首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
BACKGROUND & AIMS: Cholestasis induces changes in hepatic adenosine triphosphate-binding cassette (ABC) transporter expression. We aimed to investigate the role of the nuclear bile acid receptor (farnesoid X receptor [FXR]) in mediating changes in ABC transporter expression and in determining liver injury. METHODS: Hepatic ABC transporter (multidrug resistance-associated proteins [Mrp] 2-4 and bile salt export pump [Bsep]) expression and localization were studied in common bile duct-ligated (CBDL) FXR knockout (FXR(-/-)), wild-type (FXR(+/+)), and sham-operated mice. Serum alanine aminotransferase, alkaline phosphatase, bilirubin and bile acid levels, hepatic bile acid composition, and liver histology were investigated. Cholangiomanometry and bile duct morphometry were performed. RESULTS: CBDL induced expression of Mrp 3 and Mrp 4 in FXR(+/+) and even more in FXR(-/-), whereas Mrp 2 expression remained unchanged. Bsep expression was maintained in CBDL FXR(+/+) but remained undetectable in CBDL FXR(-/-). Alanine aminotransferase levels and mortality rates did not differ between CBDL FXR(+/+) and FXR(-/-). CBDL increased biliary pressure and induced bile ductular proliferation and bile infarcts in FXR(+/+), whereas FXR(-/-) had lower biliary pressures, less ductular proliferation, and developed disseminated liver cell necroses. CONCLUSIONS: Overexpression of Mrp 3 and Mrp 4 in CBDL mice is FXR independent and could play an important role in the adaptive hepatic ABC transporter response to cholestasis. Maintenance of Bsep expression strictly depends on FXR and is a critical determinant of the cholestatic phenotype. Lack of bile infarcts in CBDL FXR(-/-) suggests that development of bile infarcts is related to bile acid-dependent bile flow and biliary pressure. This information is relevant for the potential use of FXR modulators in the treatment of cholestatic liver diseases.  相似文献   

3.
A systematic review and meta‐analysis was conducted of studies that address the association of bile acid (BA) with obesity and of studies on the effects of treatment in patients with obesity on BA metabolism, assessed from systemic BA, fibroblast growth factor 19 (FGF19), 7α‐hydroxy‐4‐cholesten‐3‐one (C4) level, and faecal BA. We searched PubMed, Embase, and the Cochrane Library from inception to 1 August 2019 using the keywords obesity, obese, body mass index, and overweight with bile acid, FGF19, FXR, and TGR5. Two reviewers independently searched, selected, and assessed the quality of studies. Data were analysed using either fixed or random effect models with inverse variance weighting. Of 3771 articles, 33 papers were relevant for the association of BA with obesity of which 22 were included in the meta‐analysis, and 50 papers were relevant for the effect of obesity interventions on BA of which 20 were included in the meta‐analysis. Circulating fasting total BA was not associated with obesity. FGF19 was inversely and faecal BA excretion was positively associated with obesity. Roux‐en‐Y gastric bypass (RYGB) and sleeve gastrectomy (SG) modulated BA metabolism, ie, increased BA and FGF19. Our results indicate that BA metabolism is altered in obesity. Certain bariatric surgeries including RYGB and SG modulate BA, whether these underlie the beneficial effect of the treatment should be investigated.  相似文献   

4.
Abstract This study investigated a possible role for primary bile acid in the control of methanogenesis in the human colon. Production of hydrogen and methane was measured in anaerobic faecal cultures derived from faeces of six 'non-methanogenic' and three methanogenic healthy humans. Using a sensitive technique for gas measurement, methane was detected in all faecal cultures, including those from 'non-methanogenic' humans. Bile acid inhibited methanogenesis in a dose-response fashion in the in vitro 'non-methanogenic' and methanogenic faecal cultures. Inhibition was significant at bile acid concentrations > 0.05%. Methanogenesis correlated with methanogen (methanogenic bacteria) numbers. If this inhibition occurs in vivo , then it would explain much of the epidemiology of non-methanogenesis in humans. From an analysis of net hydrogen production by the faecal cultures, it is inferred that bile acid inhibits other hydrogen-consuming bacteria in addition to methanogens. These in vitro data suggest a major role for bile acid in the accumulation of hydrogen gas in the colon. Possible links between bile acid induced accumulation of gas and irritable bowel syndrome are discussed.  相似文献   

5.
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.  相似文献   

6.
Steroid 5β-reductase [aldo-keto reductase family 1 member D1(AKR1D1)] is essential for bile acid biosynthesis. Bile acid deficiency caused by genetic defects in AKR1D1 leads to life-threatening neonatal hepatitis and cholestasis. There is still limited experience regarding the treatment of this disease. We describe an infant who presented with hyperbilirubinemia and coagulopathy but normal bile acid and γ-glutamyltransferase. Gene analysis was performed using genomic DNA from peripheral lymphocytes from the patient, his parents, and his elder brother. The patient was compound heterozygous for c.919CT in exon 8 and exhibited a loss of heterozygosity of the AKR1D1 gene, which led to an amino acid substitution of arginine by cysteine at amino acid position 307(p.R307C). Based on these mutations, the patient was confirmed to have primary 5β-reductase deficiency. Ursodeoxycholic acid(UDCA) treatment did not have any effect on the patient. However, when we changed to chenodeoxycholic acid(CDCA) treatment, his symptoms and laboratory tests gradually improved. It is therefore crucial to supplement with an adequate dose of CDCA early to improve clinical symptoms and to normalize laboratory tests.  相似文献   

7.
The effects of carbamylcholine (Cch), the divalent cation ionophore A23187 and Ca2+ on the cyclic 3',5'-guanosine monophosphate (cGMP) and cyclic 3',5'-adenosine monophosphate (cAMP) content of rat renal cortical slices were examined. In both the presence and absence of 10 mM theophylline, Cch detectably increased cGMP within 15 sec, with peak responses noted by 2 min. The maximal cGMP response to Cch alone (0.05 mM) was an increase of two- to three-fold over control. Theophylline, which was routinely present in the incubations and which alone increased cGMP of the slices two-fold over basal during 20 min incubations, potentiated the response to Cch (maximal increase, five- to sixfold over theophylline alone). The action of Cch to increase renal cortical cGMP was blocked by prior addition of atropine and was dependent upon the presence of Ca2+ in the incubation media. Exclusion of Ca2+ lowered basal cGMP and abolished increases mediated by Cch, while exclusion of Mg2+ was without detectable effect on cGMP. In slices incubated initially without Ca2+, reexposure to Ca2+ for 1min partially restored the cGMP response to Cch, and reexposure for 3 min completely restored this response. Since prior incubation of tissue in Ca2+-free buffer for only 2 min was sufficient to block the cGMP responses to Cch, depletion of tissue Ca2+ did not appear to be involved. A23187 also increased renal cortical cGMP fivefold in the presence of Ca2+. Its effects were not additive with those of Cch and were not additive with those of Cch and were not expressed by Mg2+ in Ca2+-free media. By contrast, tetracaine, which blocks Ca2+ transport across or binding to biologic membranes, reduced basal cGMP and inhibited the actions of Cch and A23187 to increase cGMP in cortical slices incubated with Ca2+. The action of 1 mM tetracaine to block Cch-mediated increases in cGMP was partially reversed by increasing media Ca2+ from 1.5 to 5 mM, but not by increasing media Mg2+ to 5 mM. In contrast to their effects on cGMP, Cch, A23187, Ca2+ exclusion, and tetracaine did not detectably alter basal renal cortical cAMP or cAMP responses to parathyroid hormone (PTH). Conversely, concentrations of PTH, glucagon, and isoproterenol which maximally increased renal cortical cAMP did not alter cGMP. Furthermore, prior incubation of slices with Cch did not alter their subsequent cAMP response to PTH at a time when cGMP levels were still elevated, while prior incubation with PTH did not affect the subsequent cGMP response to Cch at a time when cAMP was increased. These studies demonstrate modulation of renal cortical cGMP by cholinergic stimuli and Ca2+. They also indicate that cGMP and cAMP in renal cortex can be regulated independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号