reflect corresponding differences in perception between scotopic and photopic conditions.  相似文献   

6.
Tritiated 2-deoxy- -glucose (2-DG) was used to demonstrate layer specific uptake of 2-DG at the cellular level in the visual cortex of the cat after stimulation with different kinds of visual stimuli. Two-dimensional static Gaussian visual noise drifting across the visual field led to an increased accumulation of 2-DG in layers III and V as compared to the amount of radioactivity in layer IV. In unstimulated control tissue of visual cortex a homogeneous pattern of labelling was found. Horizontal bars moving vertically across the visual field increased the uptake in layer IV more than in all other layers. Analysis of the 2-DG uptake at the cellular level revealed that visual noise activated two bands of cells, one above and one below layer IV, whereas bar stimuli activated cells mainly in layer IV. Accumulation of 2-DG was always higher in the perikarya than in the surrounding neuropil.These results confirm the physiologically recorded properties of cells in different cortical layers.  相似文献   

7.
Contrast response function in the primary visual cortex (V1) has long been described as following a sigmoid curve. However, this is mainly based on measuring neural responses to drifting contrast grating in a stable stimulation, a model that does not consider the effects of motion or length of stimulus presentation. During natural viewing, the visual system can obtain sufficient information for identifying the shapes defined by contrast from a single glance; acquiring greater knowledge of the neuronal response properties to contrast in such a short timescale is necessary to understand the underlying mechanisms. We investigated responses of cat V1 neurons to contrast presented by static grating for 40 ms without pause compared to drifting grating presented continuously for 2000 ms. The neuronal response to transiently presented contrast could be well described by a linear function. Further examination of the effects of motion and presentation duration on contrast responses demonstrated that motion increased response sensitivity in the low‐contrast range, while brief presentation increased response sensitivity in the high‐contrast range. Motion and prolonged presentation (adaptation) together resulted in an asymptotic sigmoid curve with a saturation response in the high‐contrast range. These results suggest that motion mainly enhance the neural response sensitivity to low‐contrast objects, while short and rapid presentation mainly enhance the neural sensitivity to high‐contrast stimulus. Our findings indicate that multiple factors influence the properties of contrast response functions, suggesting that V1 neuron contrast coding is flexible and depends on the temporal contexts.  相似文献   

8.
Results from a variety of sources, some many years old, lead ineluctably to a re‐appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three ‘feed‐forward’ anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast‐moving, high‐contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re‐assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task‐ and stimulus‐dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously.  相似文献   

9.
To explore the effect of the location of a visual stimulus on neural responses in the primary visual cortex (V1), a micro-electromechanical system-based microelectrode array with nine channels was implanted on the cerebral dura mater of V1 in adult cats. 2 Hz pattern reversal checkerboard stimuli were used to stimulate the four visual quadrants (i.e., upper left, upper right, lower left, and lower right fields). The results showed that there was a N75 component of the visual evoked potential around 50-80 ms after the onset of a checkerboard stimulus, and the onset of these N75 peaks varied with different stimulus locations. The checkerboard stimuli induced shorter latencies in the contralateral V1 than in the ipsilateral V1, while the checkerboard stimulus in the upper half visual field induced shorter latencies for N75. These results suggested that the pattern-reversal stimuli induced neural activities in V1 that can be recorded with multichannel microelectrodes, and more detailed temporal and spatial properties can be measured.  相似文献   

10.
In optical imaging experiments of primary visual cortex, visual stimuli evoke a complicated dynamics. Typically, any stimulus with sufficient contrast evokes a response. Much of the response is the same regardless of which stimulus is presented. For instance, when oriented drifting gratings are presented to the visual system, over 90% of the response is the same from orientation to orientation. Small differences may be seen, however, between the responses to different orientations. A problem in the analysis of optical measurements of the response to stimulus in cortical tissue is the distinction of the 'global' or 'non-specific' response from the 'differential' or 'stimulus-specific' response. This problem arises whenever the signal of interest is the difference in response to various stimuli and is evident in many kinds of uni- and multivariate data. To this end, we present enhancements to a frequency-based method that we previously introduced called the periodic stacking method. These enhancements allow us to separately estimate the dynamics of both the average signal across all stimuli (the 'global' response) and deviations from the average amongst the various stimuli (the 'stimulus-specific' response) evoked in response to a set of stimuli. We also discuss improvements in the signal-to-noise ratio, relative to standard trial averaging methods, that result from the data-adaptive smoothing in our method.  相似文献   

11.
Attention modulates neural activities in sensory cortices. Because cortical neurons are composed of many types of neurons, the activities of these different types of cells can exhibit different modifications depending on whether an animal pays attention to a particular sensory stimulus or not. In the present study, we examined which types of cortical neurons change their activities in rats during one of two types of audio-visual discrimination (AVD) tasks by using Fos immunohistochemistry. In the tasks, both auditory and visual stimuli were simultaneously presented but only one of the two modalities was task-relevant. Once the rats had learned one of the AVD tasks, presenting only relevant sensory stimuli was sufficient for them to perform the task correctly. These results suggest that the rats indeed attended to the relevant stimuli during the performance of the tasks. We found that Fos expression in the primary auditory and visual cortices was enhanced in a task-dependent manner during the performance of the AVD tasks. The enhancement of Fos expression depended on the behavioural significance of the stimulus in the tasks. Moreover, using double immunohistochemistry of Fos and a cell type-specific marker protein (phosphate-activated glutaminase, nonphosphorylated neurofilament protein, parvalbumin, calretinin or somatostatin), the task-dependent Fos expression was observed preferentially in excitatory neurons but not in inhibitory interneurons. These results suggest that modulation in cortical excitatory neurons might have critical roles in selecting and processing behaviourally relevant sensory stimuli.  相似文献   

12.
目的探讨猫的初级视皮层(V1)细胞对视觉刺激空间频率的选择性是否受年龄影响。方法采用在体细胞外单细胞记录技术分别记录青、老年猫V1神经元对不同空间频率光栅刺激的调谐反应。结果数据统计分析结果显示,诱导老年猫V1神经元出现最大诱发反应幅度的平均最优刺激空间频率(optimal spatial frequency, OSF)相较于青年猫的OSF显著降低。此外,老年猫V1神经元达到半幅反应的平均高频截止空间频率(cut-off spatial frequency,CSF)也显著小于青年猫的CSF。结论该结果与在老年猴初级视皮层的研究报道一致,表明年龄相关的视皮层细胞对刺激空间频率的选择性下降可能是哺乳动物中普遍存在的现象,也可能是导致老年性视敏度下降的重要原因。  相似文献   

13.
The temporal patterning of neuronal activity may play a substantial role in the representation of sensory stimuli. One particular hypothesis suggests that visual stimuli are represented by the temporal evolution of the instantaneous firing rate averaged over a whole population of neurons. Using an implementation in a cortical type network with lateral interactions, we could previously show that this scheme can be successfully applied to a pattern recognition task. Here, we use a large set of artificially generated stimuli to investigate the coding properties of the network in detail. The temporal population code generated by the network is intrinsically invariant to stimulus translations. We show that the encoding is invariant to small deformations of the stimuli and robust with respect to static and dynamic variations in synaptic strength of the lateral connections in the network. Furthermore, we present several measures which indicate that the encoding maps the stimuli into a high-dimensional space. These results show that a temporal population code is a promising approach for the encoding of relevant stimulus properties while simultaneously discarding the irrelevant information.  相似文献   

14.
Form-from-motion: MEG evidence for time course and processing sequence   总被引:9,自引:0,他引:9  
The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50-60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.  相似文献   

15.
Individuals with posterior cortical atrophy (PCA) report a host of unusual and poorly explained visual disturbances. This preliminary report describes a single patient (CRO), and documents and investigates abnormally prolonged colour afterimages (concurrent and prolonged perception of colours complimentary to the colour of an observed stimulus), perceived motion of static stimuli, and better reading of small than large letters. We also evaluate CRO's visual and vestibular functions in an effort to understand the origin of her experience of room tilt illusion, a disturbing phenomenon not previously observed in individuals with cortical degenerative disease. These visual symptoms are set in the context of a 4-year longitudinal neuropsychological and neuroimaging investigation of CRO's visual and other cognitive skills. We hypothesise that prolonged colour after-images are attributable to relative sparing of V1 inhibitory interneurons; perceived motion of static stimuli reflects weak magnocellular function; better reading of small than large letters indicates a reduced effective field of vision; and room tilt illusion effects are caused by disordered integration of visual and vestibular information. This study contributes to the growing characterisation of PCA whose atypical early visual symptoms are often heterogeneous and frequently under-recognised.  相似文献   

16.
Arend I  Rafal R  Ward R 《Neuropsychologia》2011,49(7):1788-1793
When searching for a target presented among distractors by means of Rapid Serial Visual Presentation (RSVP), participants often report the stimulus that is preceding or following the target as being the target. These so-called temporal binding errors are accompanied by high levels of confidence so that participants are bemused with the mismatch between their perceptual experience and the actual presented stimulus. By contrast with spatial binding the neural basis for temporal binding errors remains unexplored. Previous neuropsychology studies using non-spatial selective attention tasks have shown that right temporo-parietal cortex is involved in the temporal deployment of attention. Here we investigated the neural basis of temporal binding in five patients with visual extinction whose lesions involved different cortical areas in the right hemisphere, including the temporo-parietal cortex. Patients made significantly more binding errors for contralesional than ipsilesional stimuli and more binding errors than healthy controls. Incorrect binding from distractors near to the target was the most common for both patients and controls. Eye movements did not contribute to the pattern of results. These results show that right hemisphere cortical areas contribute to the accurate temporal coding of visual features.  相似文献   

17.
Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2 degrees x 2 degrees ) was presented on the fovea, a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed.  相似文献   

18.
When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.  相似文献   

19.
Numerous studies have investigated the effects of lesions of the primary visual cortex (V1) on visual responses in neurons of the superficial layer of the superior colliculus (sSC), which receives visual information from both the retina and V1. However, little is known about the changes in the local circuit dynamics of the sSC after receiving V1 lesions. Here, we show that surround inhibition of sSC neurons is transiently enhanced following V1 lesions in mice and that this enhancement may be attributed to alterations in the balance between excitatory and inhibitory inputs to sSC neurons. Extracellular recordings in vivo revealed that sSC neuronal responses to large visual stimuli were transiently reduced at about 1 week after visual cortical lesions compared with normal mice and that this reduction was partially recovered at about 1 month after the lesions. By using whole‐cell patch‐clamp recordings from sSC neurons in slice preparations obtained from mice that had received visual cortical lesions at 1 week prior to the recordings, we found cell type‐dependent changes in the balance between excitation and inhibition. In non‐GABAergic cells, inhibition predominated over excitation, whereas the excitation–inhibition balance did not change in GABAergic neurons. These results suggest that enhanced inhibition may be partially responsible for the reduced responses to large visual stimuli in some sSC neurons. Thus, we propose that the enhanced surround inhibition shortly after visual cortical lesions may prevent hyperexcitability in the sSC local circuit, contributing to reconstructing the finely tuned receptive field organization of sSC neurons after the visual cortical lesions.  相似文献   

20.
The oblique effect was first described as enhanced detection and discrimination of cardinal orientations compared with oblique orientations. Such biases in visual processing are believed to originate from a functional adaptation to environmental statistics dominated by cardinal contours. At the neuronal level, the oblique orientation effect corresponds to the numerical overrepresentation and narrower tuning bandwidths of cortical neurons representing the cardinal axes. The anisotropic distribution of orientation preferences over large cortical regions was revealed with optical imaging, providing further evidence for the cortical oblique effect in several mammalian species. Our present study explores whether the dominant representation of cardinal contours persists at different stimulus contrasts. Performing intrinsic optical imaging in the ferret visual cortex and presenting drifting gratings at various orientations and contrasts (100%, 30% and 10%), we found that the overrepresentation of vertical and horizontal contours was invariant across stimulus contrasts. In addition, the responses to cardinal orientations were also more robust and evoked larger modulation depths than responses to oblique orientations. We conclude that orientation maps remain constant across the full range of contrast levels down to detection thresholds. Thus, a stable layout of the functional architecture dedicated to processing oriented edges seems to reflect a fundamental coding strategy of the early visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号